CN112381279B - 一种基于vmd和bls组合模型的风电功率预测方法 - Google Patents

一种基于vmd和bls组合模型的风电功率预测方法 Download PDF

Info

Publication number
CN112381279B
CN112381279B CN202011225478.6A CN202011225478A CN112381279B CN 112381279 B CN112381279 B CN 112381279B CN 202011225478 A CN202011225478 A CN 202011225478A CN 112381279 B CN112381279 B CN 112381279B
Authority
CN
China
Prior art keywords
wind power
bls
vmd
model
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011225478.6A
Other languages
English (en)
Other versions
CN112381279A (zh
Inventor
赵阳
文传博
曹山秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN202011225478.6A priority Critical patent/CN112381279B/zh
Publication of CN112381279A publication Critical patent/CN112381279A/zh
Application granted granted Critical
Publication of CN112381279B publication Critical patent/CN112381279B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Artificial Intelligence (AREA)
  • Economics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Development Economics (AREA)
  • Biomedical Technology (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及一种基于VMD和BLS组合模型的风电功率预测方法,该方法包括以下步骤:步骤1:收集风电功率数据,并进行训练样本和测试样本的选取;步骤2:对采集到的风电功率数据进行VMD变分模态分解,得到VMD分解风电功率序列;步骤3:将VMD分解风电功率序列中的各个模态分量输入至BLS模型中进行预测,得到各个模态分量对应的BLS模型输出量;步骤4:对所有模态分量对应的BLS模型输出量叠加求和,得到最终的组合模型预测的风电功率结果,并进行误差计算。与现有技术相比,本发明具有较单一预测模型能够优势互补,提高预测精度和增强模型的鲁棒性等优点。

Description

一种基于VMD和BLS组合模型的风电功率预测方法
技术领域
本发明涉及风电技术领域,尤其是涉及一种基于VMD和BLS组合模型的风电功率预测方法。
背景技术
目前来看,风电功率预测的方法有物理方法、时间序列法和人工智能方法。人工智能方法包括人工神经网络(ANN)和支持向量机(SVM)等。
目前大多数模型都是在支持向量机或神经网络的基础上结合其他算法进行组合预测得到预测功率。如经验模态分解(ELM)或小波变换与支持向量机的组合对风功率进行预测,预测效果不是很好。
上述方法中SVM和ANN对风电功率进行预测精度不高,小波变换中小波基的选取与分解尺度的确定比较困难,经验模态分解易使分解数据模态混叠、出现端点效应现象,影响预测的精度。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于VMD和BLS组合模型的风电功率预测方法,首先对原始风功率时间序列进行变分模态分解,然后通过对分解后的K个有限带宽本证模态分量(BIMF)分别BLS回归预测,最后将各分量预测结果进行线性叠加得到最终预测结果。
本发明的目的可以通过以下技术方案来实现:
一种基于VMD和BLS组合模型的风电功率预测方法,该方法包括以下步骤:
步骤1:收集风电功率数据,并进行训练样本和测试样本的选取;
步骤2:对采集到的风电功率数据进行VMD变分模态分解,得到VMD分解风电功率序列;
步骤3:将VMD分解风电功率序列中的各个模态分量输入至BLS模型中进行预测,得到各个模态分量对应的BLS模型输出量;
步骤4:对所有模态分量对应的BLS模型输出量叠加求和,得到最终的组合模型预测的风电功率结果,并进行误差计算;
进一步地,所述的步骤2包括以下分步骤:
步骤201:构造约束变分模型;
步骤202:对约束变分模型对应的约束问题中引入拉格朗日乘子和惩罚因子,将其转变为非约束的变分问题;
步骤203:利用交替方向乘子法求解非约束的变分问题对应式子中的鞍点,获得相应变量的更新公式;
步骤204:确定更新迭代的停止条件后,对采集到的风电功率数据进行VMD变分模态分解,得到VMD分解风电功率序列。
进一步地,所述的步骤201中的约束变分模型,其对应的数学描述公式为:
Figure BDA0002763513410000021
式中,δ(t)表示单位脉冲函数,*表示卷积,
Figure BDA0002763513410000023
表示偏导,uk(t)表示K个分量,{wk}表示K个BIMF分量的中心频率,{uk}表示K个BIMF分量,f(t)表示风电功率的时间数据,e-jwkt表示单边际谱的指数信号。
进一步地,所述的步骤202中的非约束的变分问题,其对应的数学描述公式为:
Figure BDA0002763513410000022
式中,α表示惩罚因子,λ表示拉格朗日乘子。
进一步地,所述的步骤203中的相应变量的更新公式,其对应的数学描述公式为:
Figure BDA0002763513410000031
Figure BDA0002763513410000032
Figure BDA0002763513410000033
式中,上标∧表示傅里变换,n为迭代次数,o表示更新因子。
进一步地,所述的步骤204中的更新迭代的停止条件,其对应的数学描述公式为:
Figure BDA0002763513410000034
式中,∈表示判别精度。
进一步地,所述的步骤3中的BLS模型采用高斯核函数代替增强节点的激活函数,所述高斯核函数,其对应的数学描述公式为:
Figure BDA0002763513410000035
所述高斯核函数对应的核矩阵,其对应的数学描述公式为:
Figure BDA0002763513410000036
所述BLS模型的输出,其对应的数学描述公式为:
Y=[Z,K(xi,xj)]W
式中,r为核参数,ΩBLS表示核矩阵,H表示增强层的输出,Y表示宽度学习系统BLS的输出,W表示输出层的权重,Z表示特征层的输出,xi和xj分别为输入样本中的任意两个数据,h(xi)和h(xj)分别为输入样本中的任意两个数据所对应的增强层的输出,K(xi,xj)表示输入样本中的任意两个数据所对应的高斯核函数,ΩBLS(i,j)表示输入样本中的任意两个数据所对应的核矩阵。
进一步地,所述的步骤4中的误差计算所采用的方法包括平均绝对误差MAE、均方误差MSE以及平均绝对百分误差MAPE。
进一步地,所述的均方误差MSE,其描述公式为:
Figure BDA0002763513410000041
式中,yi为实际值,
Figure BDA0002763513410000042
为预测值。
进一步地,所述的平均绝对百分误差MAPE,其描述公式为:
Figure BDA0002763513410000043
式中,yi为实际值,
Figure BDA0002763513410000044
为预测值。
与现有技术相比,本发明具有以下优点:
(1)本发明技术方案通过对VMD和BLS模型的组合,克服分解时模态混叠和端点效应现象同时有效降低了风功率时间序列的随机性和间歇性对预测模型的影响,有效的应对风电功率的非平稳性,通过VMD分解为平稳信号进行预测。效果要好于单一模型直接对风功率进行预测。
(2)本发明技术方案基于变分模态分解(VMD)和宽度学习(BLS)的相关理论,提出一种新的短期风功率组合预测模型。该方法为解决单一模型预测误差比较大的情形。同时改善了模型的预测效果,适用于多变量、非线性、小样本的短期风功率预测。实践证明:组合预测模型较单一预测模型能够优势互补,提高预测精度和增强模型的鲁棒性。
(3)本发明技术方案创新性的采用了VMD和BLS新组合预测模型。,较单一预测模型,本技术方案通过VMD和BLS组合的模型预测方法,可以有效的提高风电功率预测精度,降低风电并网的不确定性带来的损失。
附图说明
图1为本发明的整体方法流程图;
图2为本发明整体方法中的VMD算法流程图;
图3为本发明方法实施例中风电功率的原始序列示意图;
图4为本发明方法实施例中风电功率的原始序列经过VMD分解后的结果示意图;
图5为本发明方法实施例中采用本发明方法的模型预测结果比对示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
具体实施例
本发明的预测方法,具体过程如图1所示,包括:
第一阶段:变分模态对风电功率
对原始风电功率时间序列进行VMD分解,将具有非线性、随机性的原始风电功率序列分解为一系列平稳的模态分量。
第二阶段:对各模态分量分别进行预测
对各子模态分别建立BLS回归预测模型进行预测。
第三阶段:叠加求和
叠加各子模态预测值,得到最终的风电功率预测结果。
具体实施过程如下:
I、首先进行数据的收集。
如图3所示,选取采样间隔为15min的北研风电场连续96天数据、共8064组风电功率数据作为VMD-BLS组合预测模型试验数据样本进行预测,前7864组数据作为训练样本,后200组数据作为测试样本,输入变量为8维,分别是风电功率前2小时的历史数据,输出变量为1维,就是需要预测的风电功率。
II、对采集到的数据进行变分模态分解。
为了应对风电功率的非平稳性,如图2所示,通过VMD对其分解为不同中心频率{wk}={w1,w2,…wK}的平稳信号{uk}={u1,u2,…uK}。VMD本质为约束性变分问题,通过约束变分模型,将原始风功率序列分解为K个具有特定稀疏性的BIMF分量{uk},如图4所示,为了获取BIMF分量,首先通过Hilbert变换求得各分量uk的单边际谱并估计各分量的中心频率wk,将单边际谱与其指数信号e-jwkt相乘使得模态的频谱调制到相应基频带,最后计算解析信号梯度平方L2范数。目标是使得各BIMF的估计带宽和最小,限定约束条件为各分量之和等于原始信号f(t)。构造约束变分模型为:
Figure BDA0002763513410000061
式中,δ(t)表示单位脉冲函数,*表示卷积,
Figure BDA0002763513410000067
表示偏导,uk(t)表示K个分量,{wk}表示K个BIMF分量的中心频率,{uk}表示K个BIMF分量,f(t)表示风电功率的时间数据,e-jwkt表示单边际谱的指数信号。
对上式(1)中的约束问题引入拉格朗日(Lagrange)乘子λ和惩罚因子α,将其变为非约束的变分问题,其表达式如下:
Figure BDA0002763513410000062
式中,α表示惩罚因子,λ表示拉格朗日乘子。
利用交替方向乘子法(ADMM)求解(2)式中的鞍点,获得相应变量uk、wk、λ的更新公式分别为:
Figure BDA0002763513410000063
Figure BDA0002763513410000064
Figure BDA0002763513410000065
式中,上标∧表示傅里变换,n为迭代次数,o表示更新因子。
VMD分解时,更新迭代的停止条件为:
Figure BDA0002763513410000066
式中,∈表示判别精度。
III、通过改进的BLS模型进行预测。
将VMD分解的{uk}={u1,u2,…uK}个模态分量,将uk作为输入数据然后通过BLS模型分别对其预测,将uk中前8维的风电功率数据作为输入Xi,将uk中后一维的风电功率数据作为输出Yi
令输入训练样本{Xi,Yi},其中输入样本Xi,i=1,…,l。输出样本Yi,i=1,…,l。Xi为训练特征,Yi为训练目标。宽度学习的具体训练过程为:
对样本Xi进行特征映射Zi=Φ(XiWeiei),i=1,…,l.其中Wei和βei为随机产生的权重和偏置。
将特征层的输出表示为:
Zl=[Z1,…,Zl] (7)
并将m组增强节点表示为:
Qm=θ(ZlWlmlm) (8)
θ为增强节点的非线性激活函数,Wlm、βlm为特征层输出给增强层随机产生的权重和偏置。将增强层的输出用H表示,则H=[H1,…,Hm]。
改进的BLS为高斯核函数代替增强节点的激活函数,将输入样本数据映射到高维特征空间。激活函数Φ选取高斯核函数为:
Figure BDA0002763513410000071
式中:r为核参数。
核矩阵ΩBLS如下:
Figure BDA0002763513410000072
用W表示输出层的权重,则上述宽度学习系统的输出可以表示为:
Y=[Z,K(xi,xj)]W (11)
通过求伪逆的方式,求得W=[Z,K(xi,xj)]+Y至此宽度学习系统训练完毕,具体预测结果如图5所示。
Ⅳ、对预测结果进行误差计算。
对其预测的结果叠加求和,得到最终的组合模型预测的风功率结果。对结果利用平均绝对误差(MAE),均方误差(MSE),以及平均绝对百分误差(MAPE)进行衡量。
Figure BDA0002763513410000081
Figure BDA0002763513410000082
式中,yi为实际值,
Figure BDA0002763513410000083
为预测值。
具体各预测模型预测结果评价指标如表1所示:
表1各预测模型预测结果评价指标
Figure BDA0002763513410000084
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

1.一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,该方法包括以下步骤:
步骤1:收集风电功率数据,并进行训练样本和测试样本的选取;
步骤2:对采集到的风电功率数据进行VMD变分模态分解,得到VMD分解风电功率序列;
步骤3:将VMD分解风电功率序列中的各个模态分量输入至BLS模型中进行预测,得到各个模态分量对应的BLS模型输出量;
所述的步骤3中的BLS模型采用高斯核函数代替增强节点的激活函数,所述高斯核函数,其对应的数学描述公式为:
Figure FDA0003506883460000011
所述高斯核函数对应的核矩阵,其对应的数学描述公式为:
Figure FDA0003506883460000012
所述BLS模型的输出,其对应的数学描述公式为:
Y=[Z,K(xi,xj)]W
式中,r为核参数,ΩBLS表示核矩阵,H表示增强层的输出,Y表示宽度学习系统BLS的输出,W表示输出层的权重,Z表示特征层的输出,xi和xj分别为输入样本中的任意两个数据,h(xi)和h(xj)分别为输入样本中的任意两个数据所对应的增强层的输出,K(xi,xj)表示输入样本中的任意两个数据所对应的高斯核函数,ΩBLS(i,j)表示输入样本中的任意两个数据所对应的核矩阵;
步骤4:对所有模态分量对应的BLS模型输出量叠加求和,得到最终的组合模型预测的风电功率结果,并进行误差计算。
2.根据权利要求1所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的步骤2包括以下分步骤:
步骤201:构造约束变分模型;
步骤202:对约束变分模型对应的约束问题中引入拉格朗日乘子和惩罚因子,将其转变为非约束的变分问题;
步骤203:利用交替方向乘子法求解非约束的变分问题对应式子中的鞍点,获得相应变量的更新公式;
步骤204:确定更新迭代的停止条件后,对采集到的风电功率数据进行VMD变分模态分解,得到VMD分解风电功率序列。
3.根据权利要求2所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的步骤201中的约束变分模型,其对应的数学描述公式为:
Figure FDA0003506883460000021
Figure FDA0003506883460000022
式中,δ(t)表示单位脉冲函数,*表示卷积,
Figure FDA0003506883460000025
表示偏导,uk(t)表示K个分量,{wk}表示K个BIMF分量的中心频率,{uk}表示K个BIMF分量,f(t)表示风电功率的时间数据,
Figure FDA0003506883460000026
表示单边际谱的指数信号。
4.根据权利要求2所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的步骤202中的非约束的变分问题,其对应的数学描述公式为:
Figure FDA0003506883460000023
式中,α表示惩罚因子,λ表示拉格朗日乘子。
5.根据权利要求2所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的步骤203中的相应变量的更新公式,其对应的数学描述公式为:
Figure FDA0003506883460000024
Figure FDA0003506883460000031
Figure FDA0003506883460000032
式中,上标∧表示傅里变换,n为迭代次数,o表示更新因子。
6.根据权利要求2所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的步骤204中的更新迭代的停止条件,其对应的数学描述公式为:
Figure FDA0003506883460000033
式中,∈表示判别精度。
7.根据权利要求1所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的步骤4中的误差计算所采用的方法包括平均绝对误差MAE、均方误差MSE以及平均绝对百分误差MAPE。
8.根据权利要求7所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的均方误差MSE,其描述公式为:
Figure FDA0003506883460000034
式中,yi为实际值,
Figure FDA0003506883460000035
为预测值。
9.根据权利要求7所述的一种基于VMD和BLS组合模型的风电功率预测方法,其特征在于,所述的平均绝对百分误差MAPE,其描述公式为:
Figure FDA0003506883460000036
式中,yi为实际值,
Figure FDA0003506883460000037
为预测值。
CN202011225478.6A 2020-11-05 2020-11-05 一种基于vmd和bls组合模型的风电功率预测方法 Active CN112381279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011225478.6A CN112381279B (zh) 2020-11-05 2020-11-05 一种基于vmd和bls组合模型的风电功率预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011225478.6A CN112381279B (zh) 2020-11-05 2020-11-05 一种基于vmd和bls组合模型的风电功率预测方法

Publications (2)

Publication Number Publication Date
CN112381279A CN112381279A (zh) 2021-02-19
CN112381279B true CN112381279B (zh) 2022-06-03

Family

ID=74579323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011225478.6A Active CN112381279B (zh) 2020-11-05 2020-11-05 一种基于vmd和bls组合模型的风电功率预测方法

Country Status (1)

Country Link
CN (1) CN112381279B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113177369B (zh) * 2021-06-15 2024-03-01 中冶赛迪技术研究中心有限公司 一种能源调度评估方法及系统
CN115952924B (zh) * 2023-03-09 2023-06-16 南京信息工程大学 一种基于优化vmd与特征热力图的短期风电功率预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082132A1 (zh) * 2016-11-04 2018-05-11 江南大学 一种用于能源系统输出功率的短期预测方法
CN110018882A (zh) * 2019-03-29 2019-07-16 北京理工大学 一种基于宽度学习的虚拟机性能预测方法
CN111598187A (zh) * 2019-08-27 2020-08-28 华南理工大学 一种基于核宽度学习系统的渐进式集成分类方法
CN111860982A (zh) * 2020-07-06 2020-10-30 东北大学 一种基于vmd-fcm-gru的风电场短期风电功率预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082132A1 (zh) * 2016-11-04 2018-05-11 江南大学 一种用于能源系统输出功率的短期预测方法
CN110018882A (zh) * 2019-03-29 2019-07-16 北京理工大学 一种基于宽度学习的虚拟机性能预测方法
CN111598187A (zh) * 2019-08-27 2020-08-28 华南理工大学 一种基于核宽度学习系统的渐进式集成分类方法
CN111860982A (zh) * 2020-07-06 2020-10-30 东北大学 一种基于vmd-fcm-gru的风电场短期风电功率预测方法

Also Published As

Publication number Publication date
CN112381279A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
Zeng et al. A novel multi-variable grey forecasting model and its application in forecasting the grain production in China
CN110309603B (zh) 一种基于风速特性的短期风速预测方法及系统
CN107886161A (zh) 一种提高复杂信息系统效能的全局敏感性分析方法
CN111860982A (zh) 一种基于vmd-fcm-gru的风电场短期风电功率预测方法
CN109886464B (zh) 基于优化奇异值分解生成特征集的低信息损失短期风速预测方法
Yang et al. Hybrid prediction method for wind speed combining ensemble empirical mode decomposition and Bayesian ridge regression
CN109523155B (zh) 一种蒙特卡洛及最小二乘支持向量机的电网风险评估方法
CN113722877A (zh) 一种对锂电池放电时温度场分布变化进行在线预测的方法
CN112381279B (zh) 一种基于vmd和bls组合模型的风电功率预测方法
CN113094860B (zh) 一种基于注意力机制的工控网络流量建模方法
CN111178585A (zh) 基于多算法模型融合的故障接报量预测方法
CN110490366A (zh) 基于变分模态分解和迭代决策树的径流量预测方法
Yu et al. Novel hybrid multi-head self-attention and multifractal algorithm for non-stationary time series prediction
CN105825286A (zh) 一种武器装备全生命周期费用估算系统及方法
CN110807490A (zh) 一种基于单基塔的输电线路工程造价智能预测方法
CN114429077A (zh) 一种基于量子游走的时间序列多尺度分析方法
CN112070272A (zh) 一种输电线路的覆冰厚度预测方法及装置
Li et al. HP-ESN: Echo state networks combined with Hodrick-Prescott filter for nonlinear time-series prediction
CN109540089B (zh) 一种基于贝叶斯-克里金模型的桥面高程拟合方法
Manoj et al. FWS-DL: forecasting wind speed based on deep learning algorithms
CN114065807A (zh) 基于变分模态分解和贝叶斯神经网络的月径流预测方法
CN107704944B (zh) 一种基于信息论学习的股市波动区间预测模型的构建方法
CN116502774B (zh) 一种基于时间序列分解和勒让德投影的时间序列预测方法
CN116885699A (zh) 基于双重注意力机制的电力负荷预测方法
CN115775156A (zh) 基于混合学习模型的矿山经济评价原材料价格预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant