CN112384646A - 用于soec应用的膨胀器 - Google Patents
用于soec应用的膨胀器 Download PDFInfo
- Publication number
- CN112384646A CN112384646A CN201980039909.9A CN201980039909A CN112384646A CN 112384646 A CN112384646 A CN 112384646A CN 201980039909 A CN201980039909 A CN 201980039909A CN 112384646 A CN112384646 A CN 112384646A
- Authority
- CN
- China
- Prior art keywords
- electrolysis
- soec
- anode
- hydrogen
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 33
- 239000007789 gas Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 21
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000007787 solid Substances 0.000 claims abstract description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 63
- 229910021529 ammonia Inorganic materials 0.000 claims description 32
- 239000001257 hydrogen Substances 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 22
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 238000001991 steam methane reforming Methods 0.000 description 3
- 101150026303 HEX1 gene Proteins 0.000 description 2
- 238000009620 Haber process Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- -1 oxygen ions Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/23—Carbon monoxide or syngas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/05—Diaphragms; Spacing elements characterised by the material based on inorganic materials
- C25B13/07—Diaphragms; Spacing elements characterised by the material based on inorganic materials based on ceramics
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
- C25B15/025—Measuring, analysing or testing during electrolytic production of electrolyte parameters
- C25B15/027—Temperature
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/05—Pressure cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
- C25B9/77—Assemblies comprising two or more cells of the filter-press type having diaphragms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Analytical Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
在一种用于通过电解产生各种合成气的方法中,该方法包括将蒸汽和压缩空气分别供给到电解单元的阴极和阳极,或供给到一系列电解单元中的第一个中的阴极和阳极,进入一系列电解单元的第一个中,电解单元在升高的气压下运行,然后,使用气体膨胀器将离开阳极的富氧气体膨胀低至大约环境压力。电解单元优选是固体氧化物电解池(SOEC)堆。
Description
发明领域
本发明涉及电解单元,特别是固体氧化物电解池(SOEC)系统,其在升高的压力下运行,同时产生包含氢气;一氧化碳;或氢气、一氧化碳和二氧化碳的混合物的合成气。更具体地,本发明涉及膨胀器在SOEC系统中的用途。
发明背景
在SOEC系统中产生的合成气可以是用于制备例如氨、甲烷、甲醇或二甲醚(DME)的合成气。
本发明所基于的基本思想在于,SOEC系统在升高的压力下运行,同时产生合成气。必须将SOEC系统阳极侧出口处的氧气含量控制在大约50vol%以下,这可以通过用经压缩的空气和/或蒸汽的流进行稀释来实现。本发明的关键是在该物流上施加膨胀器,以通过使气体膨胀低至接近环境压力的压力来回收能量。由于SOEC(或其他高温电解器,如质子传导固体氧化物电池)的高的运行温度,这是可行的。
对于使用这种合成气的所有应用,有利的是在压力下使用气体,即保持SOEC系统处于加压状态。
如果堆在压力下运行,对所有SOEC应用都是非常有益的,因为在这种情况下,可以省去资金和维护密集以及耗能的合成气压缩机。初步的实验室测试表明,在高至20barg的运行压力下,堆中的功耗将保持不变,因为改进的电极动力学将抵消增加压力的热力学缺点。
但是,SOEC技术存在一个问题,即SOEC系统中的单个电池只能承受非常有限的压差(<0.2-0.5bar)。通过以死端模式(dead-end mode)运行系统的氧气侧就可以克服此缺点,这意味着在电池的阳极侧将没有进料流。
但是,该解决方案将导致纯氧在650-850℃的高运行温度和高达40bar的压力下离开阳极,这将对堆以及堆下游的构造材料提出严格的要求。此外,将存在与该运行模式相关的严重的安全风险。
迄今为止已知的唯一一个在压力下运行的SOEC系统是由Dresden的sunfire GmbH制造的,并应用于HELMETH(代表High temperature ELectrolysis and METHanation的集合,以实现有效的电能转化为气体)项目,但是关于空气侧运行的细节尚未发表。爱达荷州国家实验室(INL)已发表涉及氧气处理安全性的论文,并建议废气中的氧气含量最高为50%。此运行模式也是在Foulum的丹麦沼气升级项目中应用的模式。这通过以下实现:向阳极侧中吹入空气,从而将产生的氧气稀释,以使出口浓度不超过50vol%。高压蒸汽也可用于稀释,前提是采用耐蒸汽的阳极。
由于SOEC的运行机理是氧离子通过电解质膜转移并在阳极侧重组为分子氧,分别在蒸汽或二氧化碳电解的情况下,进入SOEC堆的质量流的主要部分或重要部分留在了阳极侧上。
因此,与将稀释的空气压缩或产生稀释的蒸汽的投资相比,膨胀器将回收更多的能量。
发明内容
因此,本发明涉及一种通过电解产生包含氢气,一氧化碳,或氢气、一氧化碳和二氧化碳的混合物的合成气的方法,所述方法包括分别将蒸汽和压缩空气供给到电解单元的阴极和阳极或供给到一系列电解单元的第一个的阴极和阳极,其中,
-所述电解单元或所述一系列电解单元在升高的气压下运行,并且
-随后使用膨胀器将离开阳极的富氧气体膨胀低至大约环境压力。
电解单元优选是SOEC堆。
迄今为止,很少有人关注使用电解法生产的(特别是使用SOEC堆所生产的)合成气来生产氨。最近,已经描述了使用来自可再生能源的电来生产“绿色”氨的系统的设计和分析(Applied Energy 192(2017)466-476)。在此概念中,用于制氢的固体氧化物电解(SOE)与改进的Haber-Bosch反应器结合在一起,并包括空气分离器以供应纯氮气。典型的制氨厂首先通过蒸汽重整将脱硫的烃气体,例如天然气(即甲烷)或LPG(液化石油气,例如丙烷或丁烷)或石脑油转化为气态氢。然后,通过Haber-Bosch工艺将氢与氮结合生成氨
3H2+N2→2NH3
因此,氨(NH3)的合成需要包含氢(H2)和氮(N2)的合适摩尔比为约3∶1的合成气(syngas)。
氨是生产最广泛的化学品之一,它是使用气态氢和氮作为反应物直接合成的,而没有前体或副产物。在其气态下,氮主要以N2的形式提供,通常是通过将其从大气中分离来产生的。氢气(H2)的生产仍然具有挑战性,对于氨的工业合成,通常是从天然气的蒸汽甲烷重整(SMR)中获得的。此外,当将空气用于重整过程时,还引入了N2,因此不需要空气分离装置,但是必须进行净化过程以除去含氧物质,例如O2、CO、CO2和H2O,以防止催化剂在氨转化器中中毒。二氧化碳是SMR的产物,可以在工厂内部分离和回收。因此,氢气生产是氨合成中的关键过程,并且需要氨的可持续生产以减少主要来源物如天然气的消耗,并避免该过程中的二氧化碳排放。
各种专利和专利申请中已经描述了通过电解制备氨合成气。因此,在US 2006/0049063中描述了用于氨气的阳极电化学合成的方法。该方法包括在阳极和阴极之间提供电解质,使在阳极处存在于电解质中的带负电荷的含氮物质和带负电荷的含氢物质氧化,以分别形成吸附的氮物质和氢物质,并使吸附的氮物质与吸附的氢物质反应形成氨。
在US 2012/0241328中,使用电化学和非电化学反应合成氨。电化学反应发生在具有锂离子传导膜的电解池中,该膜将电解池分为阳极液室和阴极液室,后者包括与锂离子传导膜紧密相连的多孔阴极。
WO 2008/154257公开了一种用于生产氨的方法,该方法包括由与空气混合的氢气流的燃烧来生产氮。可以从水的电解中产生用于氨燃烧过程中产生氮的氢。电解水产生的氢也可以与氮结合产生氨。
与同等设备相比,据说可以实现零CO2排放量的氨生产,并减少40%的功率输入。
描述了一种从间歇性生成的H2合成氨的灵活概念(Chem.Ing.Tech.86 No.5(2014),649-657),并与在技术和经济水平上广泛讨论的电转气概念进行了比较。已经描述了在大气压力下在熔融盐中的电解合成氨(J.Am.Chem.Soc.125No.2(2003),334-335),其中使用了一种新的电化学方法,该方法具有比用于Haber-Bosch工艺中更高的电流效率和更低的温度。在该方法中,通过还原阴极处的氮气而产生的氮化物离子(N3-)被阳极氧化,并与氢反应以在阳极处产生氨。
US 2014/0272734描述了一种使用固体氧化物电解池(SOEC)通过电解产生包含H2和CO的合成气流的方法。该方法包括将蒸汽供至阴极和将压缩空气流供至阳极,但不使用气体膨胀器。
在DE 10 2015 007 732中,描述了对水进行加压电解以形成氧气流和氢气流的方法。为了提供节能过程,在膨胀器中将氧气流放宽低到环境压力。WO 2017/118812中描述了类似的方法。
Frattini等人(Renewable Energy 99(2016),472-482)描述了一种系统方法,用于评估氨生产厂中集成的不同的可再生能源的能源。使用热化学模拟研究了三种不同策略对氨合成过程中可再生能源整合和扩大规模的可持续性的影响。为了全面评估整个系统的优势,已考虑了工厂的平衡,使用额外的单元以及等效的温室气体排放。
Pfromm(J.Renewable Sustainable Energy 9(2017),034702)描述并总结了最新的技术水平,尤其是对无化石氨生产以及Haber Bosch工艺可能的替代品的重新关注。
Wang等人(AIChE Journal 63 No.5(2017),1620-1637)涉及一种基于氨的储能系统,该系统利用加压可逆固体氧化物燃料电池(R-SOFC)进行功率转换,并与外部氨合成和分解过程以及蒸汽功率循环结合使用。在电化学水分解中作为副产物产生的纯氧被用于驱动燃料电池。
在最近的专利申请中,申请人已经公开了一种用于通过电解,优选地通过SOEC堆来产生用于氨生产的合成气的方法。所述方法通过利用以内热模式运行的能力避免了空气分离单元的任何使用(低温,变压吸附等),并且其通过使由空气的蒸汽电解产生的氢燃烧来提供必要的氮。在使用SOEC堆的优选实施方案中,氢的燃烧可以在堆内部或在分开的堆之间发生。
在下面的实施例中更详细地描述本发明。在该示例中,参考示出本发明原理的附图。
实施例
该实施例显示了本发明的一个实施方案,其代表了输送氢气以产生1吨氨的SOEC设备。
高压蒸汽是从氨合成中引入的,并且也是在SOEC设备内产生的。蒸汽与再循环的氢气混合,并在阴极(燃料)侧的进料/流出物热交换器Hex1内进行预热。使用电加热的预热器ph1将其进一步预热到SOEC的运行温度。在此示例中,SOEC以所谓的热中性模式运行,因此堆的出口温度等于入口温度。
在阴极侧,蒸汽被电解成氢气,氧气通过电解质输送到阳极侧。然后,将与蒸汽混合的氢气流通过上述进料/流出物热交换器Hex1,然后再通过生成额外的高压蒸汽进行冷却。最终,物流被进一步冷却,所有未转化的蒸汽都被冷凝出来。在这一阶段,该物流被分流成再循环的氢气物流和残留的蒸汽,后者被送至氨合成。
在空气侧,空气在压缩机C中被压缩到40barg,其量足以在SOEC堆出口处获得50%(v/v)的氧气。空气在进入电预热器ph2以进一步将温度提高到785℃(这是堆的入口温度)之前,先在进料/流出物热交换器Hex2中被预热到765℃。富氧空气离开堆,并在进料/流出物热交换器Hex2中回收热量,然后该富氧空气在424℃的温度下进入膨胀器E。气体膨胀低至0.2barg的压力,从而温度降至91℃。
使用多变效率(polytropic efficiency)的85%效率和空气压缩机的5%的工作损耗,膨胀器的多变效率为78%,工作损失为4%,那么使用的功和回收的功分别为311kW和356kW。因此可以看出,与压缩稀释空气所消耗的功率相比,可以回收更多的功率(对于每吨氨等效的合成气产量,其为45kWh)。
在图中,压缩机和膨胀器连接到不同的线路。但是,它们可以连接到共同的线路上,从而可以获得更高的能源效率。它还可以减少电池内部的压力波动。
Claims (4)
1.一种通过电解产生包含氢气,一氧化碳,或者氢气、一氧化碳和二氧化碳的混合物的合成气的方法,所述方法包括将蒸汽和压缩空气分别供给到电解单元的阴极和阳极,或分别供给到一系列电解单元的第一个的阴极和阳极,其中,
-所述电解单元或所述一系列电解单元在升高的气压下运行,并且
-随后,使用气体膨胀器将离开阳极的富氧气体膨胀低至约环境压力。
2.根据权利要求1所述的方法,其中所述电解单元是固体氧化物电解池(SOEC)堆。
3.根据权利要求2所述的方法,其中所述SOEC堆以所谓的热中性模式运行。
4.根据前述权利要求中任一项所述的方法,其中所述合成气选自甲醇合成气、甲烷合成气、氨合成气和二甲醚(DME)合成气。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA201800385 | 2018-07-12 | ||
DKPA201800385 | 2018-07-12 | ||
PCT/EP2019/068334 WO2020011748A1 (en) | 2018-07-12 | 2019-07-09 | Expander for soec applications |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112384646A true CN112384646A (zh) | 2021-02-19 |
Family
ID=67544151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980039909.9A Pending CN112384646A (zh) | 2018-07-12 | 2019-07-09 | 用于soec应用的膨胀器 |
Country Status (12)
Country | Link |
---|---|
US (1) | US20210214849A1 (zh) |
EP (1) | EP3821058A1 (zh) |
JP (1) | JP2021524544A (zh) |
KR (1) | KR20210030935A (zh) |
CN (1) | CN112384646A (zh) |
AU (1) | AU2019300085A1 (zh) |
BR (1) | BR112021000479A2 (zh) |
CA (1) | CA3104818A1 (zh) |
EA (1) | EA202190253A1 (zh) |
MX (1) | MX2021000400A (zh) |
WO (1) | WO2020011748A1 (zh) |
ZA (1) | ZA202100168B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220140548A (ko) * | 2020-02-06 | 2022-10-18 | 토프쉐 에이/에스 | 산소-소모 과정에 산소-부화 가스를 공급하는 방법 |
FR3135354A1 (fr) | 2022-05-06 | 2023-11-10 | Technip Energies France | Procédé de mise en œuvre d’une pile à combustible alimentée avec de l’ammoniac avec recyclage de dihydrogène et installation associée |
WO2024132913A1 (en) * | 2022-12-23 | 2024-06-27 | Topsoe A/S | Combustion of off-gasses using enriched air from an electrolytic process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030170518A1 (en) * | 2000-05-31 | 2003-09-11 | Nuvera Fuel Cells, Inc. | High-efficiency fuel cell power system with power generating expander |
US20140272734A1 (en) * | 2013-03-15 | 2014-09-18 | Robert J. Braun | Electrochemical device for syngas and liquid fuels production |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3085798B2 (ja) * | 1992-09-14 | 2000-09-11 | 三菱重工業株式会社 | 加圧高温水蒸気電解方法 |
US7314544B2 (en) | 2004-09-07 | 2008-01-01 | Lynntech, Inc. | Electrochemical synthesis of ammonia |
GB0521984D0 (en) * | 2005-10-28 | 2005-12-07 | Rolls Royce Fuel Cell Systems | Electrolysis |
GB0524486D0 (en) * | 2005-12-01 | 2006-01-11 | Rolls Royce Fuel Cell Systems | An electrolysis apparatus |
US20080311022A1 (en) * | 2007-06-14 | 2008-12-18 | Battelle Energy Alliance, Llc | Methods and apparatuses for ammonia production |
US20100025232A1 (en) * | 2008-07-29 | 2010-02-04 | Gm Global Technology Operations, Inc. | Recovering the compression energy in gaseous hydrogen and oxygen generated from high-pressure water electrolysis |
CN103140606A (zh) * | 2010-07-09 | 2013-06-05 | 赫多特普索化工设备公司 | 将沼气转化为富含甲烷的气体的方法 |
US8916123B2 (en) | 2011-03-23 | 2014-12-23 | Ceramatec, Inc. | Ammonia synthesis using lithium ion conductive membrane |
DE102012216090A1 (de) * | 2012-09-11 | 2014-03-13 | Siemens Aktiengesellschaft | Grüne Verbundanlage zur Herstellung von chemischen und petrochemischen Produkten |
FR3004179B1 (fr) * | 2013-04-08 | 2015-05-01 | Commissariat Energie Atomique | Procedes d'obtention de gaz combustible a partir d'electrolyse de l'eau (eht) ou de co-electrolyse avec h2o/co2 au sein d'une meme enceinte, reacteur catalytique et systeme associes |
DE102014212718A1 (de) * | 2014-07-01 | 2016-01-07 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer Elektrolyseanlage sowie Elektrolyseanlage |
DK3281245T3 (da) * | 2015-04-08 | 2020-03-23 | Sunfire Gmbh | Fremgangsmåde til varmestyring af en højtemperatur-vanddamps-elektrolyse eller reversibel højtemperatur-brændselscelle samt højtemperatur-vanddamps-elektrolyse- eller reversibel højtemperatur-brændselscelle-anordning |
DE102015007732A1 (de) * | 2015-06-16 | 2016-12-22 | Linde Aktiengesellschaft | Sauerstoff Expander (Elektrolyse) zur Kühlung des Produktions- und Verdichtungsprozesses |
FR3046424B1 (fr) | 2016-01-04 | 2018-02-09 | Electricite De France | Systeme de production de dihydrogene, et procede associe |
FR3056230B1 (fr) * | 2016-09-19 | 2020-02-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Systeme d'electrolyse reversible de l'eau a haute temperature comportant un reservoir d'hydrures couple a l'electrolyseur |
FR3056338B1 (fr) * | 2016-09-22 | 2018-09-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procedes de co-electrolyse de l'eau et du co2 (soec) ou de production d'electricite a haute temperature (sofc) favorisant ou non les reactions catalytiques au sein de l'electrode h2 |
CN107893237B (zh) * | 2016-12-27 | 2018-12-04 | 中国科学院上海应用物理研究所 | 基于高温电解水蒸气制氢技术的加氢站 |
-
2019
- 2019-07-09 CA CA3104818A patent/CA3104818A1/en active Pending
- 2019-07-09 WO PCT/EP2019/068334 patent/WO2020011748A1/en unknown
- 2019-07-09 EP EP19749589.8A patent/EP3821058A1/en active Pending
- 2019-07-09 KR KR1020217001374A patent/KR20210030935A/ko not_active Application Discontinuation
- 2019-07-09 AU AU2019300085A patent/AU2019300085A1/en active Pending
- 2019-07-09 BR BR112021000479-3A patent/BR112021000479A2/pt unknown
- 2019-07-09 US US17/058,970 patent/US20210214849A1/en active Pending
- 2019-07-09 MX MX2021000400A patent/MX2021000400A/es unknown
- 2019-07-09 EA EA202190253A patent/EA202190253A1/ru unknown
- 2019-07-09 CN CN201980039909.9A patent/CN112384646A/zh active Pending
- 2019-07-09 JP JP2021500285A patent/JP2021524544A/ja active Pending
-
2021
- 2021-01-11 ZA ZA2021/00168A patent/ZA202100168B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030170518A1 (en) * | 2000-05-31 | 2003-09-11 | Nuvera Fuel Cells, Inc. | High-efficiency fuel cell power system with power generating expander |
US20140272734A1 (en) * | 2013-03-15 | 2014-09-18 | Robert J. Braun | Electrochemical device for syngas and liquid fuels production |
Also Published As
Publication number | Publication date |
---|---|
WO2020011748A1 (en) | 2020-01-16 |
ZA202100168B (en) | 2024-05-30 |
US20210214849A1 (en) | 2021-07-15 |
EA202190253A1 (ru) | 2021-04-15 |
BR112021000479A2 (pt) | 2021-04-06 |
EP3821058A1 (en) | 2021-05-19 |
MX2021000400A (es) | 2021-05-27 |
JP2021524544A (ja) | 2021-09-13 |
AU2019300085A1 (en) | 2021-01-28 |
CA3104818A1 (en) | 2020-01-16 |
KR20210030935A (ko) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210091398A1 (en) | Reformer-electrolyzer-purifier (rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen | |
KR102685939B1 (ko) | 암모니아 제조를 위한 합성 가스의 생성 방법 | |
EP3419929B1 (en) | Carbon monoxide production process optimized by soec | |
CN112384646A (zh) | 用于soec应用的膨胀器 | |
US20230046387A1 (en) | Method and plant for producing hydrogen | |
KR20200114809A (ko) | 공전해 시스템 및 이를 이용한 공전해 방법 | |
US20230064109A1 (en) | Method and system to produce hydrocarbon feedstocks | |
US20220081785A1 (en) | Ambient air separation and soec front-end for ammonia synthesis gas production | |
EA040722B1 (ru) | Способ производства метанола из газообразных углеводородов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |