CN115305083A - 一种掺杂稀土离子增强近红外发光的量子点制备方法 - Google Patents

一种掺杂稀土离子增强近红外发光的量子点制备方法 Download PDF

Info

Publication number
CN115305083A
CN115305083A CN202211014739.9A CN202211014739A CN115305083A CN 115305083 A CN115305083 A CN 115305083A CN 202211014739 A CN202211014739 A CN 202211014739A CN 115305083 A CN115305083 A CN 115305083A
Authority
CN
China
Prior art keywords
preparing
rare earth
doped
nains
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211014739.9A
Other languages
English (en)
Inventor
陈海斌
徐兵
汪浩
金肖
李栋宇
张婷婷
黄贞
张正贺
李清华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202211014739.9A priority Critical patent/CN115305083A/zh
Publication of CN115305083A publication Critical patent/CN115305083A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种掺杂稀土离子增强近红外发光的量子点制备方法,通过高温掺杂形成以NalnS2:Yb/Bi为核材料,滴加以ZnS或者NalnS2为壳层材料形成核/壳结构量子点。Bi3+‑Yb3+共掺NaInS2纳米晶体的设计是基于NaInS2晶格中In3+离子的配位数和离子半径,适合Yb3+离子掺杂。观察到的长Yb3+发射寿命,表明Yb3+掺入到NaInS2晶格的内部空间,在晶格中引入Bi3+离子会在460nm处产生新的吸收波段,这有利于Yb3+f电子的能量转移。构造ZnS或者NalnS2壳层可以消除晶体表面的猝灭位点,以及在空间上将纳米晶体与周围失活剂隔离。在390nm和460nm的激发下,近红外发射强度是NaInS2:Yb/Bi纳米晶体的61倍和77倍体现了镧系离子的优越发光性能和纳米晶体的大吸收截面,获得了高效的近红外纳米晶体,可在近红外LED和生物探针方面得到应用。

Description

一种掺杂稀土离子增强近红外发光的量子点制备方法
技术领域
本发明涉及纳米晶体材料的合成技术领域,一种掺杂稀土离子增强近红外发光的量子点制备方法。
背景技术
量子点( QDs) 是一种零维半导体纳米晶体 , 近似球型 , 直径 1~12 nm , 可分散于水或有机溶剂中形成胶体。由于量子点的尺寸接近甚至小于相应半导体体相材料的激子(电子-空穴对) Bohr半径 , 受激发时产生的电子和空穴被限制在狭小的三维空间 ,因而表现出量子限制效应 , 具有独特的光学性质。量子点通常由Ⅱ-Ⅵ族或Ⅲ-Ⅴ族元素组成。量子化的能带能量导致分立的、依赖于量子点尺寸的发射光谱 , 从而获得一种可精确调节荧光发射波长的发射体,所以通过改变量子点的尺寸和组分,可以精确地调控量子点的发光颜色和量子点的发光效率。目前,量子点可能是人类有史以来发现的最优秀的发光材料,在医学生物以及光电器件等方面表现出了巨大的应用潜力。
构建镧系元素掺杂半导体纳米晶体 (Ln-SNC) 是一种有前途的策略,可以将明亮、长寿命和光谱窄的Ln3+发射与半导体的强宽带吸收和低声子能量晶体环境相结合,以进行新的光谱转换纳米荧光粉。与广泛探索的Ln3+掺杂钙钛矿半导体纳米晶体相比,NaInS2半导体纳米晶体是最重要的主体系列之一,因为它具有高稳定性和无毒性。这样的家族半导体纳米晶体提供了6的高阳离子配位数,这满足了阳离子对Ln3+掺杂的基本先决条件。然而,迄今为止,Yb3+掺杂的NaInS2在大多数量子点中的光致发光量子产率仍低于8%,限制了它们在近红外生物探针中的进一步应用。在这里,我们展示了一种获取核壳结构的Yb3+/Bi3+共掺杂NaInS2量子点以实现强近红外发射的策略。为了改善近红外发射,我们引入Bi3+离子来创建新的激发通道,旨在增强紫外线和可见光的吸收。此外,在Ln掺杂的NaInS2:Yb/Bi上生长的外ZnS或者NaInS2壳层钝化了量子点的表面并抑制了与表面缺陷相关的非辐射复合损失。我们的NaInS2:Yb/Bi@ZnS和NaInS2:Yb/Bi@ NaInS2量子点在1000nm附近表现出高效的近红外发射,荧光量子产率为12.5%,表明它们在近红外生物成像中的潜在应用。
发明内容
本发明提供一种掺杂稀土离子增强近红外发光的量子点制备方法。其荧光量子产率达12.5%,发光性能及其稳定。
本发明采用的技术方案如下:一种掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于方法步骤包括:
(1)制备乙酰丙酮镱前驱体、乙酰丙酮铋前驱体、壳层前驱体;
(2)一步法合成NalnS2:Yb/Bi@ZnS核壳结构量子点;
(3)一步法合成NalnS2:Yb/Bi@NaInS2核壳结构量子点。
所述步骤(1)乙酰丙酮镱前驱体的制备方法为:把5mmol六水氯化镱于50ml去离子水中,快速搅拌至溶解待用;然后把2.5g乙酰丙酮和1.65ml氨水溶于25ml去离子水中,搅拌均匀后加入氯化镱溶于中,生成白色沉淀并持续搅拌1小时,沉淀离心洗涤2次后放置60℃的干燥箱进行烘干并保存。
所述步骤(1)乙酰丙酮铋前驱体的制备方法为:把5mmol硝酸铋或乙酸铋于50ml去离子水中加入适量的冰乙酸促进溶解并加热至80℃,快速搅拌至溶解待用;然后把2.5g乙酰丙酮和1.65ml氨水溶于25ml去离子水中,搅拌均匀后加入氯化镱溶于中,生成白色沉淀并持续搅拌1小时,沉淀离心洗涤2次后放置60℃的干燥箱进行烘干并保存。
所述步骤(2)中药品为:油酸钠,乙酰丙酮铟,乙酰丙酮镱,乙酰丙酮铋,十六胺,除水1-十八稀。
所述步骤(2)中Na、In、Yb、Bi之间摩尔比为:20~30:2~5:0.5~1.5:0.5~1.5,优化的摩尔比为25:3:1:1。
所述步骤(1)壳前驱体的制备方法为:方案一,把1mmol硬脂酸锌、1ml油酸以及2ml三正辛基膦与10ml的玻璃瓶中120℃充分溶解;方案二,把1mmol油酸钠,1mmol乙酰丙酮铟,2.4g十六胺, 8ml 1-十八稀(除水)于100ml三颈烧瓶中,从室温抽真空30min升温到140℃抽120min,直至溶液澄清,降温后加入15ml 1-十八(除水)稀进行稀释。
所述步骤(2)中滴加壳层前驱体是速率为2.0~5.4ml/h。
所述步骤(3)中滴加壳层前驱体是速率为25~30ml/h。
本发明的优点是:这种共掺杂系统的设计是基于NaInS2晶格中In3+离子的配位数和离子半径,适合Yb3+离子掺杂。观察到的长Yb3+发射寿命,表明Yb3+掺入到NaInS2晶格的内部空间,PLE光谱证实Yb3+的近红外发射是通过NaInS2主体的光激发而敏化。在晶格中引入Bi3+离子会在400~500nm处产生新的吸收波段,适用于商用450 nm LED的激发,这更有利于Yb3+ f电子的能量转移。构造ZnS或NaInS2壳层是为了消除半导体纳米晶体表面的猝灭位点,以及在空间上将半导体纳米晶体与周围失活剂隔离。因此,NaInS2:Yb/Bi@ZnS、NalnS2:Yb/Bi@NaInS2样品显示,在390nm和460nm的激发下,近红外发射强度是NaInS2:Yb/Bi半导体纳米晶体的61倍和77倍,荧光量子产率高达12.5%。同时也提高了量子点的发光寿命,这些策略结合了镧系离子的优越发光性能和半导体纳米晶体的大吸收截面,获得了高效的近红外半导体纳米晶体,这可能会在未来得到应用,如近红外LED和近红外生物探针。
附图说明
图1为本发明专利NaInS2:Yb/Bi@ZnS量子点的激发和荧光图。
图2为本发明专利NaInS2:Yb/Bi@ZnS量子点吸收和样品图。
图3为本发明专利NaInS2:Yb/Bi@NaInS2量子点的荧光图。
具体实施方式
本发明一种掺杂稀土离子增强近红外发光的量子点制备方法,具体实施步骤如下。
前驱体乙酰丙酮镱的制备方法:
把5mmol六水氯化镱于50ml去离子水中,快速搅拌至溶解待用;然后把2.5g乙酰丙酮和1.65ml氨水溶于25ml去离子水中,搅拌均匀后加入氯化镱溶于中,生成白色沉淀并持续搅拌1小时,沉淀离心洗涤2次后放置60℃的干燥箱进行烘干并保存。
前驱体乙酰丙酮铋的制备方法:
把5mmol硝酸铋或乙酸铋于50ml去离子水中加入适量的冰乙酸促进溶解并加热至80℃,快速搅拌至溶解待用;然后把2.5g乙酰丙酮和1.65ml氨水溶于25ml去离子水中,搅拌均匀后加入氯化镱溶于中,生成白色沉淀并持续搅拌1小时,沉淀离心洗涤2次后放置60℃的干燥箱进行烘干并保存。
壳层前驱体Zn源的制备方法:
把1mmol硬脂酸锌、1ml油酸以及2ml三正辛基膦与10ml的玻璃瓶中120℃充分溶解。
壳层前驱体Na、In源的制备方法:
把1~5mmol油酸钠,1~5mmol乙酰丙酮铟,2.4~10g十六胺, 8~20ml 1-十八稀(除水)于100ml三颈烧瓶中,从室温抽真空30min升温到140℃抽120min,直至溶液澄清,降温后加入10~18ml 1-十八(除水)稀进行稀释。
量子点NaInS2:Yb/Bi@ZnS的制备方法:
(1)首先把油酸钠(0.2~0.5g,)、乙酰丙酮铟(0.02~0.06g)、乙酰丙酮镱(0.01~0.03g)、乙酰丙酮铋(0.01~0.03g,)、十六胺(2.0~4.0g)、除水1-十八稀(8~10ml)于100ml的三颈烧瓶中,从室温抽真空30min升温到140℃抽120min,直至溶液澄清(这个非常重要),通入氮气降温至80℃以下,加入硫(0.06~0.15g),80℃抽真空8~10min,然后10~15min升温至315~330℃,保温15~30min,随后包壳,取1.5mlZn溶液于注射器,用注射泵以2.4~3.0ml/h的速率滴25~30分钟结束,然后快速降温,得到NaInS2:Yb/Bi@ZnS量子点原液;
(2)把NaInS2:Yb/Bi@ZnS量子点原液进行纯化,向原液中加入30~50ml乙醇在50~60℃保温15~25min,使为反应的油酸钠溶解。随后将产物以5000~6500rpm速度离心5~10min,丢弃上清液,沉淀分散于10ml正己烷,加入30~40ml乙醇使产物沉淀,以5000~6500rpm速度离心5~10min,丢弃上清液,加入各50~100微升的油酸和油胺,随后再用正己烷和乙醇离心一次,最后分散于8~10ml正己烷,以5000~8000rpm速度进行原液离心5~10min除去不溶物,最后的到高纯度的NaInS2:Yb/Bi@ZnS量子点。
量子点NaInS2:Yb/Bi@NaInS2的制备方法:
(1)首先把油酸钠(0.2~0.5g,)、乙酰丙酮铟(0.02~0.06g)、乙酰丙酮镱(0.01~0.03g)、乙酰丙酮铋(0.01~0.03g,)、十六胺(2.0~4.0g)、除水1-十八稀(8~10ml)于100ml的三颈烧瓶中,从室温抽真空30min升温到140℃抽120min,直至溶液澄清(这个非常重要),通入氮气降温至80℃以下,加入硫(0.06~0.15g),80℃抽真空5~10min,然后10~15min升温至315~330℃,保温15~30min,随后包壳,取15mlNa和In溶液于注射器,用注射泵以25~30ml/h的速率滴25~30分钟结束,然后快速降温,得到NaInS2:Yb/Bi@ NaInS2量子点原液;
(2)把NaInS2:Yb/Bi@ NaInS2量子点原液进行纯化,向原液中加入30~50ml乙醇在50~60℃保温15~25min,使为反应的油酸钠溶解。随后将产物以5000~6500rpm速度离心5~10min,丢弃上清液,沉淀分散于10ml正己烷,加入30~40ml乙醇使产物沉淀,以5000~6500rpm速度离心5~10min,丢弃上清液,加入各50~100微升的油酸和油胺,随后再用正己烷和乙醇离心一次,最后分散于8~10ml正己烷,以5000~8000rpm速度进行原液离心5~10min除去不溶物,最后的到高纯度的NaInS2:Yb/Bi@ NaInS2量子点。

Claims (8)

1.一种掺杂稀土离子增强近红外发光的量子点制备方法其特征在于方法步骤包括:
(1)制备乙酰丙酮镱前驱体、乙酰丙酮铋前驱体、壳层前驱体;
(2)一步法合成NalnS2:Yb/Bi@ZnS核壳结构量子点;
(3)一步法合成NalnS2:Yb/Bi@NaInS2核壳结构量子点。
2.根据权利要求1所述的掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于,所述步骤(1)乙酰丙酮镱前驱体的制备方法为:把5mmol六水氯化镱于50ml去离子水中,快速搅拌至溶解待用;然后把2.5g乙酰丙酮和1.65ml氨水溶于25ml去离子水中,搅拌均匀后加入氯化镱溶于中,生成白色沉淀并持续搅拌1小时,沉淀离心洗涤2次后放置60℃的干燥箱进行烘干并保存。
3.根据权利要求1所述的掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于,所述步骤(1)乙酰丙酮铋前驱体的制备方法为:把5mmol硝酸铋或乙酸铋于50ml去离子水中加入适量的冰乙酸促进溶解并加热至80℃,快速搅拌至溶解待用;然后把2.5g乙酰丙酮和1.65ml氨水溶于25ml去离子水中,搅拌均匀后加入氯化镱溶于中,生成白色沉淀并持续搅拌1小时,沉淀离心洗涤2次后放置60℃的干燥箱进行烘干并保存。
4.根据权利要求1所述的掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于,所述步骤(2)中药品为:油酸钠,乙酰丙酮铟,乙酰丙酮镱,乙酰丙酮铋,十六胺,除水1-十八稀。
5.根据权利要求1所述的掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于,所述步骤(2)中Na、In、Yb、Bi之间的摩尔比为:20~30:2~5:0.5~1.5:0.5~1.5,优化摩尔比为25:3:1:1。
6.根据权利要求1所述的掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于,所述步骤(1)壳前驱体的制备方法为:方案一,把1mmol硬脂酸锌、1ml油酸以及2ml三正辛基膦与10ml的玻璃瓶中120℃充分溶解;方案二,把1mmol油酸钠,1mmol乙酰丙酮铟,2.4g十六胺, 8ml 1-十八稀(除水)于100ml三颈烧瓶中,从室温抽真空30min升温到140℃抽120min,直至溶液澄清,降温后加入15ml 1-十八(除水)稀进行稀释。
7.根据权利要求1所述的掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于,所述步骤(2)中滴加壳层前驱体是速率为2.4~5.4ml/h。
8.根据权利要求1所述的掺杂稀土离子增强近红外发光的量子点制备方法,其特征在于,所述步骤(3)中滴加壳层前驱体是速率为25~30ml/h。
CN202211014739.9A 2022-08-24 2022-08-24 一种掺杂稀土离子增强近红外发光的量子点制备方法 Pending CN115305083A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211014739.9A CN115305083A (zh) 2022-08-24 2022-08-24 一种掺杂稀土离子增强近红外发光的量子点制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211014739.9A CN115305083A (zh) 2022-08-24 2022-08-24 一种掺杂稀土离子增强近红外发光的量子点制备方法

Publications (1)

Publication Number Publication Date
CN115305083A true CN115305083A (zh) 2022-11-08

Family

ID=83864312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211014739.9A Pending CN115305083A (zh) 2022-08-24 2022-08-24 一种掺杂稀土离子增强近红外发光的量子点制备方法

Country Status (1)

Country Link
CN (1) CN115305083A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145183A (zh) * 2015-03-18 2016-11-23 陈莹 一种NaInS2纳米片刺球的制备方法
CN112375566A (zh) * 2020-11-12 2021-02-19 福建师范大学 一种CsPbCl3:Yb量子点及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145183A (zh) * 2015-03-18 2016-11-23 陈莹 一种NaInS2纳米片刺球的制备方法
CN112375566A (zh) * 2020-11-12 2021-02-19 福建师范大学 一种CsPbCl3:Yb量子点及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HABIBUL ARFIN,等: "Bi3+-Er3+ and Bi3+-Yb3+ Codoped Cs2AgInCl6 Double Perovskite Near- Infrared Emitters", ANGEW. CHEM. INT. ED., vol. 59 *
SIDNEY E. CREUTZ,等: "A Selective Cation Exchange Strategy for the Synthesis of Colloidal Yb3+-Doped Chalcogenide Nanocrystals with Strong Broadband Visible Absorption and Long-Lived Near-Infrared Emission", J. AM. CHEM. SOC., vol. 139 *

Similar Documents

Publication Publication Date Title
Sehrawat et al. An energy-efficient novel emerald Er3+ doped SrGdAlO4 nanophosphor for PC WLEDs excitable by NUV light
Zhou et al. Core–shell nanoarchitecture: a strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles
Das et al. Optical downconversion in rare earth (Tb3+ and Yb3+) doped CdS nanocrystals
Sharma et al. Synthesis of CaWO4: Eu3+ phosphor powders via ethylene glycol route and its optical properties
KR102131757B1 (ko) 염료감응 상향변환 나노형광체 및 그 제조 방법
CN114591741B (zh) 一种镧系离子掺杂的双钙钛矿纳米晶体、其制备方法及应用
Du et al. Enhance the Er 3+ upconversion luminescence by constructing NaGdF 4: Er 3+@ NaGdF 4: Er 3+ active-core/active-shell nanocrystals
CN112080278A (zh) 一种上/下转换双模式发光纳米晶及其制备方法和应用
Wei et al. Recent progress in synthesis of lanthanide-based persistent luminescence nanoparticles
Zhang et al. Preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 hollow microspheres
CN102994089A (zh) 超小核壳结构碱土氟化物纳米晶的制备方法
Kunti et al. Synthesis and luminescence mechanism of white light emitting Eu3+ doped CaZnV2O7 phosphors
CN111253942A (zh) 具有钙钛矿结构的上转换纳米发光材料及其制备方法与应用
CN114350361B (zh) 一种高荧光强度的上转换稀土掺杂纳米材料及其制备方法
Wang et al. Giant enhancement of upconversion emission in NaYF 4: Er 3+@ NaYF 4: Yb 3+ active-core/active-shell nanoparticles
Kshatri et al. Optical properties of rare earth doped strontium aluminate (SAO) phosphors: a review
Chen et al. Controlled synthesis and photoluminescence properties of Bi 2 SiO 5: Eu 3+ core-shell nanospheres with an intense 5 D 0→ 7 F 4 transition
CN113105886B (zh) 一种发光颜色可变的上转换发光复合纳米粉体及其制备方法和应用
De Anda et al. The effect of Li+ incorporation in Yb3+-Nd3+ co-doped CaF2 phosphors over the NIR photoluminescence emission excited under visible light
Li et al. Synthesis and luminescence of CePO4: Tb/LaPO4 core/sheath nanowires
CN108753284B (zh) 一种高荧光红光发射的Mn:CsPbCl3纳米簇的制备方法
CN113773830A (zh) 沸石内部原位合成钙钛矿量子点复合物材料的制备方法
de Oliveira et al. Red emission enhancement in YVO4: Eu3+ nanoparticle by changing the complexing agent in modified sol-gel route
CN115305083A (zh) 一种掺杂稀土离子增强近红外发光的量子点制备方法
CN111909695B (zh) 一种稀土上转换和钙钛矿量子点复合纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221108