CN112397604A - 基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法 - Google Patents

基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法 Download PDF

Info

Publication number
CN112397604A
CN112397604A CN202011290925.6A CN202011290925A CN112397604A CN 112397604 A CN112397604 A CN 112397604A CN 202011290925 A CN202011290925 A CN 202011290925A CN 112397604 A CN112397604 A CN 112397604A
Authority
CN
China
Prior art keywords
type
epitaxial layer
thickness
algan
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011290925.6A
Other languages
English (en)
Other versions
CN112397604B (zh
Inventor
许晟瑞
许文强
张金风
张雅超
贠博祥
张怡
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202011290925.6A priority Critical patent/CN112397604B/zh
Publication of CN112397604A publication Critical patent/CN112397604A/zh
Application granted granted Critical
Publication of CN112397604B publication Critical patent/CN112397604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于m面4H‑SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法,主要解决现有技术由量子限制斯塔克效应导致外量子效率下降和失配导致的外延层开裂问题。其自下而上包括:m面4H‑SiC衬底(1)和n型AlGaN外延层(2);该n型AlGaN外延层采用Al组分为85%‑95%,掺杂浓度为1017‑1018cm‑3的AlGaN,其上同时设有掺杂浓度为1018‑1020cm‑3的p型BN外延层(3)和n型欧姆接触电极(4);该p型BN外延层上设有p型欧姆接触电极(5)。本发明减小了材料的缺陷密度,提高了p型层空穴浓度,提升了器件的可靠性和外量子效率,可用于紫外探测设备中。

Description

基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器 及制备方法
技术领域
本发明属于微电子技术领域,特别涉及一种非极性AlGaN/BN构成的PN结紫外探测器,可用来制作高外量子效率和低缺陷的紫外探测设备。
技术背景
第一代用于紫外光电探测器的半导体材料是硅,硅的禁带宽度为1.12eV,硅基紫外光电探测器的主要缺点就是暴露在强辐射下会造成器件老化,降低器件使用寿命;此外,作为典型的钝化层的SiO2降低了器件在深紫外区域的外量子效率。另一个的缺点就是器件对低能辐射灵敏度低。而作为第二代紫外光电GaAs基探测器常存在稳定性和重现性等问题。作为第三半导体材料的三元AlxGa1-xN材料系统具有3.4eV-6.2eV超宽带隙范围,覆盖介于约360nm和200nm的带边截止值,具有高抗辐射能力和高抗热应力能力,此外,BN材料具有5.9eV的超宽禁带,容易实现p型掺杂。因此,AlGaN/BN构成的PN结在紫外探测领域具有显著优势。
传统的Ga极性AlGaN基紫外探测器,由于量子限制斯塔克效应的存在而导致强度高达MV/cm量级的极化电场,因此光生载流子在欧姆接触层内垂直于极化电场横向运动至相应的电极会受到极化电场的强烈阻碍,从而使得探测器的外量子效率不高,并且随着AlGaN层Al组分的升高,量子限制斯塔克效应带来的能带弯曲越来越显著,这将直接减少电子波函数的交叠,降低器件的辐射复合效率。此外,在传统c面蓝宝石衬底上外延的AlGaN层,由于与衬底材料之间存在的较大晶格失配和热失配,会引入大量通常作为导电通道的位错和缺陷,当Al组分大于30%以后,外延的AlGaN层甚至会出现裂纹,这直接影响器件的性能和可靠性。传统的AlGaN材料还面临一个问题是p型AlGaN层中Mg的离化率和空穴迁移率会随着Al组分的增加而降低,Mg离化率和空穴迁移率的降低均会导致紫外探测器p型层空穴浓度的大幅度降低。
发明内容
本发明的目的在于针对传统紫外探测器的不足,提出一种基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法,以在提高AlGaN外延层晶体质量的同时,提升器件的空穴浓度和辐射复合效率,获得高性能的紫外探测器。
为实现上述目的,本发明的技术方案如下:
1.一种基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器,其自下而上包括:4H-SiC衬底和n型外延层,该n型外延层上同时设有p型外延层和n型欧姆接触电极,且二者之间存在间距,p型外延层上设有p型欧姆接触电极,其特征在于:
所述的SiC衬底,其晶面取向为m面;
所述的n型外延层,采用Al组分为85%-95%,掺杂浓度为1017-1018cm-3的AlGaN材料;
所述p型外延层,采用掺杂浓度为1018-1020cm-3的BN材料。
进一步,其特征在于,n型AlGaN外延层的厚度为3-4μm。
进一步,其特征在于,p型BN外延层的其厚度为2-3μm。
进一步,其特征在于,p型外延层和n型欧姆接触电极的间距为1-1.5um。
进一步,其特征在于,n型欧姆接触电极的金属厚度为250-290nm,p型欧姆接触电极的金属厚度为100-140nm。
2.一种基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器制备方法,其特征在于,包括如下步骤:
1)对衬底进行清洗和热处理:
将m面4H-SiC衬底经过打磨和清洗之后,置于金属有机化学气相淀积MOCVD反应室中,将反应室的真空度降低到小于2×10-2Torr;
向反应室通入氢气,在MOCVD反应室压力达到为200-740Torr条件下,将衬底加热到温度为900-1200℃,并保持5-10min,完成对衬底的热处理;
2)制作PN结:
2a)在清洗和热处理后的衬底上采用MOCVD工艺生长厚度为3-4μm、Al组分为85%-95%、掺杂浓度为1017-1018cm-3的n型AlGaN外延层;
2b)在n型AlGaN外延层上采用MOCVD工艺生长厚度为2-3um、掺杂浓度为1018-1020cm-3的p型BN外延层;
3)采用光刻工艺刻蚀掉部分p型BN外延层直至露出n型AlGaN外延层表面;
4)制作n型欧姆接触电极:
采用标准光刻工艺在n型AlGaN外延层蒸发溅射金属Ti/Al/Ti/Au多层结构,其中金属Ti的厚度为30-40nm,金属Al的厚度为50-60nm,金属Au的厚度为80-90nm,并在850-950℃的温度下的氢气氛围中快速热退火5-10min,获得n型欧姆接触电极;
5)制作p型欧姆接触电极:
采用标准光刻工艺在p型BN外延层上蒸发溅射金属Ni/Au双层结构,其中金属Ni的厚度为40-60nm,金属Au的厚度为60-80nm,并在650-750℃的温度下快速退火3-5min,获得p型欧姆接触电极,完成PN结紫外探测器的制备。
本发明由于采用m面4H-SiC衬底和p型BN外延层制备,与传统的紫外探测器相比,具有如下优点:
1.能够降低异质外延产生的应力,降低缺陷密度,提高晶体质量,避免外延层因应力过大产生的开裂。
2.能消除量子限制斯塔克效应,有效提高电子和空穴的辐射复合效率,进而提升器件的外量子效率。
3.能提高p型层中Mg的离化率和空穴迁移率,提高空穴的输运效率和浓度。
附图说明
图1是本发明PN结紫外探测器的结构图;
图2是本发明制作图1所示PN结紫外探测器的流程示意图。
具体实施方式
以下结合附图对本发明做进一步说明。
参照图1,本发明的器件结构包括:m面4H-SiC衬底1、n型AlGaN外延层2、p型BN外延层3、n型欧姆接触电极4和p型欧姆接触电极5。该n型AlGaN外延层2的厚度为3-4um、Al组分为85%-95%、掺杂浓度为1017-1018cm-3,垂直位于m面4H-SiC衬底1上;该p型BN外延层3的厚度为2-3um、掺杂浓度为1018-1020cm-3,该n型欧姆接触电极4厚度为250-290nm,该p型BN外延层3和n型欧姆接触电极4水平位于n型AlGaN外延层2上,且二者的间距为1-1.5um,该p型欧姆接触电极5厚度为100-140nm垂直位于p型外延层3上。
参照图2,本发明给出制备基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器的三种实施例。
实施例1,制备基于m面4H-SiC异质外延非极性Al0.85Ga0.15N/BN的PN结紫外探测器。
步骤一,对m面4H-SiC衬底进行清洗和热处理:
将m面4H-SiC衬底经过打磨和清洗之后,置于金属有机化学气相淀积MOCVD反应室中,将反应室的真空度降低到小于2×10-2Torr;
向反应室通入氢气,在MOCVD反应室压力达到200-740Torr条件下,将衬底加热到温度为900-1200℃,并保持5-10min,完成对衬底的热处理。
步骤二,制作PN结:
2.1)设置反应室温度为1050℃,反应室压力为30Torr,同时通入流量为3000sccm的氮源、流量为50sccm的镓源、流量为400sccm的铝源和流量为65sccm的硅源,采用MOCVD工艺在清洗和热处理后的衬底上生长厚度为3um的n型AlGaN层,如图2(a)。
2.2)保持反应室温度为1050℃,调整反应室压力为400Torr,同时通入流量为
5000sccm的氨气、流量为15sccm的硼源和流量为80sccm的镁源这三种气体,采用MOCVD工艺在n型AlGaN层上生长厚度为2um的p型BN层,如图2(b)。
步骤三,刻蚀p型BN层,如图2(c)。
将反应室温度降低到950℃,在H2气氛下,进行退火5min,采用标准光刻工艺将p型层部分区域刻蚀至n型AlGaN层。
步骤四,制作n型欧姆接触电极,如图2(d)。
在AlGaN外延层上蒸发溅射金属Ti/Al/Ti/Au多层结构,其中金属Ti的厚度为30nm,金属Al的厚度为50nm,金属Au的厚度为80nm,并在950℃的温度下的氢气氛围中快速热退火5min。
步骤五,制作p型欧姆接触电极,如图2(e)。
在BN层上蒸发溅射金属Ni/Au双层结构,其中金属Ni的厚度为40nm,金属Au的厚度为60nm,并在700℃的温度下快速热退火5min,完成对非极性Al0.8Ga0.2N/BN的PN结紫外探测器的制作。
实施例2,制备基于m面4H-SiC异质外延非极性Al0.9Ga0.1N/BN的PN结紫外探测器。
步骤1,对m面4H-SiC衬底进行清洗和热处理:
本步进行的具体实施与实施例1的步骤一相同。
步骤2,制作PN结:
设置反应室温度为1050℃,反应室压力为40Torr,同时通入流量为3000sccm的氮源、流量为50sccm的镓源、流量为450sccm的铝源和流量为65sccm的硅源,采用MOCVD工艺在清洗和热处理后的衬底上生长厚度为3um的n型AlGaN层,如图2(a);再调整反应室温度为1060℃,反应室压力调整为400Torr,同时通入流量为5000sccm的氨气、流量为30sccm的硼源和流量为100sccm的镁源这三种气体,采用MOCVD工艺在n型AlGaN层上生长厚度为2.5um的p型BN层,如图2(b)。
步骤3,刻蚀p型BN层,如图2(c)。
将反应室温度降低到950℃,先在H2气氛下进行退火10min,再采用标准光刻工艺将p型层部分区域刻蚀至n型AlGaN层。
步骤4,制作n型欧姆接触电极,如图2(d)。
在AlGaN外延层上蒸发溅射金属Ti/Al/Ti/Au多层结构,其中金属Ti的厚度为35nm,金属Al的厚度为50nm,金属Au的厚度为85nm,并在900℃的温度下的氢气氛围中快速热退火5min。
步骤5,制作p型欧姆接触电极,如图2(e)。
在BN层上蒸发溅射金属Ni/Au双层结构,其中金属Ni的厚度为50nm,金属Au的厚度为60nm,并在700℃的温度下快速热退火5min,完成对非极性Al0.9Ga0.1N/BN的PN结紫外探测器的制作。
实施例3,制备基于m面4H-SiC异质外延非极性Al0.95Ga0.05N/BN的PN结紫外探测器。
步骤A,对m面4H-SiC衬底进行清洗和热处理:
本步进行的具体实施与实施例1的步骤一相同。
步骤B,制作PN结:
B1)设置反应室温度为1030℃,反应室压力为60Torr,同时通入流量为2500sccm的氮源、流量为70sccm的镓源、流量为500sccm的铝源和流量为80sccm的硅源,采用MOCVD工艺在清洗和热处理后的衬底上生长厚度为4um的n型AlGaN层,如图2(a);
B2)调整反应室温度为1080℃,反应室压力调整为600Torr,同时通入流量为6000sccm的氨气、流量为20sccm的硼源和流量为120sccm的镁源这三种气体,采用MOCVD工艺在n型AlGaN层上生长厚度为3um的p型BN层,如图2(b)。
步骤C,刻蚀p型BN层,如图2(c)。
将反应室温度降低到950℃,在H2气氛下,进行退火8min,采用标准光刻工艺将p型层部分区域刻蚀至n型AlGaN层。
步骤D,制作n型欧姆接触电极,如图2(d)。
在AlGaN外延层上蒸发溅射金属Ti/Al/Ti/Au多层结构,其中金属Ti的厚度为40nm,金属Al的厚度为60nm,金属Au的厚度为90nm,并在900℃的温度下的氢气氛围中快速热退火8min。
步骤E,制作p型欧姆接触电极,如图2(e)。
在BN层上蒸发溅射金属Ni/Au双层结构,其中金属Ni的厚度为50nm,金属Au的厚度为65nm,并在700℃的温度下快速热退火10min,完成对非极性Al0.95Ga0.05N/BN的PN结紫外探测器的制作。
以上描述仅是本发明的三个具体实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明的原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (8)

1.一种基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器,其自下而上包括:4H-SiC衬底(1)和n型外延层(2),该n型外延层上同时设有p型外延层(3)和n型欧姆接触电极(4),且二者之间存在间距,p型外延层(3)上设有p型欧姆接触电极(5),其特征在于:
所述的SiC衬底(1),其晶面取向为m面;
所述的n型外延层(2),采用Al组分为85%-95%,掺杂浓度为1017-1018cm-3的AlGaN材料;
所述p型外延层(3),采用掺杂浓度为1018-1020cm-3的BN材料。
2.根据权利要求1所述的探测器,其特征在于:n型AlGaN外延层(2),其厚度为3-4μm。
3.根据权利要求1所述的探测器,其特征在于:p型BN外延层(3),其厚度为2-3μm。
4.根据权利要求1所述的探测器,其特征在于:p型外延层(3)和n型欧姆接触电极(4)的间距为1-1.5um。
5.根据权利要求1所述的探测器,其特征在于:
所述的n型欧姆接触电极(4),其金属厚度为250-290nm;
所述的p型欧姆接触电极(5),其金属厚度为100-140nm。
6.一种基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器制备方法,其特征在于,包括如下步骤:
1)对衬底进行清洗和热处理:
将m面4H-SiC衬底经过打磨和清洗之后,置于金属有机化学气相淀积MOCVD反应室中,将反应室的真空度降低到小于2×10-2Torr;
向反应室通入氢气,在MOCVD反应室压力达到200-740Torr条件下,将衬底加热到温度为900-1200℃,并保持5-10min,完成对衬底的热处理;
2)制作PN结:
2a)在清洗和热处理后的衬底上采用MOCVD工艺生长厚度为3-4μm、Al组分为85%-95%、掺杂浓度为1017-1018cm-3的n型AlGaN外延层;
2b)在n型AlGaN外延层上采用MOCVD工艺生长厚度为2-3um、掺杂浓度为1018-1020cm-3的p型BN外延层;
3)采用光刻工艺刻蚀掉部分p型BN外延层直至露出n型AlGaN外延层表面;
4)制作n型欧姆接触电极:
采用标准光刻工艺在n型AlGaN外延层蒸发溅射金属Ti/Al/Ti/Au多层结构,其中金属Ti的厚度为30-40nm,金属Al的厚度为50-60nm,金属Au的厚度为80-90nm,并在850-950℃的温度下的氢气氛围中快速热退火5-10min,获得n型欧姆接触电极;
5)制作p型欧姆接触电极:
采用标准光刻工艺在p型BN外延层上蒸发溅射金属Ni/Au双层结构,其中金属Ni的厚度为40-60nm,金属Au的厚度为60-80nm,并在650-750℃的温度下快速退火3-5min,获得p型欧姆接触电极,完成PN结紫外探测器的制备。
7.根据权利要求6所述的方法,其特征在于:2a)中在m面4H-SiC衬底上采用MOCVD工艺生长n型AlGaN外延层,工艺条件如下:
反应室温度为1000-1050℃,
保持反应室压力为20-60Torr,
向反应室中同时通入流量为2500-3000sccm的氨气、流量为50-80sccm的镓源、流量为400-500sccm的铝源和流量为60-80sccm的硅源这四种气体。
8.根据权利要求6所述的方法,其特征在于:2b)中在n型AlGaN外延层上采用MOCVD工艺生长p型BN外延层,工艺条件如下:
反应室温度为1050-1080℃,
保持反应室压力为400-600Torr,
向反应室同时通入流量为5000-6000sccm的氨气、流量为10-50sccm的硼源、和流量为80-120sccm的镁源这三种气体。
CN202011290925.6A 2020-11-18 2020-11-18 基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法 Active CN112397604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011290925.6A CN112397604B (zh) 2020-11-18 2020-11-18 基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011290925.6A CN112397604B (zh) 2020-11-18 2020-11-18 基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法

Publications (2)

Publication Number Publication Date
CN112397604A true CN112397604A (zh) 2021-02-23
CN112397604B CN112397604B (zh) 2022-05-17

Family

ID=74607239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011290925.6A Active CN112397604B (zh) 2020-11-18 2020-11-18 基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法

Country Status (1)

Country Link
CN (1) CN112397604B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122267A2 (en) * 2004-06-03 2005-12-22 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US20060234486A1 (en) * 2005-04-13 2006-10-19 Speck James S Wafer separation technique for the fabrication of free-standing (Al,In,Ga)N wafers
CN101504961A (zh) * 2008-12-16 2009-08-12 华中科技大学 面发射多色发光二极管及其制造方法
CN109585592A (zh) * 2018-11-29 2019-04-05 西安电子科技大学 p-BN/i-AlGaN/n-AlGaN的紫外探测器及制作方法
CN109830581A (zh) * 2019-03-11 2019-05-31 深圳第三代半导体研究院 一种高质量半极性铟镓氮二维超薄层结构及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122267A2 (en) * 2004-06-03 2005-12-22 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US20060234486A1 (en) * 2005-04-13 2006-10-19 Speck James S Wafer separation technique for the fabrication of free-standing (Al,In,Ga)N wafers
CN101504961A (zh) * 2008-12-16 2009-08-12 华中科技大学 面发射多色发光二极管及其制造方法
CN109585592A (zh) * 2018-11-29 2019-04-05 西安电子科技大学 p-BN/i-AlGaN/n-AlGaN的紫外探测器及制作方法
CN109830581A (zh) * 2019-03-11 2019-05-31 深圳第三代半导体研究院 一种高质量半极性铟镓氮二维超薄层结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAYOSHI TAKANO ET AL.: "Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser", 《APPLIED PHYSICS LETTERS》 *

Also Published As

Publication number Publication date
CN112397604B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
JP3866540B2 (ja) 窒化物半導体素子およびその製造方法
US7875535B2 (en) Compound semiconductor device using SiC substrate and its manufacture
CN101252088B (zh) 一种增强型A1GaN/GaN HEMT器件的实现方法
US8030164B2 (en) Compound semiconductor structure
WO2009084238A1 (ja) 半導体基板、半導体基板の製造方法および電子デバイス
WO2005015618A1 (ja) 窒化物半導体成長用基板
CN112701160B (zh) 氮化镓基高电子迁移率晶体管外延片及其制备方法
WO2009084241A1 (ja) 半導体基板、半導体基板の製造方法および電子デバイス
CN109585592B (zh) p-BN/i-AlGaN/n-AlGaN的紫外探测器及制作方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
US20100072518A1 (en) Semiconductor devices and methods of fabricating same
WO2021208316A1 (zh) 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN113555431B (zh) 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法
CN112234117B (zh) 基于n-GaN/p-GaSe/石墨烯异质结的自驱动超宽光谱光电探测器及制备方法
CN116565098B (zh) 氮化镓发光二极管外延片及其生长工艺
CN112397604B (zh) 基于m面4H-SiC异质外延非极性AlGaN/BN的PN结紫外探测器及制备方法
CN216450669U (zh) 外延片及半导体发光器件
US11201217B2 (en) Nitride semiconductor substrate
CN114121656B (zh) 一种基于硅衬底的新型hemt器件的制备方法及器件
US11605716B2 (en) Nitride semiconductor substrate and method of manufacturing the same
JP2009081269A (ja) 縦型窒化物半導体デバイス及びその製造方法
Liu et al. Stable multiplication gain in GaN p–i–n avalanche photodiodes with large device area
JP3564811B2 (ja) 3族窒化物半導体発光素子
CN113675284B (zh) 基于半极性超晶格结构的宽波段紫外探测器及其制备方法
JP2014216474A (ja) 窒化物半導体基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant