CN112398001B - 新型复合量子阱结构的vcsel芯片结构及制备方法 - Google Patents

新型复合量子阱结构的vcsel芯片结构及制备方法 Download PDF

Info

Publication number
CN112398001B
CN112398001B CN202011079270.8A CN202011079270A CN112398001B CN 112398001 B CN112398001 B CN 112398001B CN 202011079270 A CN202011079270 A CN 202011079270A CN 112398001 B CN112398001 B CN 112398001B
Authority
CN
China
Prior art keywords
layer
well
ingaas
barrier
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011079270.8A
Other languages
English (en)
Other versions
CN112398001A (zh
Inventor
尧舜
戴伟
杨默
张颜儒
王青
李军
张杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaxin Semiconductor Research Institute (Beijing) Co.,Ltd.
Original Assignee
Huaxin Semiconductor Research Institute Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaxin Semiconductor Research Institute Beijing Co ltd filed Critical Huaxin Semiconductor Research Institute Beijing Co ltd
Priority to CN202011079270.8A priority Critical patent/CN112398001B/zh
Publication of CN112398001A publication Critical patent/CN112398001A/zh
Application granted granted Critical
Publication of CN112398001B publication Critical patent/CN112398001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3425Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising couples wells or superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了新型复合量子阱结构的VCSEL芯片结构及制备方法。该VCSEL芯片包括衬底;衬底上依次生长的缓冲层、N型布拉格反射镜、量子阱、氧化层、P型布拉格反射镜以及P型GaAs层;所述量子阱包括依次生长的第一space层、第一外垒层、阱垒层、第二外垒层和第二space层;所述阱垒层包括重叠生长的A1GaAs势垒和InGaAs势阱,所述重叠生长的A1GaAs势垒和InGaAs势阱中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱。本发明将阱垒重复循环生长方式变更为复合生长方式,生长多个MQW峰值波长,增加了增益谱宽度,更大的温度范围内得到平坦的增益。

Description

新型复合量子阱结构的VCSEL芯片结构及制备方法
技术领域
本发明涉及光电子、微电子领域及功率器件技术领域,具体而言,本发明涉及新型复合量子阱结构的VCSEL芯片结构及制备方法。
背景技术
垂直腔表面发射激光器(VCSEL)是指从垂直于衬底面射出激光的一种新型结构的半半导体激光器,以砷化镓半导体材料为基础研制。VCSEL主要结构分两部分:中心是有源区,包括体异质结和量子阱两种结构;其侧向结构可分为增益导引和环行掩埋异质结构两种。VCSEL从诞生起就作为新一代光存储和光通信应用的核心器件,应用在光并行处理、光识别、光互联系统、光存储等领域。随着工艺、材料技术改进,VCSEL器件在功耗、制造成本、集成、散热等领域的优势开始显现,逐渐应用于工业加热、环境监测、医疗设备等商业级应用以及3D感知等消费级应用。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出新型复合量子阱结构的VCSEL芯片结构及制备方法。本发明是提供新型复合量子阱结构的VCSEL芯片结构,将阱垒重复循环生长方式变更为复合生长方式,生长多个 MQW峰值波长,增加了增益谱宽度,更大的温度范围内得到平坦的增益。
在本发明的一个方面,本发明提出了一种新型复合量子阱结构的VCSEL芯片结构。根据本发明的实施例,该新型复合量子阱结构的VCSEL芯片结构包括:
衬底;
衬底上依次生长的缓冲层、N型布拉格反射镜、量子阱、氧化层、P型布拉格反射镜以及P型GaAs层;
所述量子阱包括依次生长的第一space层、第一外垒层、阱垒层、第二外垒层和第二 space层;
所述阱垒层包括重叠生长的A1GaAs势垒和InGaAs势阱,所述重叠生长的A1GaAs势垒和InGaAs势阱中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱。
根据本发明上述实施例的新型复合量子阱结构的VCSEL芯片结构,重叠生长的A1GaAs势垒和InGaAs势阱中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱,每层将阱垒循环等同生长方式变更为循环不等同生长方式,每个势阱或者势垒的生长条件均不一致,从而达到生长多个增益谱峰值波长的目的,涵盖温漂的波长变化范围,增加了增益谱宽度,更大的温度范围内得到平坦的增益。
另外,根据本发明上述实施例的新型复合量子阱结构的VCSEL芯片结构还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述至少两个不同的InGaAs势阱为至少两个厚度不同的 InGaAs势阱。
在本发明的一些实施例中,所述厚度不同的InGaAs势阱的厚度差为0.05-0.15nm。
在本发明的一些实施例中,所述至少两个厚度不同的InGaAs势阱包括7nm的In0.072GaAs势阱、7.1nm的In0.072GaAs势阱和7.2nm的In0.072GaAs势阱。
在本发明的一些实施例中,所述至少两个不同的InGaAs势阱为至少两个In的摩尔量不同的InGaAs势阱。
在本发明的一些实施例中,所述至少两个In的摩尔量不同的InGaAs势阱包括In0.072GaAs势阱、In0.075GaAs势阱和In0.077GaAs势阱。
在本发明的一些实施例中,所述InGaAs势阱的厚度为6.5-7.5nm。
在本发明的一些实施例中,所述至少两个不同的InGaAs势阱为至少两个In的摩尔量不同的InGaAs势阱,且在每个InGaAs势阱中In的摩尔量呈线性变化、二次方程变化、抛物线变化或者双抛线变化。
在本发明的一些实施例中,所述至少两个In的摩尔量不同的InGaAs势阱包括In0.2GaAs-In0.072GaAs-In0.2GaAs势阱、In0.2GaAs-In0.075As-In0.2GaAs和In0.2GaAs-In0.077GaAs-In0.2GaAs。
在本发明的一些实施例中,所述至少两个In的摩尔量不同的InGaAs势阱包括In0.072GaAs-In0.2GaAs势阱、In0.075GaAs-In0.2GaAs和In0.077GaAs-In0.2GaAs。
在本发明的一些实施例中,所述至少两个不同的A1GaAs势垒为至少两个Al的摩尔量不同的A1GaAs势垒。
在本发明的一些实施例中,所述至少两个Al的摩尔量不同的A1GaAs势垒包括Al37GaAs势垒和Al40GaAs。
在本发明的一些实施例中,所述至少两个不同的A1GaAs势垒为至少两个Al的摩尔量不同的A1GaAs势垒,且在每个A1GaAs势垒中Al的摩尔量呈线性变化、二次方程变化、抛物线变化或者双抛线变化。
在本发明的一些实施例中,所述A1GaAs势垒的厚度为5.5-6.5nm。
在本发明的一些实施例中,所述阱垒层包括至少2对重叠生长的A1GaAs势垒和InGaAs势阱。
在本发明的一些实施例中,所述阱垒层包括2-5对重叠生长的A1GaAs势垒和InGaAs 势阱。
在本发明的一些实施例中,所述第一space层为Al60GaAs-Al37GaAs层。
在本发明的一些实施例中,所述第一space层的厚度为90-110nm。
在本发明的一些实施例中,所述第二space层为Al60GaAs-Al37GaAs层。
在本发明的一些实施例中,所述第二space层的厚度为90-110nm。
在本发明的一些实施例中,所述第一外垒层为Al37GaAs层。
在本发明的一些实施例中,所述第一外垒层的厚度为18-22nm。
在本发明的一些实施例中,所述第二外垒层为Al37GaAs层。
在本发明的一些实施例中,所述第二外垒层的厚度为18-22nm。
在本发明的另一方面,本发明提出了一种制备上述的新型复合量子阱结构的VCSEL 芯片的方法,包括:
(1)在衬底上依次生长缓冲层和N型布拉格反射镜;
(2)在所述N型布拉格反射镜远离所述衬底的表面依次生长第一space层、第一外垒层、阱垒层、第二外垒层和第二space层;
所述阱垒层的制备方法如下:在所述第一外垒层远离所述衬底的表面依次重叠生长 A1GaAs势垒和InGaAs势阱;
重叠生长的A1GaAs势垒和InGaAs势阱中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱;
(3)在所述第二space层远离所述衬底的表面依次生长氧化层、P型布拉格反射镜以及P型GaAs层。
本发明实施例所述的制备上述的新型复合量子阱结构的VCSEL芯片的方法,重叠生长的A1GaAs势垒和InGaAs势阱中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱,每层将阱垒循环等同生长方式变更为循环不等同生长方式,每个势阱或者势垒的生长条件均不一致,从而达到生长多个增益谱峰值波长的目的,涵盖温漂的波长变化范围,增加了增益谱宽度,更大的温度范围内得到平坦的增益。
另外,根据本发明上述实施例的制备上述新型复合量子阱结构的VCSEL芯片的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,在步骤(2)中,所述至少两个不同的A1GaAs势垒的生长方式如下:调整每个A1GaAs势垒的进入反应室的Al的摩尔量,以便调整AlGaAs势垒中的Al/Ga的摩尔比。
在本发明的一些实施例中,按顺序依次生长In0.072GaAs势阱、Al37GaAs势垒、In0.072GaAs势阱、Al40GaAs层势垒和In0.072GaAs势阱。
在本发明的一些实施例中,在步骤(2)中,所述至少两个不同的InGaAs势阱的生长方式如下:通过修改程序,调整每个InGaAs层的机台生长时间,以便改变每层InGaAs的厚度。
在本发明的一些实施例中,按顺序依次生长7nm的In0.072GaAs势阱、Al37GaAs势垒、 7.1nm的In0.072GaAs势阱、Al37GaAs势垒、7.2nm的In0.072GaAs势阱和Al37GaAs势垒。
在本发明的一些实施例中,在步骤(2)中,所述至少两个不同的InGaAs势阱的生长方式如下:通过修改程序,调整每个InGaAs势阱单层中的进入反应室中In的摩尔量,以便改变InGaAs单层中In的组分含量。
在本发明的一些实施例中,按顺序依次生长In0.072GaAs势阱、Al37GaAs势垒、In0.075GaAs势阱、Al37GaAs势垒和In0.077GaAs势阱。
在本发明的一些实施例中,所述至少两个不同的InGaAs势阱的生长方式如下:通过修改程序,调整每个InGaAs势阱的生长方式,通过计算A1GaAs势垒对应的InGaAs的能级,得出相应的InGaAs势阱的组分含量,修改InGaAs势阱的有In的每段进入反应室的摩尔量,InGaAs势阱呈线性生长、二次方程生长、抛物线生长或者双抛线生长。
在本发明的一些实施例中,按顺序依次生长In0.2GaAs-In0.072GaAs-In0.2GaAs势阱、 Al37GaAs势垒、In0.2GaAs-In0.075As-In0.2GaAs势阱、Al37GaAs势垒和In0.2GaAs-In0.077GaAs-In0.2GaAs势阱。
在本发明的一些实施例中,按顺序依次生长In0.072GaAs-In0.2GaAs势阱、Al37GaAs 势垒、In0.075GaAs-In0.2GaAs势阱、Al37GaAs势垒和In0.077GaAs-In0.2GaAs势阱。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为MQW850峰值波长和全结构Dip波长示意图。
图2为本发明实施例的VCSEL芯片的外延截面示意图。
图3为本发明实施例的MQW850的外延截面示意图。
图4为本发明实施例的MQW850外延调整InGaAs厚度示意图。
图5为本发明一个实施例的MQW850外延调整阱线性ramp生长示意图。
图6为本发明再一个实施例的MQW850外延调整阱线性ramp生长示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个、四个、五个、六个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本发明是基于以下发现作出的:
VCSEL激射波长主要由腔模λc波长决定,但是随着器件工作时温度的升高,增益谱峰值波长λp会与λc产生红移的现象,但是λp红移的速度要比λc红移的速度快的多,所以量子阱波长与腔模预先存在10nm的偏差,图1,使得λp和λc会在工作时在设计激射波长处重合,使VCSEL得到较大增益和较好的温度特性,所以λp和λc重合的位置是保证垂直腔表面发射激光器增益和温度特性的重要因素。由于VCSEL腔长短,内部比边发射半导体激光器更为严重的热效应,从而使谐振腔腔模λc发生红移,导致器件阈值上升和输出功率下降。因此,本发明提供新型复合量子阱结构的VCSEL芯片结构,将阱垒重复循环生长方式变更为复合生长方式,生长多个MQW峰值波长,增加了增益谱宽度,更大的温度范围内得到平坦的增益。
有鉴于此,在本发明的一个方面,本发明提出了一种新型复合量子阱结构的VCSEL芯片结构。参考图2,根据本发明的实施例,所述新型复合量子阱结构的VCSEL芯片结构包括:衬底1;衬底上依次生长的缓冲层2、N型布拉格反射镜3、量子阱4、氧化层5、P 型布拉格反射镜6以及P型GaAs层7。其中,缓冲层2的作用是应力释放与位错过滤,以获得较完美的晶体质量;N型布拉格反射镜3的作用是提高反射率、功率和降低阈值;氧化层5的作用是得到合适的出光孔;P型布拉格反射镜6的作用是提高反射率、功率和降低阈值;P型GaAs层7的作用是用于调节光子寿命,减小欧姆接触。
根据本发明的实施例,所述衬底1的材料并不受具体限制,本领域的人员可根据实际需要随意选择,作为一种优选的方案,衬底的材料为砷化镓。根据本发明的实施例,并不具体限制所述缓冲层2、N型布拉格反射镜3、氧化层5、P型布拉格反射镜6以及P型GaAs 层7,可根据本领域的现有技术随意选择。
根据本发明的实施例,参考附图3,所述量子阱4包括依次生长的第一space层41、第一外垒层42、阱垒层、第二外垒层45和第二space层46,所述阱垒层包括重叠生长的A1GaAs势垒43和InGaAs势阱44,所述重叠生长的A1GaAs势垒43和InGaAs势阱44 中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱。其中,第一space 层41和第二space层46的作用均是电子阻挡层;第一外垒层42和第二外垒层45的作用均为限制量子阱激射的光子;A1GaAs势垒43的作用是提高MQW质量,提高电子和空穴的复合效率;InGaAs势阱44的作用是电子聚集地,提高电子和空穴的复合效率。
根据本发明的实施例,并不具体限制第一space层41,作为一种优选的方案,所述第一space层41为Al60GaAs-Al37GaAs层。根据本发明的实施例,并不具体限制第一space层的厚度,本领域的人员可根据实际需要随意选择,作为一种优选的方案,所述第一space层的厚度为90-110nm。根据本发明的实施例,并不具体限制第二space层46,作为一种优选的方案,所述第二space层46为Al60GaAs-Al37GaAs层。根据本发明的实施例,并不具体限制第二space层的厚度,本领域的人员可根据实际需要随意选择,作为一种优选的方案,所述第二space层的厚度为90-110nm。
根据本发明的实施例,并不具体限制第一外垒层42,作为一种优选的方案,所述第一外垒层42为Al37GaAs层。根据本发明的实施例,并不具体限制第一外垒层的厚度,本领域的人员可根据实际需要随意选择,作为一种优选的方案,所述第一外垒层的厚度为 18-22nm。根据本发明的实施例,并不具体限制第二外垒层45,作为一种优选的方案,所述第二外垒层45为Al37GaAs层。根据本发明的实施例,并不具体限制第二外垒层的厚度,本领域的人员可根据实际需要随意选择,作为一种优选的方案,所述第二外垒层的厚度为 18-22nm。
根据本发明的实施例,并不具体限制阱垒层中重叠生长的A1GaAs势垒和InGaAs势阱的对数,本领域的人员可根据实际需要随意选择,作为一种优选的方案,所述阱垒层包括至少2对重叠生长的A1GaAs势垒和InGaAs势阱;优选地,所述阱垒层包括2-5对重叠生长的A1GaAs势垒和InGaAs势阱。
根据本发明的一个具体实施例,上述至少两个不同的InGaAs势阱为至少两个厚度不同的InGaAs势阱。进一步地,所述厚度不同的InGaAs势阱的厚度差为0.05-0.15nm。发明人发现,如果上述厚度不同的InGaAs势阱的厚度差大于0.15nm,MQW峰值波长变化范围太宽超过840左右,不在设计范围内,甚至会出现不激射的情况;如果小于0.05nm,则 MQW峰值波长变化不大,达不到多个峰值波长的目的。
作为一个具体示例,所述至少两个厚度不同的InGaAs势阱包括7nm的In0.072GaAs势阱、7.1nm的In0.072GaAs势阱和7.2nm的In0.072GaAs势阱。In0.072GaAs层(阱) 7nm/7.1nm/7.2nm对应838/840/842nm的MQW峰值波长,从而使得量子阱波长和腔模波长在工作时,MQW半宽变大,保证在更大的温度范围内有平坦的增益。
选择对应838/840/842nm这三个波长的原因是利用pics3d软件模拟了6ma电流条件下环境温度下300k时VCSEL的温度特性,量子阱有源区温度360-370k,经计算峰值波长应设计在838-842nm。需要说明的是,在本发明的实施例中,并不限定这三个波长的具体数值,只要在838-842nm范围内的任意多个波长均可。
根据本发明的再一个具体实施例,所述至少两个不同的InGaAs势阱为至少两个In的摩尔量不同的InGaAs势阱。作为一个具体示例,所述至少两个In的摩尔量不同的InGaAs势阱包括In0.072GaAs势阱、In0.075GaAs势阱和In0.077GaAs势阱, In0.072GaAs/In0.075GaAs/In0.077GaAs对应838/840/842nm的MQW峰值波长,从而使得量子阱波长和腔模波长在工作时,红移位置在设计位置,保证VCSEL有较高的输出功率。需要说明的是,上述In0.072GaAs/In0.075GaAs/In0.077GaAs只是一个具体示例,In的摩尔量并不受具体限制,本领域人员可根据实际情况进行选择。进一步地,所述InGaAs势阱的厚度为6.5-7.5nm。发明人发现,如果InGaAs势阱的厚度过大或者过小,MQW峰值波长会不在840nm范围附近,不在设计范围内,同时导致电性能变差,甚至会出现不激射的情况。
根据本发明的又一个具体实施例,所述至少两个不同的InGaAs势阱为至少两个In的摩尔量不同的InGaAs势阱,且在每个InGaAs势阱中In的摩尔量呈线性变化、二次方程变化、抛物线变化或者双抛线变化等等,实际上任何曲线都可以。作为一个具体示例,所述至少两个In的摩尔量不同的InGaAs势阱包括In0.2GaAs-In0.072GaAs-In0.2GaAs势阱、In0.2GaAs-In0.075As-In0.2GaAs和In0.2GaAs-In0.077GaAs-In0.2GaAs。 In0.2GaAs-In0.072GaAs-In0.2GaAs/In0.2GaAs-In0.075As-In0.2GaAs/In0.2GaAs-In0.077GaAs -In0.2GaAs对应838/840/842nm的MQW峰值波长,从而使得量子阱波长和腔模波长在工作时,红移位置在设计位置,保证VCSEL有较高的输出功率。需要说明的是,上述 In0.2GaAs-In0.072GaAs-In0.2GaAs/In0.2GaAs-In0.075As-In0.2GaAs/In0.2GaAs-In0.077GaAs -In0.2GaAs只是一个具体示例,In的摩尔量并不受具体限制,本领域人员可根据实际情况进行选择。
作为又一个具体示例,所述至少两个In的摩尔量不同的InGaAs势阱包括In0.072GaAs-In0.2GaAs势阱、In0.075GaAs-In0.2GaAs和In0.077GaAs-In0.2GaAs。In0.072GaAs-In0.2GaAs/In0.075GaAs-In0.2GaAs/In0.077GaAs-In0.2GaAs对应 838/840/842nm的MQW峰值波长,从而使得量子阱波长和腔模波长在工作时,红移位置在设计位置,保证VCSEL有较高的输出功率。需要说明的是,上述 In0.072GaAs-In0.2GaAs/In0.075GaAs-In0.2GaAs/In0.077GaAs-In0.2GaAs只是一个具体示例,In的摩尔量并不受具体限制,本领域人员可根据实际情况进行选择。
根据本发明的又一个具体实施例,所述至少两个不同的A1GaAs势垒为至少两个Al的摩尔量不同的A1GaAs势垒。根据本发明的又一个具体实施例,所述至少两个不同的A1GaAs势垒为至少两个Al的摩尔量不同的A1GaAs势垒,且在每个A1GaAs势垒中 Al的摩尔量呈线性变化、二次方程变化、抛物线变化或者双抛线变化等等,实际上任何曲线都可以。作为一个具体示例,所述至少两个Al的摩尔量不同的A1GaAs势垒包括 Al37GaAs势垒和Al40GaAs。In0.072GaAs/In0.075GaAs/In0.077GaAs对应838/840/842nm 的MQW峰值波长Al37GaAs/Al40GaAs,对应838/842nm的MQW峰值波长(InGaAs/GaAsP 量子阱结构除了可以用GaAsP的组分调整,还可以调整GaAsP应变,调整量子阱波长)。需要说明的是,上述Al37GaAs/Al40GaAs只是一个具体示例,Al的摩尔量并不受具体限制,本领域人员可根据实际情况进行选择。更进一步地,所述A1GaAs势垒的厚度为5.5-6.5nm。发明人发现,上述A1GaAs势垒的厚度过大或者过小,均会导致电性能变差。
根据本发明上述实施例的新型复合量子阱结构的VCSEL芯片结构,重叠生长的A1GaAs势垒和InGaAs势阱中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱,每层将阱垒循环等同生长方式变更为循环不等同生长方式,每个势阱或者势垒的生长条件均不一致,增加了增益谱宽度,更大的温度范围内得到平坦的增益。
在本发明的另一方面,本发明提出了一种制备上述的新型复合量子阱结构的VCSEL 芯片的方法,包括:
(1)在衬底上依次生长缓冲层和N型布拉格反射镜;
(2)在所述N型布拉格反射镜远离所述衬底的表面依次生长第一space层、第一外垒层、阱垒层、第二外垒层和第二space层;
所述阱垒层的制备方法如下:在所述第一外垒层远离所述衬底的表面依次重叠生长 A1GaAs势垒和InGaAs势阱;
重叠生长的A1GaAs势垒和InGaAs势阱中包括至少两个不同的A1GaAs势垒或/和至少两个不同的InGaAs势阱;
(3)在所述第二space层远离所述衬底的表面依次生长氧化层、P型布拉格反射镜以及P型GaAs层。
根据本发明的一个具体实施例,在步骤(2)中,所述至少两个不同的A1GaAs势垒的生长方式如下:调整每个A1GaAs势垒的进入反应室的Al的摩尔量,以便调整AlGaAs 势垒中的Al/Ga的摩尔比。作为一个具体示例,按顺序依次生长In0.072GaAs势阱、Al37GaAs 势垒、In0.072GaAs势阱、Al40GaAs层势垒和In0.072GaAs势阱。In0.072GaAs/In0.075GaAs/In0.077GaAs对应838/840/842nm的MQW峰值波长Al37GaAs/Al40GaAs,对应838/842nm 的MQW峰值波长。
根据本发明的再一个具体实施例,在步骤(2)中,所述至少两个不同的InGaAs 势阱的生长方式如下:通过修改程序,调整每个InGaAs层的机台生长时间,以便改变每层InGaAs的厚度。作为一个具体示例,按顺序依次生长7nm的In0.072GaAs势阱、Al37GaAs 势垒、7.1nm的In0.072GaAs势阱、Al37GaAs势垒、7.2nm的In0.072GaAs势阱和Al37GaAs 势垒。In0.072GaAs层(阱)7nm/7.1nm/7.2nm对应838/840/842nm的MQW峰值波长。
根据本发明的又一个具体实施例,在步骤(2)中,所述至少两个不同的InGaAs 势阱的生长方式如下:通过修改程序,调整每个InGaAs势阱单层中的进入反应室中In的摩尔量,以便改变InGaAs单层中In的组分含量。作为一个具体示例,按顺序依次生长In0.072GaAs势阱、Al37GaAs势垒、In0.075GaAs势阱、Al37GaAs势垒和In0.077GaAs势阱。In0.072GaAs/In0.075GaAs/In0.077GaAs对应838/840/842nm的MQW峰值波长。
根据本发明的又一个具体实施例,在步骤(2)中,所述至少两个不同的InGaAs 势阱的生长方式如下:通过修改程序,调整每个InGaAs势阱的生长方式,通过计算A1GaAs 势垒对应的InGaAs的能级,得出相应的InGaAs势阱的组分含量,修改InGaAs势阱的有 In的每段进入反应室的摩尔量,InGaAs势阱呈线性生长、二次方程生长、抛物线生长或者双抛线生长等等,实际上任何曲线都可以。作为一个具体示例,按顺序依次生长 In0.2GaAs-In0.072GaAs-In0.2GaAs势阱、Al37GaAs势垒、In0.2GaAs-In0.075As-In0.2GaAs 势阱、Al37GaAs势垒和In0.2GaAs-In0.077GaAs-In0.2GaAs势阱。 In0.2GaAs-In0.072GaAs-In0.2GaAs/In0.2GaAs-In0.075As-In0.2GaAs/In0.2GaAs-In0.077GaAs -In0.2GaAs对应838/840/842nm的MQW峰值波长。作为又一个具体示例,按顺序依次生长In0.072GaAs-In0.2GaAs势阱、Al37GaAs势垒、In0.075GaAs-In0.2GaAs势阱、Al37GaAs 势垒和In0.077GaAs-In0.2GaAs势阱。 In0.072GaAs-In0.2GaAs/In0.075GaAs-In0.2GaAs/In0.077GaAs-In0.2GaAs对应 838/840/842nm的MQW峰值波长。
本发明上述实施例通过外延金属有机气相沉积技术,用Aixtron G4机台生长外延层,以Ⅲ族有机化合物和V族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族化合物半导体。主要过程是氢(H2)气携带 TMGa/TMAl/CBr4/Si2H4及AsH3等源进入置有GaAs衬底的反应室,在反应室进行高温化学反应,通过控制每层的生长时间、三五族的五三摩尔比和摩尔总量,按预期生长每一层。长至量子阱垒部分时,每层将阱垒循环等同生长方式变更为循环不等同生长方式,每个阱或者垒的生长条件均不一致(列如:阱单层的外延机台生长时间等),从而达到生长多个增益谱峰值波长的目的,涵盖温漂的波长变化范围,增加了增益谱宽度,更大的温度范围内得到平坦的增益。
采用上述任意一个实施例的新型MQW结构后,会得到多个MQW峰值波长,增加了增益谱宽度,更大的温度范围内得到平坦的增益。
下面详细描述本发明的实施例,需要说明的是下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
实施例1
外延通过修改程序,调整每个InGaAs单层中的进入反应室中In的摩尔量,改变InGaAs 单层中In的组分(参考图3),以3阱为例,按顺序生长Al60GaAs-Al37GaAs层(space)95nm 10,Al37GaAs层(外垒)20nm、In0.072GaAs层(阱)7nm、Al37GaAs层(垒)6nm、In0.075GaAs层(阱)7nm、Al37GaAs层(垒)6nm、In0.077GaAs层(阱)7nm、Al37GaAs 层(外垒)20nm和Al37GaAs-Al60GaAs层(space)95nm。In0.072GaAs/In0.075GaAs/ In0.077GaAs对应838/840/842nm的MQW峰值波长。
实施例2
外延通过修改程序,调整每个InGaAs层的机台生长时间,改变每层InGaAs的厚度(参考图4),以3阱为例,按顺序生长Al60GaAs-Al37GaAs层(space)(95nm)51、Al37GaAs 层(外垒)(20nm)52、In0.072GaAs层(阱)(7nm)53、Al37GaAs层(垒)(6nm)54、 In0.072GaAs层(阱)(7.1nm)55、Al37GaAs层(垒)(6nm)56、In0.072GaAs层(阱) (7.2nm)57、Al37GaAs层(外垒)(20nm)58和Al37GaAs-Al60GaAs层(space)(95nm) 59。In0.072GaAs层(阱)7nm/7.1nm/7.2nm对应838/840/842nm的MQW峰值波长。在附图4中,黑色线条代表原生长结构,灰色线条代表修改后的生长结构。
实施例3
外延通过修改程序,调整每个AlGaAs(垒)的进入反应室的Al的摩尔量,调整AlGaAs 的Al/Ga的摩尔比,以3阱为例,按顺序生长Al60GaAs-Al37GaAs层(space)95nm、Al37GaAs 层(外垒)20nm、In0.072GaAs层(阱)7nm、Al37GaAs层(垒)6nm、In0.072GaAs层(阱)7nm、Al40GaAs层(垒)6nm、In0.072GaAs层(阱)7nm、Al37GaAs层(外垒) 20nm和Al37GaAs-Al60GaAs层(space)95nm。In0.072GaAs/In0.075GaAs/In0.077GaAs 对应838/840/842nm的MQW峰值波长Al37GaAs/Al40GaAs,对应838/842nm的MQW峰值波长(InGaAs/GaAsP量子阱结构除了可以用GaAsP的组分调整,还可以调整GaAsP应变,调整量子阱波长)。
实施例4
外延通过修改程序,调整每个InGaAs(阱)的生长方式,通过计算AlGaAs(垒)对应的 InGaAs的能级,得出相应的InGaAs组分,修改阱层的有In的每小段进入反应室的摩尔量, 阱线性ramp生长,参考图5,以3阱为例,按顺序生长Al60GaAs-Al37GaAs层(space)(95nm) 61、Al37GaAs层(外垒)(20nm)62、In0.2GaAs-In0.072GaAs-In0.2GaAs(阱)(7nm)63、 Al37GaAs层(垒)(6nm)64、In0.2GaAs-In0.075As-In0.2GaAs(阱)(7nm)65、Al37GaAs层(垒)(6nm)66、In0.2GaAs-In0.077aAs-In0.2GaAs(阱)(7nm)67、Al37GaAs层(外垒)(20nm)68和Al37GaAs-Al60GaAs层(space)(95nm)69。 In0.2GaAs-In0.072GaAs-In0.2GaAs/In0.2GaAs-In0.075As-In0.2GaAs/In0.2GaAs-In0.077aAs-I n0.2GaAs对应838/840/842nm的MQW峰值波长。在附图5中,黑色线条代表原生长结构,灰色线条代表修改后的生长结构。
实施例5
外延通过修改程序,调整每个InGaAs(阱)的生长方式,通过计算AlGaAs(垒)对应的 InGaAs的能级,得出相应的InGaAs组分,修改阱层的有In的每小段进入反应室的摩尔量, 阱线性ramp生长,参考图6,以3阱为例,按顺序生长Al60GaAs-Al37GaAs层(space)(95nm)71、Al37GaAs层(外垒)(20nm)72、In0.072GaAs-In0.2GaAs(阱)(7nm)73、Al37GaAs层(垒)(6nm)74、In0.075aAs-In0.2GaAs(阱)(7nm)75、Al37GaAs层(垒) (6nm)76、In0.077GaAs-In0.2GaAs(阱)(7nm)77、Al37GaAs层(外垒)(20nm)78 和Al37GaAs-Al60GaAs层(space)(95nm)79。 In0.072GaAs-In0.2GaAs/In0.075aAs-In0.2GaAs/In0.077GaAs-In0.2GaAs,对应838/840/842nm 的MQW峰值波长。在附图6中,黑色线条代表原生长结构,灰色线条代表修改后的生长结构。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (2)

1.一种新型复合量子阱结构的VCSEL芯片,其特征在于,包括:
衬底;
衬底上依次生长的缓冲层、N型布拉格反射镜、量子阱、氧化层、P型布拉格反射镜以及P型GaAs层;
所述量子阱包括依次生长的第一space层、第一外垒层、阱垒层、第二外垒层和第二space层;所述第一space层为95nm的Al60GaAs-Al37GaAs层;所述第一外垒层为20nm的Al37GaAs层;所述阱垒层依次包括7nm的In0.072GaAs层、6nm的Al37GaAs层、7nm的In0.075GaAs层、6nm的Al37GaAs层、7nm的In0.077GaAs层;所述第二外垒层为20nm的Al37GaAs层;所述第二space层为95nm的Al37GaAs-Al60GaAs层。
2.一种制备权利要求1所述的新型复合量子阱结构的VCSEL芯片的方法,其特征在于,包括:
(1)在衬底上依次生长缓冲层和N型布拉格反射镜;
(2)在所述N型布拉格反射镜远离所述衬底的表面依次生长第一space层、第一外垒层、阱垒层、第二外垒层和第二space层;
所述阱垒层的制备方法如下:在所述第一外垒层远离所述衬底的表面依次重叠生长7nm的In0.072GaAs层、6nm的Al37GaAs层、7nm的In0.075GaAs层、6nm的Al37GaAs层和7nm的In0.077GaAs层;
(3)在所述第二space层远离所述衬底的表面依次生长氧化层、P型布拉格反射镜以及P型GaAs层;
在步骤(2)中,所述In0.072GaAs层、所述In0.075GaAs层和所述In0.077GaAs层的生长方式如下:通过修改程序,调整每个InGaAs势阱单层中的进入反应室中In的摩尔量,以便改变InGaAs单层中In的组分含量。
CN202011079270.8A 2020-10-10 2020-10-10 新型复合量子阱结构的vcsel芯片结构及制备方法 Active CN112398001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011079270.8A CN112398001B (zh) 2020-10-10 2020-10-10 新型复合量子阱结构的vcsel芯片结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011079270.8A CN112398001B (zh) 2020-10-10 2020-10-10 新型复合量子阱结构的vcsel芯片结构及制备方法

Publications (2)

Publication Number Publication Date
CN112398001A CN112398001A (zh) 2021-02-23
CN112398001B true CN112398001B (zh) 2022-04-05

Family

ID=74595854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011079270.8A Active CN112398001B (zh) 2020-10-10 2020-10-10 新型复合量子阱结构的vcsel芯片结构及制备方法

Country Status (1)

Country Link
CN (1) CN112398001B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300556B (zh) * 2021-12-30 2024-05-28 中国科学院苏州纳米技术与纳米仿生研究所 外延结构、外延生长方法及光电器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263040A (en) * 1991-12-04 1993-11-16 Eastman Kodak Company Strained quantum well laser diode
CN1624996A (zh) * 2003-12-04 2005-06-08 中国科学院半导体研究所 高铟组分镓砷/铟镓砷量子阱结构及其制备方法
CN103117512A (zh) * 2012-12-04 2013-05-22 北京工业大学 一种带有波长选择层的半导体激光芯片结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839899A (en) * 1988-03-09 1989-06-13 Xerox Corporation Wavelength tuning of multiple quantum well (MQW) heterostructure lasers
KR100928963B1 (ko) * 2003-01-10 2009-11-26 삼성전자주식회사 양자우물을 가지는 광소자
US7269196B2 (en) * 2004-07-06 2007-09-11 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Method for increasing maximum modulation speed of a light emitting device, and light emitting device with increased maximum modulation speed and quantum well structure thereof
KR100693632B1 (ko) * 2005-02-18 2007-03-14 엘에스전선 주식회사 광대역 이득을 갖는 양자우물 레이저 다이오드
US7577172B2 (en) * 2005-06-01 2009-08-18 Agilent Technologies, Inc. Active region of a light emitting device optimized for increased modulation speed operation
EP2533380B8 (en) * 2011-06-06 2017-08-30 Mellanox Technologies, Ltd. High speed lasing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263040A (en) * 1991-12-04 1993-11-16 Eastman Kodak Company Strained quantum well laser diode
CN1624996A (zh) * 2003-12-04 2005-06-08 中国科学院半导体研究所 高铟组分镓砷/铟镓砷量子阱结构及其制备方法
CN103117512A (zh) * 2012-12-04 2013-05-22 北京工业大学 一种带有波长选择层的半导体激光芯片结构

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
910nm高峰值功率垂直腔面发射激光光源;梁雪梅 等;《红外与毫米波学报》;20191031;第38卷(第5期);668-673 *
940nm垂直腔面发射激光器的设计及制备;于洪岩 等;《物理学报》;20191231;第68卷(第6期);064207-1至7 *
Design of active region for watt-level VCSEL at 1060 nm;张立森 等;《发光学报》;20120731;第33卷(第7期);774-779 *
高速850 nm垂直腔面发射激光器的优化设计与外延生长;周广正 等;《物理学报》;20181231;第67卷(第10期);104205-1至9 *

Also Published As

Publication number Publication date
CN112398001A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US6207973B1 (en) Light emitting devices with layered III-V semiconductor structures
US7235816B2 (en) Semiconductor light emitter
US6657233B2 (en) Light emitting devices with layered III-V semiconductor structures, and modules and systems for computer, network and optical communication, using such device
JP4071308B2 (ja) 半導体発光素子及び半導体発光素子の製造方法及び光ファイバー通信システム
US7550368B2 (en) Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device
US20040065888A1 (en) Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2014003329A (ja) 応力低減電子ブロッキング層を有する窒化ガリウム・ベース半導体デバイス
CA2354420A1 (en) Semiconductor laser device having lower threshold current
US20070160100A1 (en) Misfit dislocation forming interfacial self-assembly for growth of highly-mismatched III-Sb alloys
US6631149B1 (en) Laser diode using group III nitride group compound semiconductor
US20210194216A1 (en) Stacked semiconductor lasers with controlled spectral emission
JPH0963962A (ja) 結晶成長方法および半導体発光素子
US7508049B2 (en) Semiconductor optical device
CN112398001B (zh) 新型复合量子阱结构的vcsel芯片结构及制备方法
JP4045639B2 (ja) 半導体レーザおよび半導体発光素子
JP2008235519A (ja) 光半導体素子及び光半導体素子の作製方法
US20210234063A1 (en) Broadband Dilute Nitride Light Emitters for Imaging and Sensing Applications
US20130322481A1 (en) Laser diodes including substrates having semipolar surface plane orientations and nonpolar cleaved facets
JP4253207B2 (ja) 半導体発光素子の製造方法および半導体発光素子および面発光型半導体レーザ素子の製造方法および面発光型半導体レーザ素子および面発光型半導体レーザアレイおよび光送信モジュールおよび光送受信モジュールおよび光通信システム
WO2017221519A1 (ja) 窒化物半導体素子、窒化物半導体基板、窒化物半導体素子の製造方法、および窒化物半導体基板の製造方法
JP2020098891A (ja) 半導体レーザ
CN113490996B (zh) 用于发射辐射的半导体器件的生长结构和发射辐射的半导体器件
JP4957355B2 (ja) 半導体発光素子
EP1115145A1 (en) Method for forming compound semiconductor layer and compound semiconductor device
US20230090469A1 (en) Light-emitting device and method of manufacturing light-emitting device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210623

Address after: 1107, block B, Jiahui International Center, Chaoyang District, Beijing 100020

Applicant after: Huaxin Semiconductor Research Institute (Beijing) Co.,Ltd.

Address before: 225500 modern science and Technology Industrial Park, Jiangyan District, Taizhou City, Jiangsu Province (south of qundong Road)

Applicant before: China Semiconductor Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant