CN112410750A - 石墨烯薄膜复铜基热沉及其制备方法 - Google Patents

石墨烯薄膜复铜基热沉及其制备方法 Download PDF

Info

Publication number
CN112410750A
CN112410750A CN201910777068.3A CN201910777068A CN112410750A CN 112410750 A CN112410750 A CN 112410750A CN 201910777068 A CN201910777068 A CN 201910777068A CN 112410750 A CN112410750 A CN 112410750A
Authority
CN
China
Prior art keywords
heat sink
film layer
graphene film
substrate
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910777068.3A
Other languages
English (en)
Inventor
茹占强
马文珍
梁冰
宋贺伦
朱煜
宋盛星
殷志珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201910777068.3A priority Critical patent/CN112410750A/zh
Publication of CN112410750A publication Critical patent/CN112410750A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了石墨烯薄膜复铜基热沉及其制备方法。该制备方法包括:提供热沉基板并对所述热沉基板进行预处理;在所述热沉基板上形成石墨烯薄膜层;在所述石墨烯薄膜层上形成金属膜层;对所述石墨烯薄膜层和所述金属膜层进行热压处理。该石墨烯薄膜复铜基热沉包括:热沉基板;石墨烯薄膜层,设置于所述热沉基板上;金属膜层,设置于所述石墨烯薄膜层上。通过制作石墨烯薄膜层来增强了热沉材料的平面导热能力,且石墨烯薄膜层有利于抑制芯片的热膨胀性,延长了芯片的使用寿命,同时通过设置金属膜层可提高热沉材料的焊接性能,最后通过热压工艺可提高石墨烯薄膜层与热沉基板的结合力。

Description

石墨烯薄膜复铜基热沉及其制备方法
技术领域
本发明属于电子器件封装用热沉技术领域,特别涉及一种石墨烯薄膜复铜基热沉及其制备方法。
背景技术
在大功率电子器件中,产品体积日益变小导致功率密度更高,为防止产品温度过高对电子器件造成损伤导致失效,对封装材料的散热能力要求越来越高。目前大功率电子器件的封装外壳通常采用热沉材料,主要为钨铜合金、钼铜合金、可伐合金等高热导热沉材料,但是,单纯的传统热沉材料已经难以满足高效散热的要求,因此需要开发新的热沉材料来满足需求。
石墨烯是一种由碳原子以SP2键形成的六方晶体结构的二维单原子层,因其独特的结构及优良的物理性能,未来在高性能封装热沉领域有很好的应用前景。近年来有些业界研究者发展了在铜、镍等金属上采用化学气相沉积法(CVD)合成石墨烯的技术,可以生长出大面积高质量的薄层石墨烯。但是由于石墨烯薄膜与基体结合力差,与芯片焊接新差等问题一直没有被大规模运用。
发明内容
(一)本发明所要解决的技术问题
本发明要解决的技术问题是:如何提高热沉材料中的石墨烯薄膜的结合力。
(二)本发明所采用的技术方案
为了实现上述的目的,本发明采用了如下的技术方案:
一种石墨烯薄膜复铜基热沉的制备方法,所述制备方法包括:
提供热沉基板并对所述热沉基板进行预处理;
在所述热沉基板上形成石墨烯薄膜层;
在所述石墨烯薄膜层上形成金属膜层;
对所述石墨烯薄膜层和所述金属膜层进行热压处理。
优选地,对所述热沉基板进行预处理的具体方法包括:
对所述热沉基板进行抛光处理;
对抛光处理后的所述热沉基板进行退火处理。
优选地,退火处理的退火气氛为氢气,退化温度为200℃至500℃,退火时间为1小时至6小时。
优选地,采用化学气相沉积工艺在所述热沉基板上形成石墨烯薄膜层。
优选地,采用物理气相沉积工艺在所述石墨烯薄膜层上形成金属膜层。
优选地,采用放电等离子热压工艺对所述石墨烯薄膜层和所述金属膜层进行热压处理。
优选地,所述热沉基板的铜基热沉基板。
优选地,所述金属膜层的材料为铜。
本发明还公开了一种石墨烯薄膜复铜基热沉,包括:
热沉基板;
石墨烯薄膜层,设置于所述热沉基板上;
金属膜层,设置于所述石墨烯薄膜层上。
优选地,所述热沉基板的厚度范围为0.1mm~3mm;所述石墨烯薄膜层的厚度范围为0.05μm~2μm;所述金属膜层的厚度范围为0.5μm~10μm。
(三)有益效果
本发明公开的石墨烯薄膜复铜基热沉及其制备方法,通过制作石墨烯薄膜层来增强了热沉材料的平面导热能力,且石墨烯薄膜层有利于抑制芯片的热膨胀性,延长了芯片的使用寿命,同时通过设置金属膜层可提高热沉材料的焊接性能,最后通过热压工艺可提高石墨烯薄膜层与热沉基板的结合力。
附图说明
图1是本发明的实施例的石墨烯薄膜复铜基热沉制备方法的流程图;
图2是本发明的实施例的石墨烯薄膜复铜基热沉的剖面示意图;
图3是本发明的实施例的石墨烯薄膜层表面的扫描电镜图;
图4是本发明的实施例的石墨烯薄膜复铜基热沉侧面的扫描电镜图;
图5是本发明的实施例的石墨烯薄膜复铜基热沉的测温点分布示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
本发明的目的是在于提供一种石墨烯薄膜复铜基热沉的制备方法,在提高铜基材热沉法兰的散热能力的同时,调节热膨胀系数,从而生产出新型高性能热沉材料。如图1和图2所示,本发明实施例一的石墨烯薄膜复铜基热沉的制备方法包括如下步骤:
步骤S10:提供热沉基板10并对所述热沉基板10进行预处理。
具体来说,热沉基板10优选采用铜基热沉基板,对热沉基板10进行预处理的步骤包括对所述热沉基板10进行抛光处理以及对抛光处理后的所述热沉基板10进行退火处理。
首先对热沉基板10进行物理抛光或化学抛光,接着对热沉基板10进行清洗干燥,然后将热沉基板10置于氢气气氛中进行退火,退化温度为200℃至500℃,退火时间为1小时至6小时。作为优选实施例,热沉基板10的尺寸为20mm×20mm×1mm,退火温度可为400℃,退火时间可为2小时。热沉基板10经过抛光处理及退火处理能提高结合力。热沉基板10的厚度范围为0.1mm~3mm
步骤S20:在所述热沉基板10上形成石墨烯薄膜层20。
具体地,采用化学气相沉积工艺制作石墨烯薄膜层20。其中,碳源选用气态碳源,包括甲烷、乙炔、乙烯、乙烷、一氧化碳、二氧化碳中的任意一种或两种以上的组合,气态碳源占封闭静态体系中通入的气体总量的0.01%~1%,控制真空室内的真空度为1.0×10-6~1.0×10-1Pa,设定压强为1~105Pa,将体系温度升温至800℃~960℃,进行高温催化分解反应,从而在热沉基板10上形成石墨烯薄膜层20。其中,石墨烯薄膜层20的厚度范围为0.05μm~2μm,在高温催化分解反应结束之后,将体系降至室温。采用化学气相沉积能制备出高性能石墨烯薄膜层,并且在封闭体系中制备石墨烯薄膜层20,体系内保持常压,不会对生长室造成污染,而且降低对真空设备的损耗。
作为优选实施例,碳源选用甲烷,甲烷占封闭静态体系中通入的气体总量的0.05%;设定压强为102Pa。再将体系升温至900℃,进行高温催化分解反应,从而在热沉基板10的表面生长形成石墨烯薄膜层20。在高温催化分解反应结束后,将体系降至室温。制作的石墨烯薄膜层20扫描电镜图如图3所示,制备的石墨烯薄膜厚度均匀,且图中未看到裂纹,证明本实施例制备的石墨烯是连续的,说明石墨烯薄膜的质量良好,能确保发挥出其优良的热导性能。
步骤S30:在所述石墨烯薄膜层20上形成金属膜层30。
具体地,采用物理气相沉积工艺制作金属膜层30。沉积过程中,控制沉积功率为500W~900W,工作气氛为氩气,真空室加热温度为150℃~350℃,沉积时间为20min~200min。作为优选实施例,金属膜层30的材料优选为铜,控制沉积功率为750W,工作气氛为氩气,真空室加热温度为220℃,沉积时间为120min,得到金属膜层30。采用的物理气相沉积工艺制备出的金属膜层30,能有效提高芯片焊接性能。其中金属膜层的厚度范围为0.5μm~10μm
步骤S40:对所述石墨烯薄膜层20和所述金属膜层30进行热压处理。
具体地,优选采用放电等离子热压工艺对石墨烯薄膜层20和所述金属膜层30进行热压处理。热压处理过程中,控制热压压力为30~120Mpa,热压温度800℃~1000℃,热压时间20min~40min,最终形成石墨烯薄膜复铜基热沉。作为优选实施例,控制热压压力为90Mpa,热压温度为950℃,热压时间20min~40min,最终形成石墨烯薄膜复铜基热沉。通过放电等离子热压工艺,能显著提高结合力。最终形成的石墨烯薄膜复铜基热沉的扫描电镜图如图5所示,其中标号c表示热沉基板,标号b表示石墨烯薄膜层,标号a表示金属膜层。
针对上述制备方法制作的石墨烯薄膜复铜基热沉,分别进行了热点测温及极限热循环测试。其中热点测温测试结果是石墨烯薄膜复铜基热沉整体的热导率为490W/m·K,而纯铜的热导率397W/m·k。测试结果如下表所示。
Figure BDA0002175419420000051
具体来说,如图5所示,对石墨烯薄膜复铜基热沉的中心位置1处加热至120℃,在第一半径的位置上测量四个位置2的平均温度为118.45℃,在第二半径的位置上测量四个位置3的平均温度为117.65℃。作为对比例,采用同样尺寸的纯铜基材,在纯铜基材中心位置1处加热至120℃,在第一半径的位置上测量四个位置2的平均温度为116.25℃,在第二半径的位置上测量四个位置3的平均温度为112.17℃。可见,实验结果表明石墨烯薄膜层的存在大大增强了热沉材料在平面上的热导能力,能将芯片产生的热量快速传导至热沉材料各处,从而实现快速散热。
石墨烯抑制热沉基板和芯片热膨胀的具体原理如下:石墨烯在二维平面的导热能力十分突出,能将中心热源产生的热量迅速传递到热沉各处,从而降低了热集中,增大了散热面积。同时石墨烯具有低的热膨胀系数,只有4.8×10-6K-1,其中铜为17.5×10-6K-1,远远小于铜,更接近芯片材料的热膨胀系数,能与芯片有更好的热匹配。石墨烯薄膜复合于铜热沉中,在提高整体热沉材料的热导率的同时,能大大约束铜热沉的热膨胀,从而在热循环中表现出热稳定性。
极限热循环测试为将芯片分别焊接在不同热沉材料表面,在室温至300℃之间反复升温降温,直到芯片破坏。其中纯铜基材的循环次数为2次,石墨烯薄膜复铜基热沉的循环次数为17。结果显示有石墨烯薄膜的热沉材料其热循环次数大大提高,表明石墨烯薄膜能大大降低热沉材料的热应力集中,从而提高热沉材料的应用性能。
实施例二
如图2所示,本发明的实施例二还公开了一种石墨烯薄膜复铜基热沉,包括热沉基板10、设置于热沉基板10上的石墨烯薄膜层20以及设置在金属膜层30上的金属膜层40。其中热沉基板10优选采用铜基热沉基板,金属膜层30的材料优选为铜。所述热沉基板10的厚度范围为0.1mm~3mm,所述石墨烯薄膜层的厚度范围为0.05μm~2μm,所述金属膜层的厚度范围为0.5μm~10μm。
本实施例二的石墨烯薄膜复铜基热沉通过设置石墨烯薄膜层20增强了热沉材料的平面导热能力,且石墨烯薄膜层20有利于抑制芯片的热膨胀性,延长了芯片的使用寿命,同时通过设置金属膜层30可提高热沉材料的焊接性能。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员能够理解本发明,但是本发明不仅限于具体实施方式的范围,对本技术领域的普通技术人员而言,只要各种变化只要在所附的权利要求限定和确定的本发明精神和范围内,一切利用本发明构思的发明创造均在保护之列。

Claims (10)

1.一种石墨烯薄膜复铜基热沉的制备方法,其特征在于,所述制备方法包括:
提供热沉基板并对所述热沉基板进行预处理;
在所述热沉基板上形成石墨烯薄膜层;
在所述石墨烯薄膜层上形成金属膜层;
对所述石墨烯薄膜层和所述金属膜层进行热压处理。
2.根据权利要求1所述的石墨烯薄膜复铜基热沉的制备方法,其特征在于,对所述热沉基板进行预处理的具体方法包括:
对所述热沉基板进行抛光处理;
对抛光处理后的所述热沉基板进行退火处理。
3.根据权利要求2所述的石墨烯薄膜复铜基热沉的制备方法,其特征在于,
退火处理的退火气氛为氢气,退化温度为200℃至500℃,退火时间为1小时至6小时。
4.根据权利要求1所述的石墨烯薄膜复铜基热沉的制备方法,其特征在于,采用化学气相沉积工艺在所述热沉基板上形成石墨烯薄膜层。
5.根据权利要求1所述的石墨烯薄膜复铜基热沉的制备方法,其特征在于,采用物理气相沉积工艺在所述石墨烯薄膜层上形成金属膜层。
6.根据权利要求1所述的石墨烯薄膜复铜基热沉的制备方法,其特征在于,采用放电等离子热压工艺对所述石墨烯薄膜层和所述金属膜层进行热压处理。
7.根据权利要求1所述的石墨烯薄膜复铜基热沉的制备方法,其特征在于,所述热沉基板的铜基热沉基板。
8.根据权利要求1所述的石墨烯薄膜复铜基热沉的制备方法,其特征在于,所述金属膜层的材料为铜。
9.一种石墨烯薄膜复铜基热沉,其特征在于,包括:
热沉基板;
石墨烯薄膜层,设置于所述热沉基板上;
金属膜层,设置于所述石墨烯薄膜层上。
10.根据权利要求9所述的石墨烯薄膜复铜基热沉,其特征在于,所述热沉基板的厚度范围为0.1mm~3mm;所述石墨烯薄膜层的厚度范围为0.05μm~2μm;所述金属膜层0.5μm~10μm。
CN201910777068.3A 2019-08-22 2019-08-22 石墨烯薄膜复铜基热沉及其制备方法 Pending CN112410750A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910777068.3A CN112410750A (zh) 2019-08-22 2019-08-22 石墨烯薄膜复铜基热沉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910777068.3A CN112410750A (zh) 2019-08-22 2019-08-22 石墨烯薄膜复铜基热沉及其制备方法

Publications (1)

Publication Number Publication Date
CN112410750A true CN112410750A (zh) 2021-02-26

Family

ID=74779228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910777068.3A Pending CN112410750A (zh) 2019-08-22 2019-08-22 石墨烯薄膜复铜基热沉及其制备方法

Country Status (1)

Country Link
CN (1) CN112410750A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538582A (zh) * 2014-11-30 2015-04-22 王干 一种铜基石墨烯聚合物锂电池负极结构及制备方法
CN105984179A (zh) * 2015-03-06 2016-10-05 兰州空间技术物理研究所 一种热沉材料及其制备方法
US20180102197A1 (en) * 2016-10-11 2018-04-12 International Copper Association, Ltd. Graphene-Copper Composite Structure and Manufacturing Method
CN108189518A (zh) * 2017-12-29 2018-06-22 三河市华隆豪立泰新材料科技有限公司 石墨烯电磁屏蔽布及其制造方法
CN109811175A (zh) * 2019-03-26 2019-05-28 重庆大学 一种石墨烯-铜复合材料制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538582A (zh) * 2014-11-30 2015-04-22 王干 一种铜基石墨烯聚合物锂电池负极结构及制备方法
CN105984179A (zh) * 2015-03-06 2016-10-05 兰州空间技术物理研究所 一种热沉材料及其制备方法
US20180102197A1 (en) * 2016-10-11 2018-04-12 International Copper Association, Ltd. Graphene-Copper Composite Structure and Manufacturing Method
CN108189518A (zh) * 2017-12-29 2018-06-22 三河市华隆豪立泰新材料科技有限公司 石墨烯电磁屏蔽布及其制造方法
CN109811175A (zh) * 2019-03-26 2019-05-28 重庆大学 一种石墨烯-铜复合材料制备方法

Similar Documents

Publication Publication Date Title
US7183003B2 (en) Thermal interface material and method for manufacturing same
CN102407335B (zh) 一种高导热led封装材料及其制备方法
US11702736B2 (en) Method of manufacturing and modularizing assembled thermal management material based on diamond-graphene hybrid structure
CN108148452B (zh) 一种含有石墨烯的复合导热填料及其制备方法和应用
CN109930125B (zh) 一种金刚石-铝复合材料的磁控溅射镀膜方法
CN108033439A (zh) 一种等离子体辅助溅射固态碳源的石墨烯低温制备方法
CN110557936A (zh) 一种金刚石微通道Cu基CVD金刚石热沉片及其制备方法
CN100404197C (zh) 铜/钼/铜电子封装复合材料的制备方法
WO2020057672A1 (zh) 多层六方氮化硼薄膜的制备方法
CN112981364B (zh) 一种快热响应超黑材料及其制备方法
CN112410750A (zh) 石墨烯薄膜复铜基热沉及其制备方法
CN114250444A (zh) 一种等离子体辅助化学气相沉积高纯钨溅射靶材的方法
US20230086662A1 (en) Method of producing composite material
CN110718516B (zh) 散热膜及其制备方法、芯片组件和电子设备
CN111356329A (zh) 一种薄型低界面热阻的高导散热复合材料
CN110643860A (zh) 一种陶瓷膜修饰的金刚石/铝复合材料及其无压浸渗制备工艺
CN113355650B (zh) AlN-金刚石热沉、制备方法和应用以及半导体激光器封装件
CN111647873B (zh) 一种三维连续网络亲水硼掺杂金刚石散热体及其制备方法和应用
JP5278737B2 (ja) 放熱材料の製造方法
CN112813496B (zh) 一种高定向热解石墨的制备方法
KR102047435B1 (ko) 고열전도 성능을 갖는 금속 매트릭스 복합재 히트 스프레더
CN112420638A (zh) 金刚石薄膜复铜基热沉及其制备方法
CN110862566A (zh) 基于碳纳米管阵列高导热的导热吸波绝缘片的制备方法
CN108711563B (zh) 可挠性散热组件及其制备方法
TW201915212A (zh) 石墨烯均溫板結構及其製程方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210226