CN112375566A - 一种CsPbCl3:Yb量子点及其制备方法 - Google Patents

一种CsPbCl3:Yb量子点及其制备方法 Download PDF

Info

Publication number
CN112375566A
CN112375566A CN202011259229.9A CN202011259229A CN112375566A CN 112375566 A CN112375566 A CN 112375566A CN 202011259229 A CN202011259229 A CN 202011259229A CN 112375566 A CN112375566 A CN 112375566A
Authority
CN
China
Prior art keywords
solution
preparation
cspbcl
steps
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011259229.9A
Other languages
English (en)
Other versions
CN112375566B (zh
Inventor
黄海
陈大钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN202011259229.9A priority Critical patent/CN112375566B/zh
Publication of CN112375566A publication Critical patent/CN112375566A/zh
Application granted granted Critical
Publication of CN112375566B publication Critical patent/CN112375566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明公开了一种新的掺镱CsPbCl3钙钛矿纳米晶及其制备方法。本发明的新的制备掺镱钙钛矿纳米晶方法采用油酸盐作为前驱物。该方法解决了以前因稀土前驱物和铅前驱物溶解度不同而导致的不同价态前驱物很难溶解在一起的问题,并且解决了升到高温时溶液析出变浑浊的问题,该方法在制备太阳能电池吸光材料CsPbCl3:Yb材料和太阳能电池领域具有实际的应用前景。

Description

一种CsPbCl3:Yb量子点及其制备方法
技术领域
本发明涉及一种CsPbCl3:Yb量子点及其制备方法法,属于材料的技术领域。
背景技术
全无机卤化铅钙钛矿纳米晶以其优异的光物理和光电子性能引起了世界范围内的广泛关注,如:狭窄的发射带、大的吸收截面、高的光致发光量子产率、在整个可见区域可调的发射光。对钙钛矿纳米晶的光致发光进行改造以满足各种应用是一种重要而又具有挑战性的工作。据报道,钙钛矿纳米晶的光致发光可以通过控制其尺寸和形状,利用量子约束效应来调节,如:立方体、纳米线、纳米片。改变阴离子的组成是另一种常见的策略,使光致发光在在整个范围内可调。其他的调控钙钛矿纳米晶光学特性的策略是在Pb所在位点掺入金属杂质离子,如二价的Mn2+、Ni2+等,当前,研究员们更热衷于三价的稀土离子掺杂,稀土离子的掺杂不仅可以起到表面钝化的作用,来增强发光强度,也可以赋予钙钛矿纳米颗粒新的特性,使其光谱也展示出稀土特有的发光,目前成功掺入的稀土有很多,如:Tb3+、Eu3+、Ce3+、Yb3+等等。其中Yb3+尤其引人关注,Yb3+掺杂CsPbCl3或CsPbCl1.5Br1.5的优点有很多:近红外的PLQY超过100%,甚至接近200%;紫外和蓝光范围吸收较强;Yb激发态和基态能量差为1.3ev,与Si带隙1.1ev匹配很好,理论上Si太阳能电池最大光电转换效率为31%,但目前商业电池范围为10%-25.6%。光电转换效率受限的原因被认为是在300-450nm范围和近红外范围响应低。而镱的掺杂有望解决这个问题,因此Yb3+掺杂CsPbCl3的钙钛矿纳米晶适合做太阳光聚合材料。我们知道,金属离子成功掺杂的条件是需要金属离子的半径和Pb2+的半径相近,且需要价态一致。而稀土离子Yb的价态是三价,所以掺杂起来比较困难。不仅如此,由于铅前驱物的和Yb前驱物的溶解度不同,合成时还会出现难溶解等问题,所以长期以来,成功合成掺镱CsPbCl3是纳米晶体化学的一个挑战。目前成功合成的报道还在少数。主要分为两大类:一类是采用氯化盐(PbCl2、YbCl3)作为前驱物,高温注入油酸铯,主要代表有宋宏伟研究小组,这类方法的特点是PbCl2、YbCl3既可以作为Pb、Yb源,又可以作为Cl源。第二类是采用醋酸盐(Pb(COOH)2、Yb(COOH)3)作为前驱物,高温注入TMS-Cl,主要代表有DanielR.Gamelin研究小组,这类方法的特点是Pb源、Yb源与Cl源是独立分开的。然而在我们手中,这两类方法在实施时都出现了溶解困难的问题,具体为前驱物比较难溶解,即使溶解了,接下来升到200以上高温时又会出现溶液析出变浑浊现象,使实验无法继续顺利完成。因此,寻求一个更加普遍可容易掌控的合成镱掺杂CsPbCl3钙钛矿纳米晶的方法依然是一个有意义的研究课题。
发明内容
为了解决上述问题,本发明的目的是提供一种新的镱掺杂CsPbCl3钙钛矿纳米晶制备方法。利用油酸盐(油酸铅、油酸Yb)作为前驱物,与之前的报道相比,油酸盐更容易溶解于油酸、油胺、十八稀的环境当中,且溶解后,溶液中没有强酸根离子Cl-和弱酸根离子COO-与金属离子Yb3+、Pb2+结合,这样在升到高温以后就不会出现溶液析出变浑浊的现象,最后升到所需要的高温环境注入Cl源(TMS-Cl)。同时,本发明所涉及的Pb源、Yb源为油酸盐材料,本发明的原理是减少溶液中强、弱酸根离子的存在,使其稳定的溶解于油酸、油胺、十八稀溶液的环境当中。
本发明的技术方案如下:
本发明包括一种CsPbCl3:Yb量子点的制备方法,包括以下步骤:将10mL十八稀、2mL油酸、1mL油胺、0.2mmol油酸铅、乙酸铯乙醇溶液、油酸Yb加到三颈瓶中,在N2保护下120℃加热0.5h,然后升到160℃加热0.5h;然后升到240℃,当到达240℃时,快速向瓶中注入0.2mL TMS-Cl和0.5mL的十八稀混合溶液;然后立即冷却,达到室温时,取出溶液,10000转离心5min;取沉淀,加2mL正己烷和2mL乙酸乙酯溶液,10000转离心5min,最后溶液分散在2mL环己烷中备用;所述乙酸铯乙醇溶液的体积为0.16-0.28mL;所述乙酸铯乙醇溶液的用量为0.09-0.24mmol。
进一步的,所述油酸Yb制备方法如下:称量Yb(NO3)3溶解于去离子水,形成溶液A;称量NaOL溶解于乙醇水溶液中,形成溶液B;溶液B滴入溶液A中,接着加入环己烷搅拌,形成溶液C,密封搅拌后静止,取上层溶液,洗涤后取上层溶液,烘干得油酸Yb。
进一步的,所述NaOL:Yb(NO3)3的摩尔比为3-4:1。
进一步的,所述油酸Yb制备方法具体如下:称量4mmol的钇基稀土盐,溶解于20mL去离子水,形成溶液A;称量12.5mmol NaOL,溶解于乙醇水溶液,形成溶液B;溶液B滴入溶液A中,接着加入50mL环己烷搅拌20min,形成溶液C,密封瓶口,继续搅拌至少4h后,静止24h,取出上层溶液,洗涤后取上层溶液,烘干得油酸Yb;所述钇基稀土盐为硝酸钇、盐酸钇或者醋酸钇中的任意一种。
进一步的,所述油酸Pb制备方法如下:称量醋酸铅溶解于去离子水,形成溶液A;称量油酸钠溶解于乙醇水溶液,形成溶液B;溶液B滴入溶液A中,环己烷,密封,常温搅拌后,再加热到70℃继续搅拌;取上清液,洗涤后取上层溶液;烘干,瓶底残留物即为油酸Pb。
进一步的,所述油酸钠:醋酸铅=2-3;1。
进一步的,所述油酸Pb制备方法如下:称量4mmol硝酸Pb或者醋酸Pb,溶解于20mL去离子水,形成溶液A;称量8.5mmol油酸钠,溶解于乙醇水溶液,形成溶液B;溶液B滴入溶液A中,加入50mL环己烷,密封,常温搅拌至少4h;再加热到70℃搅拌至少4h;分液漏斗除去底层,洗涤后取上层溶液;边加热边搅拌烘干,瓶底残留物即为油酸Pb。
进一步的,所述乙醇水溶液中去离子水和乙醇比为1:1。
进一步的,所述乙酸铯乙醇溶液的浓度为1M/L
本发明还包括一种CsPbCl3:Yb量子点,采用权利要求1-9所述方法制备而得。
本发明具有如下有益效果:
1、本发明通过采用涉及油酸盐作为稀土前驱物和铅前驱物,成功解决了前驱物难溶解的问题,成功值得镱掺杂CsPbCl3钙钛矿纳米晶。
2、本发明制得的产物可以应用在太阳能电池领域,可以作为有效的吸光材料。
附图说明
图1(a)为氯化盐前驱物低温溶解透明图;(b)为氯化盐前驱物高温析出浑浊图;
(c)为醋酸盐前驱物低温溶解透明图;(d)为醋酸盐前驱物高温析出浑浊图;(e)为油酸盐前驱物低温溶解透明图;(f)为油酸盐前驱物高温溶解透明图;
图2为钙钛矿纳米晶样品的X射线衍射图谱;
图3为钙钛矿纳米晶样品的电子显微镜照片;
图4(a)、(b)分别为实施例1中样品的激发光谱和在350nm氙灯光激发下的下转换发射光谱;
图5(a)、(b)分别为实施例1中样品的寿命和吸收光谱图。
图6为实施例1中样品的变化油酸Cs的加入量得到的发光强度图。
图7为实施例1中样品的变化油酸Yb的加入量得到的发光强度图。
具体实施方式
为了更好的理解本发明,下面通过实施例对本发明进一步说明,实施例只用于解释本发明,并不会对本发明构成任何限定。
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
实施例1:
一种太阳能电池吸光材料的制备方法,包括以下步骤:
(1)制备油酸Yb:称量4mmol的Yb(NO3)3(分子量为467.13g/mol),溶解于20mL去离子水,形成溶液A。称量3.6528g NaOL(12.5mmol,分子量为304.4g/mol),溶解于30mL去离子水和30mL乙醇,形成溶液B。溶液B滴入溶液A中,50mL环己烷加入搅拌20min,形成溶液C,保鲜膜密封瓶口,大力搅拌至少4h,静止24h,用分液漏斗取出上层溶液,加入10mL去离子水和10mL乙醇洗三遍。取上层溶液,100℃烘干,瓶底残留物即为油酸Yb。
(2)制备油酸Pb:称量1.516g醋酸铅(4mmol,分子量379g/mol),溶解于20mL去离子水,形成溶液A。称量2.854g油酸钠(8.5mmol,分子量304g/mol),溶解于20mL去离子水和20mL乙醇,形成溶液B。溶液B滴入溶液A中,加入50mL环己烷,密封,大力搅拌至少4h。70℃加热搅拌。分液漏斗除去底层,加入10mL乙醇和10mL去离子水重复洗三遍,取上层溶液。100℃加热,直至环己烷烘干,瓶底残留物即为油酸Pb。
(3)CsPbCl3:Yb量子点的制备:包括以下步骤:将10mL十八稀、2mL油酸、1mL油胺、0.2mmol油酸铅、0.16mL乙酸铯乙醇溶液、0.09mmol油酸Yb加到三颈瓶中,在N2保护下120℃加热0.5h,然后升到160℃加热0.5h;然后升到240℃,当到达240℃时,快速向瓶中注入0.2mL TMS-Cl和0.5mL的十八稀混合溶液;然后立即冷却,达到室温时,取出溶液,10000转离心5min;取沉淀,加2mL正己烷和2mL乙酸乙酯溶液,10000转离心5min,最后溶液分散在2mL环己烷中备用。
实施例2
CsPbCl3:Yb量子点制备步骤与实施例相同,仅仅是乙酸铯乙醇溶液用量为0.18mL,以及油酸Yb为0.12mmol。
实施例3
CsPbCl3:Yb量子点制备步骤与实施例相同,仅仅是乙酸铯乙醇溶液用量为0.2mL,以及油酸Yb为0.15mmoll。
实施例4
CsPbCl3:Yb量子点制备步骤与实施例相同,仅仅是乙酸铯乙醇溶液用量为0.22mL,以及油酸Yb为0.18mmol。
实施例5
CsPbCl3:Yb量子点制备步骤与实施例相同,仅仅是乙酸铯乙醇溶液用量为0.24mL,以及油酸Yb为0.21mmol。
实施例6
CsPbCl3:Yb量子点制备步骤与实施例相同,仅仅是乙酸铯乙醇溶液用量为0.26mL,以及油酸Yb为0.21mmol。
实施例7
CsPbCl3:Yb量子点制备步骤与实施例相同,仅仅是乙酸铯乙醇溶液用量为0.28mL,以及油酸Yb为0.24mmol。
表征及性能
图1(a)为氯化盐前驱物低温溶解透明图。可以看出溶液在120℃0.5h和160℃0.h的加热情况下已经透明,但是在升到240℃前又开始析出变浑浊,如图(b)所示为为氯化盐前驱物高温析出浑浊图,同样用醋酸盐也会出现这样的现象,使实验无法继续梳理进行。如图(c)和(d)所示。但是当我们用油酸盐来代替前两种方法时,问题得到了解决(e)为油酸盐前驱物低温溶解透明图,(f)为油酸盐前驱物高温溶解透明图,当溶液升到高温时,溶液不在析出变浑浊。
图2为对该防伪材料进行X射线衍射测试得到的谱图,使用型号为RigakuMiniFlex II的X射线衍射仪鉴定玻璃内部的晶相结构,2θ范围为10°至60°,扫描速度为每min5°。衍射峰的位置与标准卡片JCPDS NO.75-0411所对应的峰位完全一致。XRD图谱证明了所得到的材料为立方相。
图3为该防伪材料的电子显微镜照片。在JEOL JEM-2010F透射电子显微镜上在高角度环形暗场模式下以200kV的加速电压和FEI像差校正的Titan Cubed S-Twin进行操作,对该纳米晶材料进行了显微观察。进一步表明该材料为立方相结构,边长约为20nm。
图4(a)(b)分别为实施例1中样品的激发光谱和在350nm氙灯光激发下的下转换发射光谱。图4(a)展示了CsPbCl3钙钛矿纳米晶的监测410nm的激发光谱和CsPbCl3:Yb监测980nm的激发光谱,可以发现光谱结构相似,说明Yb3+的近红外发射来源于钙钛矿向Yb3+的能量传递。图4(b)中发射光谱表明CsPbCl3的410nm发射峰较强,在掺入Yb3+后,410nm的发射明显境地,与之相反的是近红外980nm处有很强的Yb3+发射,进一步表明Yb3+成功掺入钙钛矿纳米晶中,并且将能量传递给Yb3+
图5(a)为CsPbCl3和CsPbCl3:Yb纳米晶在410nm的寿命,可以看出掺入Yb3+后410nm处的寿命明显降低,进一步表明钙钛矿纳米晶有向Yb3+的能量传递,图5(b)CsPbCl3和CsPbCl3:Yb纳米晶的吸收图,可以看出CsPbCl3:Yb纳米晶在410nm以前有很强的的吸收,因此补充了太阳能电池在该范围内的光响应低的问题。可以作为太阳能电池的吸光材料。
图6为保持其他量不变,变化Cs的加入量得到的不同的Yb发射强度图。随着Cs的加入逐渐增多,Yb的发射逐渐增强,在0.22mL时达到了最大值,说明Cs的空位缺陷得到了填补,纳米晶的质量提高,传给Yb的发射能量增强。继续加大Cs的含量的时,Yb的发射开始出现下降,这可能是Cs的加多导致了二次相Cs4PbCl6的生成,Cs4PbCl6是不发光的,所以使Yb的发光强度降低。
图7为变化油酸Yb的加入量,随着Yb的加多,Yb发射开始变强,0.12mmo时达到最大值,l但是加多以后,就出现了浓度猝灭,导致Yb的发射强度开始出现降低。

Claims (10)

1.一种CsPbCl3:Yb量子点的制备方法,其特征在于:包括以下步骤:将10mL十八稀、2mL油酸、1mL油胺、0.2mmol油酸铅、乙酸铯乙醇溶液、油酸Yb加到三颈瓶中,在N2保护下120℃加热0.5h,然后升到160℃加热0.5h;然后升到240℃,当到达240℃时,快速向瓶中注入0.2mL TMS-Cl和0.5mL的十八稀混合溶液;然后立即冷却,达到室温时,取出溶液,10000转离心5min;取沉淀,加2mL正己烷和2mL乙酸乙酯溶液,10000转离心5min,最后溶液分散在2mL环己烷中备用;所述乙酸铯乙醇溶液的体积为0.16-0.28mL;所述乙酸铯乙醇溶液的用量为0.09-0.24mmol。
2.根据权利要求1所述一种CsPbCl3:Yb量子点的制备方法,其特征在于,所述油酸Yb制备方法如下:称量Yb(NO3)3溶解于去离子水,形成溶液A;称量NaOL溶解于乙醇水溶液中,形成溶液B;溶液B滴入溶液A中,接着加入环己烷搅拌,形成溶液C,密封搅拌后静止,取上层溶液,洗涤后取上层溶液,烘干得油酸Yb。
3.根据权利要求2所述一种CsPbCl3:Yb量子点的制备方法,其特征在于:NaOL:Yb(NO3)3的摩尔比为3-4:1。
4.根据权利要求3所述一种CsPbCl3:Yb量子点的制备方法,其特征在于,所述油酸Yb制备方法具体如下:称量4mmol的钇基稀土盐,溶解于20mL去离子水,形成溶液A;称量12.5mmol NaOL,溶解于乙醇水溶液,形成溶液B;溶液B滴入溶液A中,接着加入50mL环己烷搅拌20min,形成溶液C,密封瓶口,继续搅拌至少4h后,静止24h,取出上层溶液,洗涤后取上层溶液,烘干得油酸Yb;所述钇基稀土盐为硝酸钇、盐酸钇或者醋酸钇中的任意一种。
5.根据权利要求1所述一种CsPbCl3:Yb量子点的制备方法,其特征在于:所述油酸Pb制备方法如下:称量醋酸铅溶解于去离子水,形成溶液A;称量油酸钠溶解于乙醇水溶液,形成溶液B;溶液B滴入溶液A中,环己烷,密封,常温搅拌后,再加热到70℃继续搅拌;取上清液,洗涤后取上层溶液;烘干,瓶底残留物即为油酸Pb。
6.根据权利要求5所述一种CsPbCl3:Yb量子点的制备方法,其特征在于:所述油酸钠:醋酸铅=2-3;1。
7.根据权利要求6所述一种CsPbCl3:Yb量子点的制备方法,其特征在于:所述油酸Pb制备方法如下:称量4mmol硝酸Pb或者醋酸Pb,溶解于20mL去离子水,形成溶液A;称量8.5mmol油酸钠,溶解于乙醇水溶液,形成溶液B;溶液B滴入溶液A中,加入50mL环己烷,密封,常温搅拌至少4h;再加热到70℃搅拌至少4h;分液漏斗除去底层,洗涤后取上层溶液;边加热边搅拌烘干,瓶底残留物即为油酸Pb。
8.根据权利要求4或7所述一种CsPbCl3:Yb量子点的制备方法,其特征在于:所述乙醇水溶液中去离子水和乙醇比为1:1。
9.根据权利要求8一种CsPbCl3:Yb量子点的制备方法,其特征在于:所述乙酸铯乙醇溶液的浓度为1M/L 。
10.一种CsPbCl3:Yb量子点,其特征在于:采用权利要求1-9所述方法制备而得。
CN202011259229.9A 2020-11-12 2020-11-12 一种CsPbCl3:Yb量子点及其制备方法 Active CN112375566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011259229.9A CN112375566B (zh) 2020-11-12 2020-11-12 一种CsPbCl3:Yb量子点及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011259229.9A CN112375566B (zh) 2020-11-12 2020-11-12 一种CsPbCl3:Yb量子点及其制备方法

Publications (2)

Publication Number Publication Date
CN112375566A true CN112375566A (zh) 2021-02-19
CN112375566B CN112375566B (zh) 2023-03-21

Family

ID=74583013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011259229.9A Active CN112375566B (zh) 2020-11-12 2020-11-12 一种CsPbCl3:Yb量子点及其制备方法

Country Status (1)

Country Link
CN (1) CN112375566B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305083A (zh) * 2022-08-24 2022-11-08 陈海斌 一种掺杂稀土离子增强近红外发光的量子点制备方法
CN115851273A (zh) * 2022-12-16 2023-03-28 吉林大学 一种稀土掺杂钙钛矿纳米晶合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012109A (zh) * 2012-12-12 2013-04-03 南京工业大学 一种金属油酸盐的制备方法
US20130287703A1 (en) * 2012-04-27 2013-10-31 Korea Institute Of Science And Technology Core/shell multifunctional magnetic nanophosphor having core/shell structure and synthetic method thereof
CN104498038A (zh) * 2014-12-25 2015-04-08 哈尔滨工程大学 一种稀土上转换发光核壳纳米发光材料及其制备方法
CN106635021A (zh) * 2016-12-19 2017-05-10 厦门大学 一种稀土掺杂纳米颗粒的制备方法
CN108192606A (zh) * 2018-03-08 2018-06-22 河北工业大学 全无机钙钛矿量子点制备方法
CN111849476A (zh) * 2020-05-26 2020-10-30 吉林大学 一种稀土掺杂钙钛矿纳米晶、其制备方法及光电探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130287703A1 (en) * 2012-04-27 2013-10-31 Korea Institute Of Science And Technology Core/shell multifunctional magnetic nanophosphor having core/shell structure and synthetic method thereof
CN103012109A (zh) * 2012-12-12 2013-04-03 南京工业大学 一种金属油酸盐的制备方法
CN104498038A (zh) * 2014-12-25 2015-04-08 哈尔滨工程大学 一种稀土上转换发光核壳纳米发光材料及其制备方法
CN106635021A (zh) * 2016-12-19 2017-05-10 厦门大学 一种稀土掺杂纳米颗粒的制备方法
CN108192606A (zh) * 2018-03-08 2018-06-22 河北工业大学 全无机钙钛矿量子点制备方法
CN111849476A (zh) * 2020-05-26 2020-10-30 吉林大学 一种稀土掺杂钙钛矿纳米晶、其制备方法及光电探测器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305083A (zh) * 2022-08-24 2022-11-08 陈海斌 一种掺杂稀土离子增强近红外发光的量子点制备方法
CN115851273A (zh) * 2022-12-16 2023-03-28 吉林大学 一种稀土掺杂钙钛矿纳米晶合成方法
CN115851273B (zh) * 2022-12-16 2023-12-15 吉林大学 一种稀土掺杂钙钛矿纳米晶合成方法

Also Published As

Publication number Publication date
CN112375566B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
Liu et al. General synthesis of colloidal rare earth orthovanadate nanocrystals
Pedroni et al. Lanthanide doped upconverting colloidal CaF 2 nanoparticles prepared by a single-step hydrothermal method: toward efficient materials with near infrared-to-near infrared upconversion emission
Ren et al. Water triggered interfacial synthesis of highly luminescent CsPbX 3: Mn 2+ quantum dots from nonluminescent quantum dots
Liu et al. Morphology controllable synthesis of NaLa (WO 4) 2: the morphology dependent photoluminescent properties and single-phased white light emission of NaLa (WO 4) 2: Eu 3+/Tb 3+/Tm 3+
Zhou et al. Controlled synthesis and up/down-conversion luminescence of self-assembled hierarchical architectures of monoclinic AgRE (WO 4) 2: Ln 3+(RE= Y, la, Gd, Lu; Ln= Eu, Tb, Sm, Dy, Yb/Er, Yb/tm)
Li et al. Controllable synthesis and morphology-dependent photoluminescence properties of well-defined one-dimensional Zn2GeO4: Mn2+ nanostructures
Zhao et al. Fabrication of assembled-spheres YVO 4:(Ln 3+, Bi 3+) towards optically tunable emission
CN112375566B (zh) 一种CsPbCl3:Yb量子点及其制备方法
CN108998015B (zh) 一种锰掺杂铯铅卤素钙钛矿量子点的溶剂热制备方法
Murugadoss et al. Structural and optical properties of highly crystalline Ce, Eu and co-doped ZnO nanorods
F Koao et al. Effect of Tb3+ ions on the ZnO nanoparticles synthesized by chemical bath deposition method
Anand et al. Controlled synthesis and characterization of cerium-doped ZnS nanoparticles in HMTA matrix
Ahemen et al. Spherical nanoparticles of Eu3+-doped ZnS semiconductor synthesized from ZnO nanorods precursor
CN107418560B (zh) 一种高效硫掺杂氧化锌纳米材料的制备方法
Wang et al. Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3 perovskite quantum dots
Wang et al. Preparation of lanthanide doped CdS, ZnS quantum dots in natural polysaccharide template and their optical properties
Yang et al. A facile strategy to prepare YVO4: Eu3+ colloid with novel nanostructure for enhanced optical performance
Xu et al. Self-assembled growth of LuVO 4 nanoleaves: hydrothermal synthesis, morphology evolution, and luminescence properties
CN114032091B (zh) 一种超高荧光效率的三元金属卤化物及制备方法
Raj et al. Synthesis and optical properties of cerium doped zinc sulfide nano particles
Lian et al. Morphology control, luminescence and energy transfer properties of NaCeF 4 and NaCeF 4: Tb 3+/Yb 3+ nanocrystals
Sakthivel et al. Band gap tailoring, structural and optical features of MgS nanoparticles: influence of Ag+ ions
Jiang et al. Improved optical properties of lead-free double perovskite Cs2NaBiCl6 nanocrystal via K ions doping
Bai et al. Synthesis of Er 3+/Yb 3+ codoped NaMnF 3 nanocubes with single-band red upconversion luminescence
Zhao et al. Continuous synthesis of all-inorganic low-dimensional bismuth-based metal halides Cs 4 MnBi 2 Cl 12 from reversible precursors Cs 3 BiCl 6 and Cs 3 Bi 2 Cl 9 under phase engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant