CN112398361B - 一种抑制mmc互联变换器相间环流的方法 - Google Patents

一种抑制mmc互联变换器相间环流的方法 Download PDF

Info

Publication number
CN112398361B
CN112398361B CN202011233518.1A CN202011233518A CN112398361B CN 112398361 B CN112398361 B CN 112398361B CN 202011233518 A CN202011233518 A CN 202011233518A CN 112398361 B CN112398361 B CN 112398361B
Authority
CN
China
Prior art keywords
current
bridge arm
mmc
phase
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011233518.1A
Other languages
English (en)
Other versions
CN112398361A (zh
Inventor
冯仰敏
杨沛豪
吉成珍
赵勇
李立勋
常洋涛
高晨
李万镒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202011233518.1A priority Critical patent/CN112398361B/zh
Publication of CN112398361A publication Critical patent/CN112398361A/zh
Application granted granted Critical
Publication of CN112398361B publication Critical patent/CN112398361B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种抑制MMC互联变换器相间环流的方法,包括步骤:得到MMC互联变换器A相上、下桥臂电流与交流微网侧电流关系式;将MMC互联变换器A相上、下桥臂电流分解为环流与交流微网侧电流;得到环流在桥臂上产生电压表达式;将MMC互联变换器A相电压与输出电流展开为时域表达式;定义电压调制度系数k与电流调制度系数m;得到MMC互联变换器A相桥臂上、下电压及电流;计算A相上、下桥臂瞬时功率;求积分得到A相上、下桥臂能量表达式;得到MMC互联变换器A相上、下桥臂及A相能量交流分量表达式;得到电容电压表达式;提出一种带通滤波器,得到其传递函数;引入MMC互联变换器电流PI控制环节,实现抑制MMC互联变换器相间环流。

Description

一种抑制MMC互联变换器相间环流的方法
技术领域
本发明涉及一种抑制交直流混合微网MMC互联变换器相间环流的方法,具体涉及一种基于带通滤波器和比例控制相结合的MMC互联变换器相间环流抑制方法。
背景技术
交直流混合微网是未来微网发展的高级形式,综合了交流微电网和直流微电网两者的优点,增强了多种不同类型微电源和各类形式的负荷接入微电网系统的灵活性,MMC作为一种交直流混合微网互联变换器,具有较低开关损耗和谐波输出优点,且具备良好的可拓性和输出特性。
相间环流二倍频的分量的存在,直接影响了MMC互联变换器桥臂能量的波动影响,同时MMC互联变换器依靠子模块电容电压作为能量载体,二倍频环流的存在同样影响了电容电压的工作状态,需要对相间环流进行抑制。
发明内容
本发明的目的在于提供了一种抑制MMC互联变换器相间环流的方法,采用带通滤波器和比例控制相结合的相间环流抑制技术,可以消除MMC互联变换器桥臂之间的二倍频环流。
本发明采取如下技术方案来实现的:
一种抑制MMC互联变换器相间环流的方法,包括以下步骤:
1)以MMC互联变换器交流A相为例,根据基尔霍夫电流定律,得到MMC互联变换器A相上、下桥臂电流与交流微网侧电流关系式;
2)根据MMC互联变换器上、下桥臂严格对称,将步骤1)MMC互联变换器A相上、下桥臂电流分解为环流与交流微网侧电流;
3)将MMC互联变换器直流微网侧母线电压和交流微网侧A相电压用MMC互联变换器上、下桥臂电压及步骤2)MMC互联变换器上、下桥臂环流表示;
4)通过步骤3)MMC互联变换器直流微网侧母线电压得到环流在桥臂上产生电压表达式;
5)将MMC互联变换器A相电压与输出电流展开为时域表达式;
6)定义电压调制度系数k与电流调制度系数m;
7)在不考虑桥臂环流的影响下,结合步骤3)MMC互联变换器直流微网侧母线电压和交流微网侧A相电压、步骤5)MMC互联变换器A相电压与输出电流时域表达式、步骤6)电压调制度系数k与电流调制度系数m,得到MMC互联变换器A相桥臂上、下电压及电流;
8)根据步骤7)MMC互联变换器A相桥臂上、下电压及电流,计算A相上、下桥臂瞬时功率;
9)对步骤8)A相上、下桥臂瞬时功率求积分得到A相上、下桥臂能量表达式;
10)忽略步骤9)MMC互联变换器到A相上、下桥臂能量表达式中的直流分量,得到MMC互联变换器A相上、下桥臂及A相能量交流分量表达式;
11)根据MMC互联变换器桥臂子模块电容能量公式,结合步骤10)MMC互联变换器A相能量交流分量表达式,得到电容电压表达式;
12)分析步骤11)MMC互联变换器桥臂子模块电容电压表达式,为了抑制相间环流二倍频分量,减少子模块电容电流的谐波含量,提出一种带通滤波器,得到其传递函数;
13)将步骤12)得到的带通滤波器,引入MMC互联变换器电流PI控制环节,实现抑制MMC互联变换器相间环流。
本发明进一步的改进在于,步骤1)的具体实现方法为:以MMC互联变换器交流A相为例,根据基尔霍夫电流定律,得到MMC互联变换器A相上、下桥臂电流与交流微网侧电流关系式:
Figure BDA0002765989350000031
其中:icira是A相环流,流经A相上下桥臂,与负载电流无关。
本发明进一步的改进在于,步骤2)的具体实现方法为:根据MMC互联变换器上、下桥臂严格对称,将步骤1)MMC互联变换器A相上、下桥臂电流分解为环流与交流微网侧电流:ia=ina-ipa;其中:ipa、ina为流过MMC互联变换器A相桥臂上、下电流;
步骤3)的具体实现方法为:将MMC互联变换器直流微网侧母线电压和交流微网侧A相电压用MMC互联变换器上、下桥臂电压及步骤2)MMC互联变换器上、下桥臂环流表示:
Figure BDA0002765989350000032
步骤4)的具体实现方法为:通过步骤3)MMC互联变换器直流微网侧母线电压得到环流在桥臂上产生电压表达式:
Figure BDA0002765989350000033
本发明进一步的改进在于,步骤5)的具体实现方法为:将MMC互联变换器A相电压与输出电流展开为时域表达式:
Figure BDA0002765989350000034
其中:Um、Im为MMC互联变换器A相电压幅值、电流幅值;ω为角频率;
Figure BDA0002765989350000035
为初相位。
本发明进一步的改进在于,步骤6)的具体实现方法为:定义电压调制度系数k与电流调制度系数m:
Figure BDA0002765989350000036
本发明进一步的改进在于,步骤7)的具体实现方法为:在不考虑桥臂环流的影响下,结合步骤3)MMC互联变换器直流微网侧母线电压和交流微网侧A相电压、步骤5)MMC互联变换器A相电压与输出电流时域表达式、步骤6)电压调制度系数k与电流调制度系数m,得到MMC互联变换器A相桥臂上、下电压及电流:
Figure BDA0002765989350000041
Figure BDA0002765989350000042
其中:Idc为直流微网侧输出电流,因为MMC互联变换器结构的对称性,直流微网输出电流在三相上近似均分。
本发明进一步的改进在于,步骤8)的具体实现方法为:根据步骤7)MMC互联变换器A相桥臂上、下电压及电流,计算A相上、下桥臂瞬时功率:
Figure BDA0002765989350000043
本发明进一步的改进在于,步骤9)的具体实现方法为:对步骤8)A相上、下桥臂瞬时功率求积分得到A相上、下桥臂能量表达式:
Figure BDA0002765989350000044
本发明进一步的改进在于,步骤10)的具体实现方法为:进一步的,因为MMC互联变换器上、下桥臂能量存储与电容器中,忽略步骤9)MMC互联变换器到A相上、下桥臂能量表达式中的直流分量,得到MMC互联变换器A相上、下桥臂能量交流分量:
Figure BDA0002765989350000045
及A相能量交流分量表达式:
Figure BDA0002765989350000051
本发明进一步的改进在于,步骤11)的具体实现方法为:根据MMC互联变换器桥臂子模块电容能量公式,结合步骤10)MMC互联变换器A相能量交流分量表达式:
Figure BDA0002765989350000052
得到电容电压表达式:
Figure BDA0002765989350000053
步骤12)的具体实现方法为:分析步骤11)MMC互联变换器桥臂子模块电容电压表达式,为了抑制相间环流二倍频分量,减少子模块电容电流的谐波含量,提出一种带通滤波器,得到其传递函数:
Figure BDA0002765989350000054
其中:Q为品质因数;s为拉普拉斯算子;ω0为额定角频率;
步骤13)的具体实现方法为:将步骤12)得到的带通滤波器,引入MMC互联变换器电流控制环节中,给定环流参考值为0,参考值和实际的差值可以通过PI控制器实现差值接近0的目的,即可对MMC换流器桥臂上的参考电压信号进行补偿,再通过后续调制环节,从而实现抑制MMC互联变换器相间环流。
与现有技术相比,本发明至少具有如下有益的技术效果:
1.本发明采用带通滤波器和比例控制相结合的相间环流抑制技术,可以有效消除MMC互联变换器桥臂之间的二倍频环流。
2.本发明通过带通滤波器消除环流中的二次谐波,可以有效抑制相电流谐波含量,得子模块电容电压波动更小。
附图说明
图1为MMC互联变换器的A相等效电路图;
图2为带通滤波器幅频特性图;
图3为环流控制器策略原理图;
图4为MMC互联变换器系统仿真示意图;
图5为MMC互联变换器A相上、下桥臂子模块电容电压在充放电过程中的波动仿真图;
图6为MMC互联变换器未加入环流抑制器,A相电流谐波含量仿真图;
图7为MMC互联变换器加入环流抑制器,A相电流谐波含量仿真图。
具体实施方式
下面通过附图,对本发明的技术方案做进一步的详细描述。
如图1所示,各桥臂子模块组由等效电压源代替。由于拓扑结构具有对称性,因此以其中任意一相分析均可,本发明以A相为例。
根据基尔霍夫电流定律,MMC互联变换器上、下桥臂电流与交流微网侧A相电流之间满足如下关系式:
ia=ina-ipa (1)
式(1)中:ipa、ina为流过MMC互联变换器A相桥臂上、下电流。
由于A相上、下桥臂严格对称,故交流微网侧A相电流ia在上、下桥臂上可近似均分,上、下桥臂电流为:
Figure BDA0002765989350000061
式(2)中:icira是A相环流,流经A相上、下桥臂,与负载电流无关,将上式化简,可得环流的表达式为:
Figure BDA0002765989350000062
MMC直流微网侧母线电压和交流微网侧A相电压可以用上、下桥臂电压表示为:
Figure BDA0002765989350000071
式(4)中:Udc为直流微网侧母线电压;ua0为交流微网侧A相电压;R和L分别为桥臂等效电阻和限流电感;upa、una为MMC互联变换器A相桥臂上、下电压。
由式(4)可知:环流只和上、下桥臂输出电压和直流电压有关,从侧面也证明了桥臂环流产生的根本原因是各相上、下桥臂的输出电压之和与输出直流母线之间的电压不平衡,为便于分析,可将环流在桥臂上产生的电压等效为:
Figure BDA0002765989350000072
MMC互联变换器A相电压与输出电流可以分别等效为:
Figure BDA0002765989350000073
式(6)中:Um、Im为MMC互联变换器A相电压幅值、电流幅值;ω为角频率;
Figure BDA0002765989350000074
为初相位。
本发明引入电压调制度系数k与电流调制度系数m,分别表示为:
Figure BDA0002765989350000075
在不考虑桥臂环流的影响下,结合式(4)、(6)、(7)可以得到MMC互联变换器A相桥臂上、下电压及电流为:
Figure BDA0002765989350000076
Figure BDA0002765989350000081
式(9)中:Idc为直流微网侧输出电流,因为MMC互联变换器结构的对称性,直流微网输出电流在三相上近似均分。
根据式(8)、(9),可以得到A相上、下桥臂瞬时功率表达式:
Figure BDA0002765989350000082
分别对上、下桥臂求积分可以得到存储能量为:
Figure BDA0002765989350000083
因为MMC互联变换器上、下桥臂能量存储与电容器中,忽略MMC互联变换器A相上、下桥臂中的直流分量,只考虑交流分量进一步推导得:
Figure BDA0002765989350000084
MMC互联变换器A相桥臂的交流分量存储能量位:
Figure BDA0002765989350000085
由式(13)可以得出:MMC互联变换器三相桥臂的总能量的交流分量主要由二倍频构成,同时也证明MMC互联变换器系统的桥臂上也是存在二次环流。同时,又由于交流分量主要储存在各个桥臂的子模块的电容中,再由电容能量公式
Figure BDA0002765989350000086
结合式(13),可以得到电容电压表达式为:
Figure BDA0002765989350000091
由式(14)分析可得:相间环流二倍频的分量的存在,直接影响了MMC互联变换器桥臂能量的波动影响;同时MMC互联变换器依靠子模块电容电压作为能量载体,二倍频环流的存在同样影响了电容电压的工作状态。为此,抑制环流二倍频不仅可以降低直流侧电容电压的波动,提高整个系统的稳定性,同时可以减少子模块电容电流的THD含量,提高系统电容利用率。
如图2所示,为了减小二次谐波,有效抑制环流,本发明采用滤波器抑制二倍频环流,然而简单的陷波器滤波器在高频时会产生相位角偏移,造成系统不稳定。本发明提出一种基于带通滤波器的二倍频环流抑制方法,其传递函数为:
Figure BDA0002765989350000092
式(15)中:Q为品质因数;s为拉普拉斯算子;ω0为额定角频率。
由带通滤波器幅频特性可知:采用滤波性能优良的带通滤波器,使得输入量中的二倍频分量,在经过带通滤波器时,除了基频分量,其余分量衰减至0dB以下,同时保持系统相位不变。因此,可以保证所需分量通过以及幅值不会被放大或者衰减,有效的抑制二倍频分量。
如图3所示,通过带通滤波器消除环流中的二次谐波,为了尽可能消除系统中的二倍频环流,给定环流参考值为0,参考值和实际的差值可以通过PI控制器实现差值接近0的目的,即可对MMC换流器桥臂上的参考电压信号进行补偿,再通过后续调制环节,从而实现对MMC互联变换器环流抑制功能。
如图4所示,为了验证本发明所提交直流混合微网MMC互联变换器相间环流抑制方法的有效性,在Matlab/Simulink计算机仿真平台搭建交直流混合微网MMC互联变换器仿真模型,参数如表1所示。
表1仿真参数
Figure BDA0002765989350000101
如图5所示,以MMC互联变换器A相上、下桥臂为例,仿真时间0.5s前未加入相间环流抑制控制,0.5s后加入相间环流抑制控制,上、下桥臂子模块电容电压充放电结果显示,未加入相间环流抑制时,上、下桥臂子模块电容电压值在220V上、下浮动,波动幅度范围在±8.7%内;加入相间环流抑制后,上、下桥臂子模块电容电压值在217V上、下浮动,波动幅值范围在±3.15%内。相间环流抑制技术可以使得子模块电容电压波动更小。
如图6所示,MMC互联变换器未加入环流抑制器,A相电流谐波含量为4.7%,谐波含量较高,不利于控制系统的稳定。
如图7所示,MMC互联变换器加入环流抑制器,A相电流谐波含量为0.62%,环流抑制控制因为引入带通滤波器可以有效的抑制谐波,提高输出电流电能直流,利于控制系统的稳定。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (1)

1.一种抑制MMC互联变换器相间环流的方法,其特征在于,包括以下步骤:
1)对于MMC互联变换器交流A相,根据基尔霍夫电流定律,得到MMC互联变换器A相上、下桥臂电流与交流微网侧电流关系式为:
Figure FDA0003492624090000011
其中:icira是A相环流,流经A相上下桥臂,与负载电流无关;
2)根据MMC互联变换器上、下桥臂严格对称,将步骤1)MMC互联变换器A相上、下桥臂电流分解为环流与交流微网侧电流;具体实现方法为:根据MMC互联变换器上、下桥臂严格对称,将步骤1)MMC互联变换器A相上、下桥臂电流分解为环流与交流微网侧电流:ia=ina-ipa;其中:ipa、ina为流过MMC互联变换器A相桥臂上、下电流;
3)将MMC互联变换器直流微网侧母线电压和交流微网侧A相电压用MMC互联变换器上、下桥臂电压及步骤2)MMC互联变换器上、下桥臂环流表示为:
Figure FDA0003492624090000012
4)通过步骤3)MMC互联变换器直流微网侧母线电压得到环流在桥臂上产生电压表达式为:
Figure FDA0003492624090000013
5)将MMC互联变换器A相电压与输出电流展开为时域表达式为:
Figure FDA0003492624090000014
其中:Um、Im为MMC互联变换器A相电压幅值、电流幅值;ω为角频率;
Figure FDA0003492624090000015
为初相位;
6)定义电压调制度系数k与电流调制度系数m为:
Figure FDA0003492624090000016
7)在不考虑桥臂环流的影响下,结合步骤3)MMC互联变换器直流微网侧母线电压和交流微网侧A相电压、步骤5)MMC互联变换器A相电压与输出电流时域表达式、步骤6)电压调制度系数k与电流调制度系数m,得到MMC互联变换器A相桥臂上、下电压及电流为:
Figure FDA0003492624090000021
Figure FDA0003492624090000022
其中:Idc为直流微网侧输出电流,因为MMC互联变换器结构的对称性,直流微网输出电流在三相上均分;
8)根据步骤7)MMC互联变换器A相桥臂上、下电压及电流,计算A相上、下桥臂瞬时功率为:
Figure FDA0003492624090000023
9)对步骤8)A相上、下桥臂瞬时功率求积分得到A相上、下桥臂能量表达式为:
Figure FDA0003492624090000024
10)因为MMC互联变换器上、下桥臂能量存储与电容器中,忽略步骤9)MMC互联变换器到A相上、下桥臂能量表达式中的直流分量,得到MMC互联变换器A相上、下桥臂及A相能量交流分量表达式为:
Figure FDA0003492624090000025
及A相能量交流分量表达式:
Figure FDA0003492624090000026
11)根据MMC互联变换器桥臂子模块电容能量公式,结合步骤10)MMC互联变换器A相能量交流分量表达式,得到电容电压表达式为:
Figure FDA0003492624090000027
12)分析步骤11)MMC互联变换器桥臂子模块电容电压表达式,为了抑制相间环流二倍频分量,减少子模块电容电流的谐波含量,提出一种带通滤波器,得到其传递函数为:
Figure FDA0003492624090000031
其中:Q为品质因数;s为拉普拉斯算子;ω0为额定角频率;
13)将步骤12)得到的带通滤波器,引入MMC互联变换器电流PI控制环节,给定环流参考值为0,即可对MMC换流器桥臂上的参考电压信号进行补偿,实现抑制MMC互联变换器相间环流。
CN202011233518.1A 2020-11-06 2020-11-06 一种抑制mmc互联变换器相间环流的方法 Active CN112398361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011233518.1A CN112398361B (zh) 2020-11-06 2020-11-06 一种抑制mmc互联变换器相间环流的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011233518.1A CN112398361B (zh) 2020-11-06 2020-11-06 一种抑制mmc互联变换器相间环流的方法

Publications (2)

Publication Number Publication Date
CN112398361A CN112398361A (zh) 2021-02-23
CN112398361B true CN112398361B (zh) 2022-03-08

Family

ID=74599156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011233518.1A Active CN112398361B (zh) 2020-11-06 2020-11-06 一种抑制mmc互联变换器相间环流的方法

Country Status (1)

Country Link
CN (1) CN112398361B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142743B (zh) * 2021-11-05 2024-01-19 深圳供电局有限公司 基于电压的控制方法、装置、计算机设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332809A (zh) * 2011-09-16 2012-01-25 浙江大学 三相模块化多电平换流器的直流电压波动抑制方法
CN105119509A (zh) * 2015-07-23 2015-12-02 上海电力设计院有限公司 适用于不对称交流电网的mmc直接环流抑制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332809A (zh) * 2011-09-16 2012-01-25 浙江大学 三相模块化多电平换流器的直流电压波动抑制方法
CN105119509A (zh) * 2015-07-23 2015-12-02 上海电力设计院有限公司 适用于不对称交流电网的mmc直接环流抑制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARMONICS ANALYSIS AND SIMULATION OF NLM IN MMC;Y. Wang et al;《2016 China International Conference on Electricity Distribution (CICED)》;20160926 *
MMC-HVDC 的数模混合仿真系统设计方案;李岩军等;《电力系统及其自动化学报》;20190930;第31卷(第9期);第58-65页 *
基于MMC 环流模型的通用环流抑制策略;杨晓峰等;《中国电机工程学报》;20120625;第32卷(第18期);第59-65页 *

Also Published As

Publication number Publication date
CN112398361A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Savaghebi et al. Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid
CN103078480B (zh) 一种模块化多电平变流器环流控制方法
Milanés-Montero et al. Hybrid multiconverter conditioner topology for high-power applications
CN110943456B (zh) Lcc-hvdc系统小信号谐波状态空间建模方法及装置
CN110323745B (zh) 一种模块化多电平换流器交直流侧谐波传输特性的解析方法
Duarte et al. Zero-sequence voltage compensation of a distribution network through a four-wire modular multilevel static synchronous compensator
Miveh et al. An Improved Control Strategy for a Four-Leg Grid-Forming Power Converter under Unbalanced Load Conditions.
CN104158513A (zh) 无变压器型混合电力滤波器及设计方法
Durna et al. Suppression of time-varying interharmonics produced by medium-frequency induction melting furnaces by a HAPF system
CN110943635A (zh) 基于前馈控制的mmc交流侧故障能量均衡控制方法
CN110086173B (zh) 并联型apf谐波放大效应抑制方法以及系统
CN112398361B (zh) 一种抑制mmc互联变换器相间环流的方法
Duarte et al. Experimental evaluation of negative-sequence voltage compensation in distribution networks by a modular multilevel static synchronous compensator
CN111342646A (zh) 一种模块化多电平变换器的环流抑制方法及系统
CN111030131B (zh) 基于负序虚拟阻抗的mmc-statcom环流抑制装置
CN112952867A (zh) 不对称负载下储能功率变换器输出电压不平衡抑制方法
Zhang et al. Study on the quasi-pr current coordinated control for active power filter
Wu et al. Frequency characteristic and impedance analysis on three-phase grid-connected inverters based on DDSRF-PLL
Ucar et al. An analysis of three-phase four-wire active power filter for harmonic elimination reactive power compensation and load balancing under nonideal mains voltage
CN114070075A (zh) 一种隔离型变换器拓扑主回路参数的选择方法及系统
Musa et al. Fuzzy logic controller based three phase shunt active power filter for harmonics reduction
Zheng et al. High Performance of Three-Phase Four-Leg Inverter Based on Repetitive Control Strategy
Suru et al. Conservative power theory implementation in shunt active power filtering
Daramukkala et al. Normalized Sigmoid Function LMS Adaptive Filter based Shunt Hybrid Active Power Filter for Power Quality Improvement
Meersman et al. Control design of grid-connected three-phase inverters for voltage unbalance correction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant