CN112382671A - 一种基于纳米结构的结势垒肖特基二极管及其制备方法 - Google Patents

一种基于纳米结构的结势垒肖特基二极管及其制备方法 Download PDF

Info

Publication number
CN112382671A
CN112382671A CN202011253021.6A CN202011253021A CN112382671A CN 112382671 A CN112382671 A CN 112382671A CN 202011253021 A CN202011253021 A CN 202011253021A CN 112382671 A CN112382671 A CN 112382671A
Authority
CN
China
Prior art keywords
beta
gallium oxide
layer
schottky diode
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011253021.6A
Other languages
English (en)
Other versions
CN112382671B (zh
Inventor
尹以安
李佳霖
毛明华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diyou Future Technology Qingyuan Co ltd
South China Normal University Qingyuan Institute of Science and Technology Innovation Co Ltd
Original Assignee
Diyou Future Technology Qingyuan Co ltd
South China Normal University Qingyuan Institute of Science and Technology Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diyou Future Technology Qingyuan Co ltd, South China Normal University Qingyuan Institute of Science and Technology Innovation Co Ltd filed Critical Diyou Future Technology Qingyuan Co ltd
Priority to CN202011253021.6A priority Critical patent/CN112382671B/zh
Publication of CN112382671A publication Critical patent/CN112382671A/zh
Application granted granted Critical
Publication of CN112382671B publication Critical patent/CN112382671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种纳米结构的结势垒肖特基二极管及其制备方法,其包含依次设置于衬底上的n+型β‑氧化镓纳米柱、β‑氧化镓本征层、p型氮化镓纳米线阵列、阳极金属填充层以及阳极保护层,阳极金属填充层填充p型氮化镓纳米线阵列的间隙,与本征层形成肖特基接触,β‑氧化镓纳米柱水平设置于衬底上,其一端面设置与其形成欧姆接触的阴极,实现了pin结与肖特基二极管相结合,使得该微型化的肖特基二极管在保持低导通电压的同时具有低反向漏电流和耐压高的特性,同时本发明的器件结构在材料的选择和生长方面进一步提高了二极管的生长质量,在纳米电子及光电子器件中具有巨大的应用前景。

Description

一种基于纳米结构的结势垒肖特基二极管及其制备方法
技术领域
本发明涉及半导体器件领域,具体涉及一种基于纳米结构的结势垒肖特基二极管及其制备方法。
背景技术
肖特基二极管是由金属与半导体接触形成的势垒层为基础制成的二极管,又称为肖特基势垒二极管。由于其低的导通压降和极短的反向恢复时间可提高电路系统效率,从而引起人们的广泛关注和应用。但是其反向偏压低,反向漏电流大,对器件的安全性造成很大的威胁。PiN二极管具有高击穿电压、低通态压降以及小漏电等优点,但是其瞬态特性受限于载流子存贮效应,使其无法满足高频领域的应用。
随着微纳技术的不断进步,电子器件的微型化成为发展趋势之一,许多功能单元已经达到纳米尺度。肖特基二极管由于具有比PN结更快的开关速度和更低的开启电压,在纳米电子器件中发挥着重要作用,稳定可靠的肖特基二极管是当今纳米电子器件的关键问题之一。由此可见,提供一种导通电压低同时漏电流小、耐压高的纳米结构的肖特基二极管十分有必要。
发明内容
针对现有技术中存在的技术问题,本发明的首要目的是提供一种基于纳米结构的结势垒肖特基二极管,以获得尺寸小、开关速率块、导通电压低、开启电流高、反向漏电流低以及耐压高的纳米结构的结势垒肖特基二极管。
本发明提供的纳米结构的结势垒肖特基二极管利用n+型β-氧化镓纳米柱、β-氧化镓本征层以及p型GaN纳米线阵列构成多个PIN结,并以金属Ni填充p型GaN纳米线阵列中的间隙,与β-氧化镓本征层接触形成肖特基势垒。在二极管正向偏压时,肖特基势垒降低,空间电荷区减小,电子源源不断从β-氧化镓纳米柱流向Ni金属层,形成电流I1,具有很低的开启电压。同时pin结也为正偏,空间电荷区减小,电子也源源不断从β-氧化镓纳米柱流向p型GaN与空穴复合,形成电流I2,增大了导通电流同时降低了通态电压。实现低导通电压,高开启电流。在二极管反偏时,pin结反偏,耗尽区增大并截止反向电流流过。并且两个相邻耗尽区随着反向偏压的增大逐渐靠拢甚至重叠,最后形成更大的耗尽层来承担更高的反向偏压,将肖特基势垒区屏蔽在高场之外,减弱了肖特基势垒降低效应,提高器件反向耐压的同时减小了反向漏电流。基于此,本发明至少提供如下技术方案:
一种纳米结构的结势垒肖特基二极管,其包含衬底、依次层叠于所述衬底表面的n+型β-氧化镓纳米柱、β-氧化镓本征层、p型氮化镓纳米线阵列、阳极金属填充层以及阳极保护层;
其中,所述β-氧化镓纳米柱水平设置于所述衬底的表面,所述β-氧化镓本征层包裹所述β-氧化镓纳米柱的部分侧表面,所述p型氮化镓纳米线沿所述β-氧化镓本征层表面的法线阵列排布,所述阳极金属填充层填充所述p型氮化镓纳米线阵列的间隙,所述阳极保护层设置于所述阳极金属填充层上,与所述β-氧化镓本征层形成肖特基接触;
还包括设置于所述β-氧化镓纳米柱一端面的阴极,所述阴极与所述β-氧化镓纳米柱之间形成欧姆接触。
进一步的,所述阳极金属填充层的材料选用Ni或Pt,其厚度为1~1.5μm。
进一步的,所述阳极金属填充层优选Ni;所述阳极保护层优选Au,其厚度为100~200nm。
进一步的,所述n+型β-氧化镓纳米柱为锡掺杂,其直径为300~500nm,长度为3~4μm。
进一步的,所述β-氧化镓本征层的厚度为20~30nm。
进一步的,p型氮化镓纳米线阵列中纳米线的直径为100~150nm,高度为800~1000nm,且所述阳极填充层的厚度大于所述p型氮化镓纳米线的高度。
进一步的,所述β-氧化镓纳米柱上设置阴极的端面包含Au催化剂,所述阴极沿纳米柱长度方向的宽度为100~200nm。
进一步的,所述阴极优选Ti/Au电极。
本发明还提供一种纳米结构的结势垒肖特基二极管的制备方法,其包含以下步骤:
在清洗后的衬底表面沉积催化剂金纳米颗粒;
采用CVD法以Ga和Sn作为混合金属源生长n+型β-氧化镓纳米柱;
将所述β-氧化镓纳米柱转移至目标衬底,水平放置于所述目标衬底的表面;
在所述β-氧化镓纳米柱的侧表面上靠近所述催化剂金的一端沉积一定宽度的二氧化硅层;
在所述β-氧化镓纳米柱的侧表面上溅射沉积氧化镓本征层;
在所述氧化镓本征层上沉积金纳米薄层,采用CVD工艺在所述氧化镓本征层表面垂直生长p型GaN纳米线阵列;
沉积金属填充层填充所述p型GaN纳米线阵列中的空隙,在所述金属填充层上沉积金属保护层,所述金属填充层的沉积厚度大于所述p型GaN纳米线阵列的高度;
去除所述二氧化硅层,在所述β-氧化镓纳米柱靠近所述二氧化硅位置的端面沉积阴极金属层,所述阴极金属层与所述β-氧化镓纳米柱形成欧姆接触。
进一步的,所述二氧化硅层的沉积宽度至少为所述β-氧化镓纳米柱长度的五分之一。
与现有技术相比,本发明至少具有如下优异效果:
本发明通过在氧化镓纳米柱上生长氮化镓纳米线阵列结构,结合金属填充层的设置,实现了pin结与肖特基二极管相结合的独特结构。该结构中,在二极管正向偏压时,肖特基势垒降低,空间电荷区减小,电子源源不断从β-氧化镓纳米柱流向金属填充层,形成电流I1,具有很低的开启电压。同时pin结也为正偏,空间电荷区减小,电子也源源不断从β-氧化镓纳米柱流向p型GaN与空穴复合,形成电流I2,增大了导通电流的同时降低了通态电压。实现了低导通电压,高开启电流。在二极管反偏时,pin结反偏,耗尽区增大并截止反向电流流过。并且两个相邻耗尽区随着反向偏压的增大逐渐靠拢甚至重叠,最后形成更大的耗尽层来承担更高的反向偏压,将肖特基势垒区屏蔽在高场之外,减弱了肖特基势垒降低效应,提高器件反向耐压的同时减小了反向漏电流。
另一方面,本发明采用β-Ga2O3纳米柱与p型GaN纳米线阵列组成结势垒肖特基二极管,利用纳米线和纳米柱展示出了极好的电学、光学和热学等特性,使得纳米结构的结势垒肖特基二极管具有更小的尺寸,更轻的质量和更快的响应速度,促进二极管器件微型化的发展。
另外,本发明在n+型β-Ga2O3纳米柱上生长p型GaN纳米线构成异质结,β-Ga2O3与GaN晶格失配仅为8.5%,减小了p型GaN纳米线与n型β-Ga2O3纳米柱表面接触的缺陷,进一步提高二极管生长质量。且β-Ga2O3与GaN禁带宽度分别为4.9eV与3.4eV,都是宽禁带半导体,具有高电子迁移率,高击穿电场强度等特性,提高了器件的耐压性和响应速度。
附图说明
图1是本发明结势垒肖特基二极管正向偏压时的电流流向示意图。
图2是本发明结势垒肖特基二极管的立体结构示意图。
图3是本发明结势垒肖特基二极管正向偏压时Ni/Au层与β-氧化镓纳米柱的能带图及电流I1的电路流向图。
图4是本发明结势垒肖特基二极管正向偏压时pin结的能带图及电流I2的电路流向图。
图5是本发明结势垒肖特基二极管反向偏压时i层的电荷分布示意图。
图6是本发明结势垒肖特基二极管反向偏压时Ni/Au层与β-氧化镓纳米柱的能带图及电流I1的电路流向图。
图7是本发明结势垒肖特基二极管反向偏压时pin结的能带图及电流I2的电路流向图。
图8是本发明结势垒肖特基二极管的制备工艺流程示意图。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。
本发明下面来对本发明做进一步详细的说明。
如图1-2所示,本发明提供一种纳米结构的结势垒肖特基二极管,该二极管包括依次层叠于衬底1上的n+型β-氧化镓纳米柱2、β-氧化镓本征层3、p型氮化镓纳米线阵列4、阳极金属填充层5以及阳极保护层6。还包括设置于β-氧化镓纳米柱2一端面的阴极7,阴极7与β-氧化镓纳米柱2之间形成欧姆接触。
其中,衬底1优选蓝宝石衬底,其厚度为70~80μm。锡掺杂的n+型β-氧化镓纳米柱2水平设置于衬底1的表面,该n+型β-氧化镓纳米柱2的一端面上包含有Au纳米颗粒催化剂。该β-氧化镓纳米柱2的直径为300~500nm,长度为3~4μm。
β-氧化镓本征层3包裹β-氧化镓纳米柱2的部分侧表面,该部分侧表面是指纳米柱的侧表面上,除纳米柱与衬底接触的面的侧表面。β-氧化镓本征层3的厚度为20~30nm。
p型氮化镓纳米线阵列4包含多根纳米线,p型氮化镓纳米线沿β-氧化镓本征层3表面的法线垂直于β-氧化镓本征层3的表面阵列排布,p型氮化镓纳米线阵列4的掺杂剂优选Mg,其直径为100~150nm,长度为800~1000nm。
阳极金属填充层5填充p型氮化镓纳米线阵列4中的间隙。该阳极金属填充层5选用金属镍或铂,优选Ni。阳极金属填充层5的厚度为1~1.5μm,大于p型氮化镓纳米线阵列4的直径。阳极金属填充层5与β-氧化镓本征层3接触形成肖特基势垒层,阳极保护层6设置于阳极金属填充层5上,其厚度为100~200nm,优选金属Au,保护金属填充层不被氧化。阳极金属填充层5/阳极保护层6作为二极管的阳极,在优选方案中,Ni/Au的功函数为5.15eV。
阴极7设置在n+型β-氧化镓纳米柱2包含Au纳米颗粒催化剂的端面,与β-氧化镓纳米柱2之间形成欧姆接触。阴极7的宽度为100~200nm,该宽度是指沿纳米柱长度方向。其优选Ti/Au电极。
在该结势垒肖特基二极管结构中,β-Ga2O3本征层与Ni/Au层形成肖特基接触,正向偏压时,如图1所示,肖特基势垒降低,空间电荷区减小,电子源源不断从β-氧化镓纳米柱流向Ni金属层,形成电流I1,具有很低的开启电压。同时pin结也为正偏,空间电荷区减小,电子也源源不断从β-氧化镓纳米柱流向p型GaN纳米线与空穴复合,形成电流I2,增大了导通电流同时降低了通态电压。实现了低导通电压,高正向电流。
如图3所示,正向偏压时,肖特基势垒降低,空间电荷区减小,电子越过势垒所以能量降低,电子源源不断从β-氧化镓纳米柱流向Ni金属层,形成电流I1,并且β-氧化镓的电子迁移率高,进一步提高器件的响应速度。
p型氮化镓/β-氧化镓/n+型β-氧化镓构成的pin结在正向偏压时的能带图及电路流向如图4所示,耗尽层不断减小,有利于多子的扩散运动,电子源源不断从β-氧化镓纳米柱流向p型氮化镓与空穴进行复合,形成电流I2,增大电流同时降低通态压降,在器件低导通电压的同时增加正向电流。
反向偏压时i层的电荷分布如图5所示。当器件反偏时,pin结也处于反偏的情况,本征β-氧化镓与p型氮化镓的界面产生负电荷层,与n+型β-氧化镓的界面产生正电荷层,形成耗尽层。二极管反向偏压时,如图6所示,β-氧化镓本征层与p型氮化镓界面产生负电荷层,使得肖特基势垒也增大,有效的阻止电子越过势垒,减小了反向漏电流。如图7,pin结也处于反偏状态,耗尽层增大,有效的截止电流流过,并且相邻耗尽区随电压增大而增大并相互重叠,形成更大的耗尽层来承担更高的反向偏压,将肖特基势垒区屏蔽在高场之外,减弱了肖特基势垒降低效应,提高器件反向耐压的同时减小了反向漏电流。
基于上述纳米结构的结势垒肖特基二极管的结构,本发明还提供该纳米结构的结势垒肖特基二极管的制备方法,如图8所示,该制备方法包含以下步骤:
S1、首先,选用蓝宝石衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2吹干,彻底去除蓝宝石衬底表面的污染物。随后溅射薄层Au于清洗好的蓝宝石衬底上,在600℃下退火1h,该衬底的表面形成金纳米颗粒。
S2、以Ga与Sn作为混合金属源生长n+型β-氧化镓纳米柱,其中Ga:Sn的质量比为4:1。取0.5g上述混合金属源放置于石英舟中作为蒸发源,然后将上一步骤中形成有Au纳米颗粒的蓝宝石衬底放置在距离蒸发源20mm的下游,将装有蒸发源和衬底的石英舟放入管式炉中,以30℃/min的速率升温加热至1000℃,然后通入氩气和氧气,氩气和氧气的流量比为50:2,系统维持在6×10-2Pa,保持60min,加热结束后炉内自然冷却至室温。获得直径为300~500nm,长度为3~4μm的锡掺杂的n+型β-氧化镓纳米柱,如图2所示,获得的n+型β-氧化镓纳米柱顶端为Au纳米颗粒。
S3、选取一根n+型β-氧化镓纳米柱2,该实施例中选用的纳米柱长度约为3μm,直径约为400nm,将其转移至目标衬底1的表面水平放置,该目标衬底优选蓝宝石衬底。
S4、采用光刻工艺结合沉积工艺,在β-氧化镓纳米柱2上靠近Au纳米颗粒的一端沉积一层厚度为1μm的二氧化硅,该具体实施方式中,二氧化硅的宽度约占纳米柱长度的五分之一。
S5、采用光刻工艺形成覆盖二氧化硅部分的掩膜图案,掩膜材料可以选用光刻胶,之后在室温下使用纯度99.99%的氧化镓陶瓷靶在β-Ga2O3纳米柱2的侧表面(未沉积二氧化硅部分)溅射沉积氧化镓本征层3,溅射厚度为25nm。去除掩膜图案。
S6、采用光刻工艺结合溅射工艺,在上述β-氧化镓本征层3表面溅射一薄层Au。
S7、将氮化镓粉末和镁粉以质量比4:1比例混合均匀放置在干净的石英舟上,作为镓源。将石英舟放入管式炉的加热区,将溅射有金的氧化镓纳米柱目标衬底放在镓源下游。CVD管式炉首先通入氩气用来排除多余的空气,然后抽真空。系统以50℃/min的速率将炉温升温到900℃,并且持续通入30sccm的氩气。当温度达到1000℃时,此时通入40sccm的氨气替代氩气流,保温10min。最后使系统自然冷却到室温,气流改为30sccm氩气,最后获得p型GaN纳米阵列4,其生长高度约为800nm,直径为150nm。
S8、在制备好的p型GaN纳米线阵列4上沉积Ni金属层5,填充满纳米线阵列的间隙,其填充厚度约为1μm。之后再沉积一层Au层6,其Au层的厚度为100nm。该Ni/Au层作为二极管的阳极。
S9、将上述所得结构置于HF溶液中除去二氧化硅层,沉积光刻胶掩膜图案暴露β-氧化镓纳米柱包含Au催化剂的端面,沉积Ti/Au层,在包含Au催化剂的纳米柱端面形成厚度为100~200nm的Ti/Au电极7,作为二极管阴极。
由此可见本发明提供了一种稳定可靠的微型化结势垒肖特基二极管结构及其制备方法,实现了pin结与肖特基二极管的结合,使得该微型化的肖特基二极管在保持低导通电压的同时具有高耐压、低压降、小漏电、高频特性好及强抗过压和浪涌电流能力。该纳米结构的结势垒肖特基二极管将在纳米电子及光电子器件中具有巨大的应用前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种纳米结构的结势垒肖特基二极管,包含衬底,其特征在于:还包括依次层叠于所述衬底表面的n+型β-氧化镓纳米柱、β-氧化镓本征层、p型氮化镓纳米线阵列、阳极金属填充层以及阳极保护层;
其中,所述β-氧化镓纳米柱水平设置于所述衬底的表面,所述β-氧化镓本征层包裹所述β-氧化镓纳米柱的部分侧表面,所述p型氮化镓纳米线沿所述β-氧化镓本征层表面的法线阵列排布,所述阳极金属填充层填充所述p型氮化镓纳米线阵列的间隙,所述阳极保护层设置于所述阳极金属填充层上,与所述β-氧化镓本征层形成肖特基接触;
还包括设置于所述β-氧化镓纳米柱一端面的阴极,所述阴极与所述β-氧化镓纳米柱之间形成欧姆接触。
2.根据权利要求1的所述结势垒肖特基二极管,其特征在于,所述阳极金属填充层的材料选用Ni或Pt,其厚度为1~1.5μm。
3.根据权利要求2的所述结势垒肖特基二极管,其特征在于,所述阳极金属填充层优选Ni;所述阳极保护层优选Au,其厚度为100~200nm。
4.根据权利要求1至3之一的所述结势垒肖特基二极管,其特征在于,所述n+型β-氧化镓纳米柱为锡掺杂,其直径为300~500nm,长度为3~4μm。
5.根据权利要求1至3之一的所述结势垒肖特基二极管,其特征在于,所述β-氧化镓本征层的厚度为20~30nm。
6.根据权利要求2或3的所述结势垒肖特基二极管,其特征在于,p型氮化镓纳米线阵列中纳米线的直径为100~150nm,高度为800~1000nm,且所述阳极填充层的厚度大于所述p型氮化镓纳米线的高度。
7.根据权利要求1的所述结势垒肖特基二极管,其特征在于,所述β-氧化镓纳米柱上设置阴极的端面包含Au催化剂,所述阴极沿纳米柱长度方向的宽度为100~200nm。
8.根据权利要求6的所述结势垒肖特基二极管,其特征在于,所述阴极优选Ti/Au电极。
9.一种纳米结构的结势垒肖特基二极管的制备方法,其特征在于,其包含以下步骤:
在清洗后的衬底表面沉积催化剂金纳米颗粒;
采用CVD法以Ga和Sn作为混合金属源生长n+型β-氧化镓纳米柱;
将所述β-氧化镓纳米柱转移至目标衬底,水平放置于所述目标衬底的表面;
在所述β-氧化镓纳米柱的侧表面上靠近所述催化剂金的一端沉积一定宽度的二氧化硅层;
在所述β-氧化镓纳米柱的侧表面上溅射沉积氧化镓本征层;
在所述氧化镓本征层上沉积金纳米薄层,采用CVD工艺在所述氧化镓本征层表面垂直生长p型GaN纳米线阵列;
沉积金属填充层填充所述p型GaN纳米线阵列中的空隙,在所述金属填充层上沉积金属保护层,所述金属填充层的沉积厚度大于所述p型GaN纳米线阵列的高度;
去除所述二氧化硅层,在所述β-氧化镓纳米柱靠近所述二氧化硅位置的端面沉积阴极金属层,所述阴极金属层与所述β-氧化镓纳米柱形成欧姆接触。
10.根据权利要求9的所述制备方法,其特征在于,所述二氧化硅层的沉积宽度至少为所述β-氧化镓纳米柱长度的五分之一。
CN202011253021.6A 2020-11-11 2020-11-11 一种基于纳米结构的结势垒肖特基二极管及其制备方法 Active CN112382671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011253021.6A CN112382671B (zh) 2020-11-11 2020-11-11 一种基于纳米结构的结势垒肖特基二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011253021.6A CN112382671B (zh) 2020-11-11 2020-11-11 一种基于纳米结构的结势垒肖特基二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN112382671A true CN112382671A (zh) 2021-02-19
CN112382671B CN112382671B (zh) 2024-08-09

Family

ID=74582103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011253021.6A Active CN112382671B (zh) 2020-11-11 2020-11-11 一种基于纳米结构的结势垒肖特基二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN112382671B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036380A (zh) * 2022-04-25 2022-09-09 西安电子科技大学 一种pin结构的日盲型紫外探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096135A (ja) * 2005-09-29 2007-04-12 Univ Nagoya カーボンナノ構造体を用いたダイオード
KR20180126228A (ko) * 2017-05-17 2018-11-27 성균관대학교산학협력단 금속 산화물 나노로드와 환원된 그래핀 옥사이드의 하이브리드 구조를 이용한 쇼트키 다이오드 기체 센서 및 이의 제조 방법
CN110112207A (zh) * 2019-05-20 2019-08-09 中山大学 一种氧化镓基混合PiN肖特基二极管及其制备方法
CN110752260A (zh) * 2019-10-31 2020-02-04 中国科学院长春光学精密机械与物理研究所 新型GaN结势垒肖特基二极管及其制备方法
CN111863936A (zh) * 2020-06-03 2020-10-30 深圳大学 一种氮化镓基结势垒肖特基二极管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096135A (ja) * 2005-09-29 2007-04-12 Univ Nagoya カーボンナノ構造体を用いたダイオード
KR20180126228A (ko) * 2017-05-17 2018-11-27 성균관대학교산학협력단 금속 산화물 나노로드와 환원된 그래핀 옥사이드의 하이브리드 구조를 이용한 쇼트키 다이오드 기체 센서 및 이의 제조 방법
CN110112207A (zh) * 2019-05-20 2019-08-09 中山大学 一种氧化镓基混合PiN肖特基二极管及其制备方法
CN110752260A (zh) * 2019-10-31 2020-02-04 中国科学院长春光学精密机械与物理研究所 新型GaN结势垒肖特基二极管及其制备方法
CN111863936A (zh) * 2020-06-03 2020-10-30 深圳大学 一种氮化镓基结势垒肖特基二极管及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036380A (zh) * 2022-04-25 2022-09-09 西安电子科技大学 一种pin结构的日盲型紫外探测器及其制备方法
CN115036380B (zh) * 2022-04-25 2023-12-08 西安电子科技大学 一种pin结构的日盲型紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN112382671B (zh) 2024-08-09

Similar Documents

Publication Publication Date Title
CN103918082B (zh) 肖特基势垒二极管
US11222985B2 (en) Power semiconductor device
CN103000698B (zh) 一种SiC结势垒肖特基二极管及其制作方法
CN108346688B (zh) 具有CSL输运层的SiC沟槽结势垒肖特基二极管及其制作方法
CN111063742B (zh) 基于氧化镓的pn结结构及其制备方法
JP6106790B2 (ja) ヘテロ接合型太陽電池の製造方法
US20070215885A1 (en) Semiconductor device
JP2010028092A (ja) ナノワイヤ太陽電池及びその製造方法
KR20120079310A (ko) 나노로드형 반도체 발광소자 및 그 제조방법
CN108538982A (zh) 一种低阻led的芯片外延结构及其制备方法
CN112382671B (zh) 一种基于纳米结构的结势垒肖特基二极管及其制备方法
CN114530487A (zh) 带边缘终端的金刚石肖特基二极管的制备方法
KR100640661B1 (ko) p형 광대역 밴드 갭 화합물 반도체층에의 저저항 접촉콘택을 가지는 반도체 소자 및 제조 방법
CN116581151B (zh) 一种低开启电压氧化镓肖特基二极管及其制备方法
CN111863961B (zh) 异质结场效应晶体管
CN108206220A (zh) 金刚石肖特基二极管的制备方法
CN111129137A (zh) 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管
CN116344625A (zh) 氧化镓整流器和制作工艺、氧化镓整流器结构和制作工艺
CN114744028A (zh) 一种低成本、可控倾角斜台面氧化镍/氧化镓异质结功率二极管的制备方法
KR101393092B1 (ko) Ⅲ-ⅴ족 화합물 태양전지 및 그 제조방법
CN109659358A (zh) 一种氮化镓hemt低欧姆接触电阻结构及其制作方法
JP7524298B2 (ja) 光起電力デバイス及びその製造方法
CN114497186A (zh) 金刚石/氧化镓异质pn结二极管的制备方法
CN107275382A (zh) 一种基于台面多区复合jte终端结构的器件及其制作方法
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant