CN112394119A - 一种气相色谱-质谱法测定有机氯农药成分的检测方法 - Google Patents

一种气相色谱-质谱法测定有机氯农药成分的检测方法 Download PDF

Info

Publication number
CN112394119A
CN112394119A CN202011346184.9A CN202011346184A CN112394119A CN 112394119 A CN112394119 A CN 112394119A CN 202011346184 A CN202011346184 A CN 202011346184A CN 112394119 A CN112394119 A CN 112394119A
Authority
CN
China
Prior art keywords
gas chromatography
sample
organochlorine pesticide
detected
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011346184.9A
Other languages
English (en)
Other versions
CN112394119B (zh
Inventor
韩颖
孙微微
李含
谷开慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology College of Optical and Electronical Information
Original Assignee
Changchun University of Science and Technology College of Optical and Electronical Information
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology College of Optical and Electronical Information filed Critical Changchun University of Science and Technology College of Optical and Electronical Information
Priority to CN202011346184.9A priority Critical patent/CN112394119B/zh
Publication of CN112394119A publication Critical patent/CN112394119A/zh
Application granted granted Critical
Publication of CN112394119B publication Critical patent/CN112394119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/631Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using photolysis and investigating photolysed fragments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3076Control of physical parameters of the fluid carrier of temperature using specially adapted T(t) profile

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种气相色谱‑质谱法测定有机氯农药成分的检测方法,将待测有机氯农药的混合物用丙酮溶液作为溶剂溶解,形成待测样品溶液;利用特定波长和脉宽的超短脉冲激光对待测样品进行激发,将激发后的待测样品注入气相色谱‑质谱仪,全扫描记录定量离子对的峰面积,以浓度作为横坐标,峰面积作为纵坐标,绘制曲线;将绘制的曲线与有机氯农药成分A曲线进行比对,从而确定该待测样品中含有有机氯农药成分A。在原有的气象色谱‑质谱联用仪所具备的操作简单、效率高、可同时检测多种农药及大批量液体农药残留的基础上,以软电离的方式提高了系统分析物质的可靠性。

Description

一种气相色谱-质谱法测定有机氯农药成分的检测方法
技术领域
本发明涉及有农药的检测方法,特别是一种气相色谱-质谱法测定有机氯农药成分的检测方法。
背景技术
有机氯农药(OCPs)是用于防治植物病、虫害的组成成分中含有有机氯元素的有机化合物,作为杀虫剂被广泛用于防治疟疾、伤寒、霍乱等昆虫传染疾病,以提高农业中各种农作物的生产力。有机氯农药中的氯苯结构较稳定,生物体内酶难于降解,所以积存在动、植物体内的有机氯农药分子消失缓慢。目前人们已经认识到有机氯农药具有剧毒,对非靶向生物,如海洋哺乳动物、鸟类均有不良影响,并通过食物链进入人体的有机氯农药能在肝、肾、心脏等组织中蓄积,特别是由于这类农药脂溶性大,所以在体内脂肪中的积极因素贮更突出。蓄积的残留农药也能通过母乳排出,或转入卵蛋等组织,影响后代。这类农药会导致精神系统问题、超活跃障碍、II型糖尿病以及癌症等疾病。中国于六十年代已开始禁止将DDT、六六六用于疏菜、茶叶、烟草等作物上。但不乏一些发展中国家的某些地区由于立法不当,缺乏对其使用的监管,以及农民的无知继续使用此类农药。
传统的检测方法是利用气相色谱(GC)或液相色谱法分离有机氯农药[樊艳, 采用气相色谱(GC)法同时检测蜂蜜中的8种有机氯农药残留实验[J],粮食科技与经济,2019,44(11)],但这种方法可能产生假阳性误判,需要质谱的进一步确证。近年来,色谱-质谱联用技术在农药残留检测中的应用使得农药残留检测技术得以发展[王芳焕,QuEChERS-气相色谱-串联质谱法测定枸杞中农药残留[J],色谱, 2019,37(10)],其中电子电离(EI)源常用于非特异性硬电离,为使矩阵效益最小化,一般采用选择性离子监测模式。但矩阵的干扰提供了与被分析物类似的碎片模式,降低了分析结果的可靠性。
发明内容
本发明的目的在于解决以上现有技术的不足,提供一种气相色谱-质谱法测定有机氯农药成分的检测方法。
为实现以上方法,提供以下技术方案:
一种气相色谱-质谱法测定有机氯农药成分的检测方法,包括以下步骤:
S1:将待测有机氯农药的混合物用丙酮溶液作为溶剂溶解,形成待测样品溶液;
S2:利用特定波长和脉宽的超短脉冲激光对待测样品进行激发,所述波长和脉宽值通过一种有机氯农药成分A的吸收波长和跃迁能量确定;
S3:将激发后的待测样品注入气相色谱-质谱仪,采用全扫描的方式在 m/z40~400范围内分析待测样品,记录定量离子对的峰面积,以浓度作为横坐标,峰面积作为纵坐标,绘制曲线;
S4:将绘制的曲线与有机氯农药成分A曲线进行比对,从而确定该待测样品中含有有机氯农药成分A。
2、根据权利要求1所述的一种气相色谱-质谱法测定有机氯农药成分的检测方法,其特征在于,步骤S2的超短脉冲激光的波长和脉宽确定步骤:
S21:首先选取有机氯农药A,确认其的吸收带:利用高斯软件模拟A的最小分子结构,计算分子结构中电子从基态跃迁到中间态需要的能量e1以及从中间态跃迁到电离态所需的能量e2,
S22:由电子跃迁能量确定A的吸收波长为L1和L2;
S23:利用光学参量放大器调制超短脉冲激光设备的紫外光波波长L,使紫外光波波长L等于A的吸收波长L1;
S24:利用超短脉冲激光设备内的光栅进行色散调节,使得照射到样品处的激光脉宽Δt;计算方法如下:
电离态生成速率:
Figure RE-GDA0002903121980000031
其中N0、N2分别为基态、电离态上粒子总密度;η12、η3、η4分别是双光子电离跃迁几率、分子离子的自解和光解速率,I(t)为激光光强,当激光发出的两个光子的能量与电子从基态跃迁到电离态所需的能量差小于3eV时,公式后两项可忽略不计,即
Figure RE-GDA0002903121980000032
Figure RE-GDA0002903121980000033
Figure RE-GDA0002903121980000034
其中,E是激光脉冲能量,τ是激光能量衰减到原来的1/e时所持续的时间,
Figure RE-GDA0002903121980000035
Δt表示激光脉冲宽度;
优选地,相色谱-质谱仪的气相条件:
色谱柱:DB-5石英毛细管柱,其中,柱长为30m,直径为0.25mm,膜厚为 0.25μm;
色谱柱温度:色谱柱初始温度50℃保持1min,然后以25℃/min程序升温至125℃,再以10℃/min升温至300℃,保持10min,;
进样口温度:250℃;
微通道信号采集器配有的数字转换器对获得的信号进行记录;
用飞行时间质谱法测定气相色谱柱中分析物,气相色谱与质谱仪之间的转移线温度维持在250℃。
有益效果:本发明综合超短脉冲离子激发技术和气相色谱-质谱检测技术,在原有的气象色谱-质谱联用仪所具备的操作简单、效率高、可同时检测多种农药及大批量液体农药残留的基础上,以软电离的方式提高了系统分析物质的可靠性。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。因此,以下对提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种气相色谱-质谱法测定有机氯农药成分的检测方法,包括以下步骤:
S1:将待测有机氯农药的混合物用丙酮溶液作为溶剂溶解,形成待测样品溶液;
S2:利用特定波长和脉宽的超短脉冲激光对待测样品进行激发,所述波长和脉宽值通过一种有机氯农药成分A的吸收波长和跃迁能量确定;
S3:将激发后的待测样品注入气相色谱-质谱仪,采用全扫描的方式在 m/z40~400范围内分析待测样品,记录定量离子对的峰面积,以浓度作为横坐标,峰面积作为纵坐标,绘制曲线;
S4:将绘制的曲线与有机氯农药成分A曲线进行比对,从而确定该待测样品中含有有机氯农药成分A。
步骤S2的超短脉冲激光的波长和脉宽确定步骤:
S21:首先选取有机氯农药A,确认其的吸收带:利用高斯软件模拟A的最小分子结构,计算分子结构中电子从基态跃迁到中间态需要的能量e1以及从中间态跃迁到电离态所需的能量e2,
S22:由电子跃迁能量确定A的吸收波长为L1和L2;
S23:利用光学参量放大器调制超短脉冲激光设备的紫外光波波长L,使紫外光波波长L等于A的吸收波长L1;
S24:利用超短脉冲激光设备内的光栅进行色散调节,使得照射到样品处的激光脉宽Δt;计算方法如下:
电离态生成速率:
Figure RE-GDA0002903121980000051
其中N0、N2分别为基态、电离态上粒子总密度;η12、η3、η4分别是双光子电离跃迁几率、分子离子的自解和光解速率,I(t)为激光光强,当激光发出的两个光子的能量与电子从基态跃迁到电离态所需的能量差小于3eV时,公式后两项可忽略不计,即
Figure RE-GDA0002903121980000052
Figure RE-GDA0002903121980000053
Figure RE-GDA0002903121980000054
其中,E是激光脉冲能量,τ是激光能量衰减到原来的1/e时所持续的时间,
Figure RE-GDA0002903121980000055
Δt表示激光脉冲宽度;
相色谱-质谱仪的气相条件:
色谱柱:DB-5石英毛细管柱,其中,柱长为30m,直径为0.25mm,膜厚为 0.25μm;
色谱柱温度:色谱柱初始温度50℃保持1min,然后以25℃/min程序升温至125℃,再以10℃/min升温至300℃,保持10min,;
进样口温度:250℃;
微通道信号采集器配有的数字转换器对获得的信号进行记录;
用飞行时间质谱法测定气相色谱柱中分析物,气相色谱与质谱仪之间的转移线温度维持在250℃。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (3)

1.一种气相色谱-质谱法测定有机氯农药成分的检测方法,其特征在于,包括以下步骤:
S1:将待测有机氯农药的混合物用丙酮溶液作为溶剂溶解,形成待测样品溶液;
S2:利用特定波长和脉宽的超短脉冲激光对待测样品进行激发,所述波长和脉宽值通过一种有机氯农药成分A的吸收波长和跃迁能量确定;
S3:将激发后的待测样品注入气相色谱-质谱仪,采用全扫描的方式在m/z40~400范围内分析待测样品,记录定量离子对的峰面积,以浓度作为横坐标,峰面积作为纵坐标,绘制曲线;
S4:将绘制的曲线与有机氯农药成分A曲线进行比对,从而确定该待测样品中含有有机氯农药成分A。
2.根据权利要求1所述的一种气相色谱-质谱法测定有机氯农药成分的检测方法,其特征在于,步骤S2的超短脉冲激光的波长和脉宽确定步骤:
S21:首先选取有机氯农药A,确认其的吸收带:利用高斯软件模拟A的最小分子结构,计算分子结构中电子从基态跃迁到中间态需要的能量e1以及从中间态跃迁到电离态所需的能量e2,
S22:由电子跃迁能量确定A的吸收波长为L1和L2;
S23:利用光学参量放大器调制超短脉冲激光设备的紫外光波波长L,使紫外光波波长L等于A的吸收波长L1;
S24:利用超短脉冲激光设备内的光栅进行色散调节,使得照射到样品处的激光脉宽Δt;计算方法如下:
电离态生成速率:
Figure FDA0002800003060000021
其中N0、N2分别为基态、电离态上粒子总密度;η12、η3、η4分别是双光子电离跃迁几率、分子离子的自解和光解速率,I(t)为激光光强,当激光发出的两个光子的能量与电子从基态跃迁到电离态所需的能量差小于3eV时,公式后两项可忽略不计,即
Figure FDA0002800003060000022
Figure FDA0002800003060000023
Figure FDA0002800003060000024
其中,E是激光脉冲能量,τ是激光能量衰减到原来的1/e时所持续的时间,
Figure FDA0002800003060000025
Δt表示激光脉冲宽度。
3.根据权利要求1所述的一种气相色谱-质谱法测定有机氯农药成分的检测方法,其特征在于,相色谱-质谱仪的气相条件:
色谱柱:DB-5石英毛细管柱,其中,柱长为30m,直径为0.25mm,膜厚为0.25μm;
色谱柱温度:色谱柱初始温度50℃保持1min,然后以25℃/min程序升温至125℃,再以10℃/min升温至300℃,保持10min,;
进样口温度:250℃;
微通道信号采集器配有的数字转换器对获得的信号进行记录;
用飞行时间质谱法测定气相色谱柱中分析物,气相色谱与质谱仪之间的转移线温度维持在250℃。
CN202011346184.9A 2020-11-26 2020-11-26 一种气相色谱-质谱法测定有机氯农药成分的检测方法 Active CN112394119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011346184.9A CN112394119B (zh) 2020-11-26 2020-11-26 一种气相色谱-质谱法测定有机氯农药成分的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011346184.9A CN112394119B (zh) 2020-11-26 2020-11-26 一种气相色谱-质谱法测定有机氯农药成分的检测方法

Publications (2)

Publication Number Publication Date
CN112394119A true CN112394119A (zh) 2021-02-23
CN112394119B CN112394119B (zh) 2022-09-27

Family

ID=74604512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011346184.9A Active CN112394119B (zh) 2020-11-26 2020-11-26 一种气相色谱-质谱法测定有机氯农药成分的检测方法

Country Status (1)

Country Link
CN (1) CN112394119B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295814A (zh) * 2021-05-20 2021-08-24 国家地质实验测试中心 测定人体有机氯农药富集率的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121416A (ja) * 2001-10-09 2003-04-23 Laser Gijutsu Sogo Kenkyusho 微量成分の分子濃度の測定方法及び装置
GB0622575D0 (en) * 2005-05-24 2006-12-20 Bruker Daltonik Gmbh Method and device for mass spectrometry examination of analytes
CN103257126A (zh) * 2013-05-29 2013-08-21 江西农业大学 一种基于激光诱导击穿光谱技术的农药残留快速检测方法
CN104215705A (zh) * 2014-08-22 2014-12-17 深圳市宇驰检测技术有限公司 一种检测粮食中有机氯农药残留量的方法
CN104569254A (zh) * 2014-12-16 2015-04-29 国家烟草质量监督检验中心 一种烟草及烟草制品中有机氯农药残留量的测定方法
CN107024546A (zh) * 2016-01-29 2017-08-08 郭会清 一种气相色谱‑质谱法快速测定棉花纤维中4种有机氯农药残留的检测方法
CN108169320A (zh) * 2018-03-16 2018-06-15 常州英诺激光科技有限公司 一种痕量元素的激光质谱测量方法及常压敞开式便携激光质谱仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121416A (ja) * 2001-10-09 2003-04-23 Laser Gijutsu Sogo Kenkyusho 微量成分の分子濃度の測定方法及び装置
GB0622575D0 (en) * 2005-05-24 2006-12-20 Bruker Daltonik Gmbh Method and device for mass spectrometry examination of analytes
CN103257126A (zh) * 2013-05-29 2013-08-21 江西农业大学 一种基于激光诱导击穿光谱技术的农药残留快速检测方法
CN104215705A (zh) * 2014-08-22 2014-12-17 深圳市宇驰检测技术有限公司 一种检测粮食中有机氯农药残留量的方法
CN104569254A (zh) * 2014-12-16 2015-04-29 国家烟草质量监督检验中心 一种烟草及烟草制品中有机氯农药残留量的测定方法
CN107024546A (zh) * 2016-01-29 2017-08-08 郭会清 一种气相色谱‑质谱法快速测定棉花纤维中4种有机氯农药残留的检测方法
CN108169320A (zh) * 2018-03-16 2018-06-15 常州英诺激光科技有限公司 一种痕量元素的激光质谱测量方法及常压敞开式便携激光质谱仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐敦明等: "表面增强激光解吸电离质谱(SELDI-MS)测定蔬菜中有机磷农药残留的探讨", 《食品科技》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295814A (zh) * 2021-05-20 2021-08-24 国家地质实验测试中心 测定人体有机氯农药富集率的方法

Also Published As

Publication number Publication date
CN112394119B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
Moreno-Pedraza et al. Elucidating the distribution of plant metabolites from native tissues with laser desorption low-temperature plasma mass spectrometry imaging
Pagonis et al. A library of proton-transfer reactions of H3O+ ions used for trace gas detection
Brilli et al. Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF)
Huang et al. Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry
Riva et al. Evidence for an unrecognized secondary anthropogenic source of organosulfates and sulfonates: gas-phase oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate aerosol
Liu et al. Photodegradation kinetics and byproducts identification of the Aflatoxin B1 in aqueous medium by ultra‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry
US11506611B2 (en) Surface-enhanced Raman scattering detection method for rapid detection of pesticide residues
Shalamzari et al. Characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal
Karl et al. Senescing grass crops as regional sources of reactive volatile organic compounds
Wang et al. Organic peroxides in aerosol: key reactive intermediates for multiphase processes in the atmosphere
Lee et al. Online aerosol chemical characterization by extractive electrospray ionization–ultrahigh-resolution mass spectrometry (EESI-Orbitrap)
Hsieh et al. Lead determination in whole blood by laser ablation coupled with inductively coupled plasma mass spectrometry
Cai et al. Molecular composition and photochemical evolution of water-soluble organic carbon (WSOC) extracted from field biomass burning aerosols using high-resolution mass spectrometry
Araujo et al. Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in Eucalyptus
Judge et al. Nonresonant femtosecond laser vaporization with electrospray postionization for ex vivo plant tissue typing using compressive linear classification
CN112394119B (zh) 一种气相色谱-质谱法测定有机氯农药成分的检测方法
Benzi et al. HPLC-DAD-MS n to investigate the photodegradation pathway of nicosulfuron in aqueous solution
Cao et al. Speciation and identification of organoselenium metabolites in human urine using inductively coupled plasma mass spectrometry and tandem mass spectrometry
Segura et al. Evaluation of atomic fluorescence and atomic absorption spectrometric techniques for the determination of arsenic in wine and beer by direct hydride generation sample introduction
Walhout et al. Effects of photolysis on the chemical and optical properties of secondary organic material over extended time scales
Long et al. Subcellular redox targeting: Bridging in vitro and in vivo chemical biology
Masoud et al. Chlorine-initiated oxidation of α-pinene: Formation of secondary organic aerosol and highly oxygenated organic molecules
Knorr et al. Performance evaluation of a nontargeted platform using two-dimensional gas chromatography time-of-flight mass spectrometry integrating computer-assisted structure identification and automated semiquantification for the comprehensive chemical characterization of a complex matrix
Lehnert et al. Simultaneous real-time measurement of isoprene and 2-methyl-3-buten-2-ol emissions from trees using SIFT-MS
Li et al. Correcting micro-aethalometer absorption measurements for brown carbon aerosol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant