CN112371149A - 一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及其应用 - Google Patents

一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及其应用 Download PDF

Info

Publication number
CN112371149A
CN112371149A CN202011146613.8A CN202011146613A CN112371149A CN 112371149 A CN112371149 A CN 112371149A CN 202011146613 A CN202011146613 A CN 202011146613A CN 112371149 A CN112371149 A CN 112371149A
Authority
CN
China
Prior art keywords
tungsten oxide
catalyst material
nanotube catalyst
carbon nitrogen
oxide confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011146613.8A
Other languages
English (en)
Inventor
魏延臣
张铭
朱文帅
王雷刚
罗静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202011146613.8A priority Critical patent/CN112371149A/zh
Publication of CN112371149A publication Critical patent/CN112371149A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/12Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于多相催化剂领域,涉及一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法以及其在柴油氧化脱硫中的应用。制备过程分为原料分子的自组装以及高温煅烧催化剂成型两部分。原料分子的自组装部分包括,以金属基离子液体[C16mim]2W2O11作为软模板剂和金属钨源,在乙腈水溶液中与硼酸和尿素分子自组装,以得到煅烧前驱体;高温煅烧催化剂成型部分包括,将前驱体原料于惰性气氛中高温煅烧,使前驱体原料热解,以形成氧化钨限域负载硼碳氮纳米管催化剂材料。本发明所述氧化钨限域负载硼碳氮纳米管催化剂材料的合成工艺简单,且对柴油中稠环噻吩类硫化合物的氧化脱除表现出良好的催化活性和选择性,从而能够有效地降低清洁柴油的生产成本。

Description

一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及 其应用
技术领域
本发明属于多相催化剂领域,特指一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法以及其在柴油氧化脱硫中的应用。
背景技术
近年来,随着物流运输产业的快速发展,国内车用和船用柴油的使用量与日俱增。然而,含硫柴油的燃烧会释放出大量的硫氧化物废气,从而对环境造成验证的破坏。为了响应国家绿色环保的高要求,清洁柴油的生产显得尤为重要。相较于传统的柴油加氢脱硫技术,柴油氧化脱硫技术能够针对加氢脱硫技术所难以脱除的稠环噻吩类硫化合物,使其在较温和的反应条件下从柴油中脱除,从而降低清洁柴油的生产成本。
氧化钨纳米粒子因其能够高效率活化过氧化氢的催化特性在催化氧化领域备受关注。通过将氧化钨纳米粒子负载在高比表面积载体上,可以开发出性能优良的多相负载型催化剂,用于燃油的催化氧化脱硫中。二维材料和多孔材料是两种各具特色的高比表面积载体。前者拥有特殊的能带结构,为催化反应提供高活性反应界面,从而使催化剂获得较高的催化性能;后者具有丰富的孔道结构,为氧化钨纳米粒子提供充足的锚定位点,从而减缓纳米粒子在催化反应中的团聚现象。目前,相较于多孔材料而言,将氧化钨纳米粒子负载到二维材料上,可以得到具有较高催化性能的负载型催化剂,用于柴油的氧化脱硫反应。然而,二维材料上所负载的氧化钨纳米粒子的分散度相对较差,在催化反应过程中也更容易发生团聚现象,从而使催化剂快速失活。因此,开发一种能够同时具有二维材料和多孔材料的特性的新型负载型催化剂,对柴油氧化脱硫的技术应用尤为重要。
发明内容
本发明旨在将二维材料和多孔材料的特性结合在一起,设计出一种氧化钨限域负载硼碳氮纳米管催化剂材料。这种高比表面积硼碳氮纳米管材料同时兼具高活性反应界面和纳米粒子限域效应,从而能够作为一种优良的载体应用于高性能多相负载型催化剂的设计制备。本发明通过以金属基离子液体[C16mim]2W2O11作为软模板剂和金属钨源,成功实现了氧化钨限域负载硼碳氮纳米管催化剂材料的可控合成,方法简单且操作便捷。
本发明在于提供了一种氧化钨限域负载硼碳氮纳米管催化剂材料及其制备方法。
本发明的另一个目的在于提供了上述催化剂的应用,并有着优异的催化性能。
为实现上述实验目的,催化剂材料的制备方法包括原料分子的自组装以及高温煅烧催化剂成型两部分,以得到氧化钨限域负载硼碳氮纳米管催化剂材料。
具体的制备方法,包括如下步骤:
(1)将一定量的硼酸、尿素和金属基离子液体[C16mim]2W2O11混合并溶解在乙腈水溶液中,在加热搅拌下实现分子自组装;
(2)将步骤(1)所得产物置于惰性气氛中加热煅烧,以得到氧化钨限域负载硼碳氮纳米管催化剂材料。
步骤(1)中,金属基离子液体[C16mim]2W2O11同时作为软模板剂和金属钨源,其与硼酸的质量混合比例为1:5~1:35。
步骤(1)中,硼酸与尿素的摩尔混合比例为1:10~1:30。
步骤(1)中,乙腈水溶液的体积分数为40~60%。
步骤(1)中,加热温度为50~70℃。
步骤(2)中,煅烧温度为700~1200℃,煅烧时间为1~5小时,升温速率为1~10℃·min-1
本发明制得的一种氧化钨限域负载硼碳氮纳米管催化剂材料,其纳米管径为50~100nm,比表面积达350~500m2·g-1,且氧化钨纳米颗粒被限域在纳米管中。
本发明所述的氧化钨限域负载硼碳氮纳米管催化剂材料在催化氧化脱除柴油中稠环噻吩类硫化合物方面具有一定的应用价值,例如二苯并噻吩的催化氧化反应,该反应过程可用下式表示:
Figure BDA0002739929970000021
本发明所述的氧化钨限域负载硼碳氮纳米管催化剂材料对柴油中的稠环噻吩类硫化合物表现出较高的催化活性和选择性,其优良性能只要归因于下列因素:
(1)氧化钨限域负载硼碳氮纳米管催化剂材料具有较大的比表面积,能够使氧化钨纳米粒子均匀分散,从而确保了含硫底物与催化反应中心的充分接触。
(2)硼碳氮纳米管载体能够为催化反应提供高活性的反应界面,从而能够协同氧化钨纳米粒子,使其能够选择性地催化氧化稠环噻吩类硫化合物,减少对柴油中的芳烃、烯烃和环烷烃组分的氧化。
氧化钨限域负载硼碳氮纳米管催化剂材料对柴油中不同的稠环噻吩类硫化合物均表现出较高的氧化脱除率:对苯并噻吩(BT)和4-甲基二苯并噻吩(4-MDBT)在120分钟内脱除率分别可达85%和90%;对二苯并噻吩(DBT)和3-甲基苯并噻吩(3-MBT)在60分钟内脱除率分别可达95%和90%(初始硫含量为200ppm)。
本发明的有益效果为:
(1)本发明可以作为现有加氢脱硫技术的补充,降低清洁柴油的生产成本。
(2)本发明所述的氧化钨限域负载硼碳氮纳米管催化剂材料,其合成步骤分为原料分子的自组装以及高温煅烧催化剂成型两部分。该催化及材料具有大比表面积和稳定分散的氧化钨纳米粒子,从而在催化氧化柴油脱硫领域表现出较高的催化活性和选择性,从而克服现有技术中的不足,降低清洁柴油的生产成本。
附图说明
图1为实例1~3所得氧化钨限域负载硼碳氮纳米管催化剂材料的扫描电子显微镜照片;
图2为实例1~3所得氧化钨限域负载硼碳氮纳米管催化剂材料的氮气吸附脱附等温线;
图3为实例1~3所得氧化钨限域负载硼碳氮纳米管催化剂材料的红外光谱谱图;
图4为实例1~3所得氧化钨限域负载硼碳氮纳米管催化剂材料的X射线衍射谱图;
图5为实例1所得氧化钨限域负载硼碳氮纳米管催化剂材料对苯并噻吩类(A)以及二苯并噻吩类(B)硫化合物的催化氧化实验数据图;
图6为实例1所得氧化钨限域负载硼碳氮纳米管催化剂材料在干扰物添加时的催化氧化实验数据图。
具体实施方式
下面结合说明书附图及具体实施例对本发明的内容进一步说明。
实施例1
一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,包括如下步骤:
(1)将0.6183g硼酸、18.018g尿素和0.0475g[C16mim]2W2O11混合后,溶解于40mL的50%体积分数的乙腈水溶液中;
(2)将(1)所得溶液加热至60℃并持续搅拌,直至溶剂完全蒸发;
(3)将(2)所得固体置于管式炉中,在氮气保护下于900℃加热煅烧2h(升温速率为5℃·min-1),得到氧化钨限域负载硼碳氮纳米管催化剂材料BCN-WOx-1。
该氧化钨限域负载硼碳氮纳米管催化剂材料的扫描电子显微镜照片如图1所示,氮气吸附脱附等温线以及DFT孔道分析结果如图2所示,红外光谱谱图如图3所示,X射线衍射谱图如图4所示。
通过扫描电子显微镜可以看出,上述实例1得到的氧化钨限域负载硼碳氮纳米管催化剂材料为纳米管形貌,其管径为80nm。
通过BET方法测得,上述实例1得到的氧化钨限域负载硼碳氮纳米管催化剂材料,其比表面积可达480m2 g-1
通过红外光谱测得,上述实例1得到的氧化钨限域负载硼碳氮纳米管催化剂材料主体为六方相硼碳氮结构。
通过X射线衍射测得,上述实例1得到的氧化钨限域负载硼碳氮纳米管催化剂材料上负载有单斜相氧化钨纳米粒子。
实施例2
一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,包括如下步骤:
(1)将0.6183g硼酸、18.018g尿素和0.0184g[C16mim]2W2O11混合后,溶解于40mL的50%体积分数的乙腈水溶液中;
(2)将(1)所得溶液加热至60℃并持续搅拌,直至溶剂完全蒸发;
(3)将(2)所得固体置于管式炉中,在氮气保护下于900℃加热煅烧2h(升温速率为5℃·min-1),得到氧化钨限域负载硼碳氮纳米管催化剂材料BCN-WOx-2。
实施例3
一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,包括如下步骤:
(1)将0.6183g硼酸、18.018g尿素和0.1142g[C16mim]2W2O11混合后,溶解于40mL的50%体积分数的乙腈水溶液中;
(2)将(1)所得溶液加热至60℃并持续搅拌,直至溶剂完全蒸发;
(3)将(2)所得固体置于管式炉中,在氮气保护下于900℃加热煅烧2h(升温速率为5℃min-1),得到氧化钨限域负载硼碳氮纳米管催化剂材料BCN-WOx-3。
实施例4
一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,包括如下步骤:
(1)将0.6183g硼酸、18.018g尿素和0.0475g[C16mim]2W2O11混合后,溶解于40mL的60%体积分数的乙腈水溶液中;
(2)将(1)所得溶液加热至70℃并持续搅拌,直至溶剂完全蒸发;
(3)将(2)所得固体置于管式炉中,在氮气保护下于1200℃加热煅烧1h(600℃以下升温速率为5℃·min-1,600℃以上升温速率为10℃·min-1),得到氧化钨限域负载硼碳氮纳米管催化剂材料BCN-WOx-4。
实施例5
一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,包括如下步骤:
(1)将0.6183g硼酸、18.018g尿素和0.0475g[C16mim]2W2O11混合后,溶解于40mL的40%体积分数的乙腈水溶液中;
(2)将(1)所得溶液加热至50℃并持续搅拌,直至溶剂完全蒸发;
(3)将(2)所得固体置于管式炉中,在氮气保护下于700℃加热煅烧5h(600℃以下升温速率为5℃·min-1,600℃以上升温速率为1℃·min-1),得到氧化钨限域负载硼碳氮纳米管催化剂材料BCN-WOx-5。
实施例6
将实施例1所得到的氧化钨限域负载硼碳氮纳米管催化剂材料用于催化氧化溶解于油相中的稠环噻吩类硫化合物,具体过程如下:
将50mg氧化钨限域负载硼碳氮纳米管催化剂材料分散在5mL的硫含量为200ppm的模拟柴油中,并在持续搅拌下加热至60℃;以过氧化氢作为氧化剂,取16μL(对于二苯并噻吩类硫化合物)或32μL(对于苯并噻吩类硫化合物)的30%过氧化氢溶液加入到上述模拟柴油当中,开始催化氧化反应。反应结束后,通过静置和离心手段分离催化剂以取出模拟柴油,并由气相色谱分析检测其中剩余的稠环噻吩类硫化合物浓度。
以二苯并噻吩为例,催化氧化反应式为:
Figure BDA0002739929970000051
实验测得氧化钨限域负载硼碳氮纳米管催化剂材料对不同含硫底物的催化氧化结果如图5所示。可以看出该催化剂在温和的反应条件以及较少的氧化剂消耗下,对苯并噻吩类和二苯并噻吩类硫化合物均标签出较高的氧化脱除效率:对苯并噻吩(BT)和4-甲基二苯并噻吩(4-MDBT)在120分钟内脱除率分别可达85%和90%;对二苯并噻吩(DBT)和3-甲基苯并噻吩(3-MBT)在60分钟内脱除率分别可达95%和90%。
实施例7
在干扰物添加的情况下,将实施例1所得到的氧化钨限域负载硼碳氮纳米管催化剂材料用于催化氧化溶解于油相中的稠环噻吩类硫化合物,具体过程如下:
将50mg氧化钨限域负载硼碳氮纳米管催化剂材料分散在5mL的硫含量为200ppm的二苯并噻吩模拟柴油中,并在持续搅拌下加热至60℃;向模拟柴油中加入1mL的对二甲苯(芳烃)/辛烯(烯烃)/十氢萘(环烷烃),以模拟真实柴油中常见的催化氧化干扰物。以过氧化氢作为氧化剂,取16μL的30%过氧化氢溶液加入到上述模拟柴油当中,开始催化氧化反应。反应结束后,通过静置和离心手段分离催化剂以取出模拟柴油,并由气相色谱分析检测其中剩余的二苯并噻吩浓度。
实验测得干扰物添加的情况下氧化钨限域负载硼碳氮纳米管催化剂材料对二苯并噻吩的催化氧化结果如图6所示。结果表明,该催化剂能够有效针对油相中溶解的噻吩类硫化合物,实现高选择性催化氧化脱硫,从而有效减少对柴油组分中芳烃、烯烃和环烷烃的氧化。

Claims (6)

1.一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,其特征在于,包括如下步骤:
(1)将一定量的硼酸、尿素和金属基离子液体[C16mim]2W2O11混合并溶解在乙腈水溶液中,在加热搅拌下实现分子自组装;
(2)将步骤(1)所得产物置于惰性气氛中加热煅烧,以得到氧化钨限域负载硼碳氮纳米管催化剂材料。
2.根据权利要求1所述的一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,其特征在于,步骤(1)中,所述的金属基离子液体[C16mim]2W2O11同时作为软模板剂和金属钨源,其与硼酸的质量混合比例为1:5~1:35。
3.根据权利要求1所述的一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,其特征在于,步骤(1)中,所述的硼酸与尿素的摩尔混合比例为1:10~1:30,乙腈水溶液的体积分数为40~60%,加热温度为50~70℃。
4.根据权利要求1所述的一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法,其特征在于,步骤(2)中,所述的煅烧温度为700~1200℃,煅烧时间为1~5小时,升温速率为1~10℃·min-1
5.一种氧化钨限域负载硼碳氮纳米管催化剂材料,其特征在于,是通过权利要求1~4中任意一项所述制备方法得到的,纳米管径为50~100nm,比表面积达350~500m2·g-1,且氧化钨纳米颗粒被限域在纳米管中。
6.将权利要求5所述的氧化钨限域负载硼碳氮纳米管催化剂材料用于催化氧化脱除柴油中的稠环噻吩类硫化合物的用途。
CN202011146613.8A 2020-10-23 2020-10-23 一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及其应用 Pending CN112371149A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011146613.8A CN112371149A (zh) 2020-10-23 2020-10-23 一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011146613.8A CN112371149A (zh) 2020-10-23 2020-10-23 一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN112371149A true CN112371149A (zh) 2021-02-19

Family

ID=74580779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011146613.8A Pending CN112371149A (zh) 2020-10-23 2020-10-23 一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112371149A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114308134A (zh) * 2022-01-11 2022-04-12 北京科技大学 利用埃洛石纳米管制备金属氧化物微反应器的方法及应用
CN115155647A (zh) * 2022-08-25 2022-10-11 天津大学 一种负载双金属单原子的bcn气凝胶催化剂的制备方法及其应用
CN116689014A (zh) * 2023-07-18 2023-09-05 江苏大学 一种多级孔硼碳氮材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833903A (zh) * 2016-04-05 2016-08-10 江苏大学 一种含钨介孔二氧化钛微球及其制备方法和应用
CN110124711A (zh) * 2019-04-04 2019-08-16 江苏大学 少层氮化碳负载三氧化钨纳米颗粒催化剂的制备方法及其脱硫应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833903A (zh) * 2016-04-05 2016-08-10 江苏大学 一种含钨介孔二氧化钛微球及其制备方法和应用
CN110124711A (zh) * 2019-04-04 2019-08-16 江苏大学 少层氮化碳负载三氧化钨纳米颗粒催化剂的制备方法及其脱硫应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHENG WANG ET AL.: ""Preparation of WO3/CNT catalysts in presence of ionic liquid [C16mim]Cl and catalytic efficiency in oxidative desulfurization"", 《J CHEM TECHNOL BIOTECHNOL》 *
PEIWEN WU ET AL.: ""Controllable Fabrication of Tungsten Oxide Nanoparticles Confined in Graphene-Analogous Boron Nitride as an Efficient Desulfurization Catalyst"", 《CHEM. EUR. J.》 *
RULIANG MA ET AL.: ""Preparation of highly dispersed WO3/few layer g-C3N4 and its enhancement of catalytic oxidative desulfurization activity"", 《COLLOIDS AND SURFACES A》 *
闫智英等: ""离子液体辅助水热法合成六方WO3"", 《无机化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114308134A (zh) * 2022-01-11 2022-04-12 北京科技大学 利用埃洛石纳米管制备金属氧化物微反应器的方法及应用
CN115155647A (zh) * 2022-08-25 2022-10-11 天津大学 一种负载双金属单原子的bcn气凝胶催化剂的制备方法及其应用
CN115155647B (zh) * 2022-08-25 2023-04-28 天津大学 一种负载双金属单原子的bcn气凝胶催化剂的制备方法及其应用
CN116689014A (zh) * 2023-07-18 2023-09-05 江苏大学 一种多级孔硼碳氮材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Dizaji et al. Deep and fast oxidative desulfurization of fuels using graphene oxide-based phosphotungstic acid catalysts
CN112371149A (zh) 一种氧化钨限域负载硼碳氮纳米管催化剂材料的制备方法及其应用
US8575059B1 (en) Method and system for forming plug and play metal compound catalysts
Abdul-Kadhim et al. Efficient and reusable iron-zinc oxide catalyst for oxidative desulfurization of model fuel
Xun et al. Design and synthesis of W-containing mesoporous material with excellent catalytic activity for the oxidation of 4, 6-DMDBT in fuels
CN108479834B (zh) 一种费托合成催化剂及其制备方法
Xie et al. Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant
Kermani et al. Deep oxidative desulfurization of dibenzothiophene with {Mo 132} nanoballs supported on activated carbon as an efficient catalyst at room temperature
Chen et al. Ionic liquid-supported 3DOM silica for efficient heterogeneous oxidative desulfurization
Mokhtar et al. Development of bimetallic and trimetallic oxides doped on molybdenum oxide based material on oxidative desulfurization of diesel
JP2021533250A (ja) 石油炭化水素を触媒的に変換するための方法
BRPI0902204A2 (pt) adsorvente de dessulfurização, processo de preparação do adsorvente e método de dessufurização de óleo diesel ou gasolina de pirólise
Wang et al. Catalytic oxidative desulfurization of model fuel utilizing functionalized HMS catalysts: characterization, catalytic activity and mechanistic studies
CN112844317B (zh) 一种高分散金属或金属氧化物掺杂吸附剂、制备方法及其应用
US11149209B2 (en) Process for oxidation of organosulfur compounds
Li et al. Preparation of CeVO4/BNNS catalyst and its application in oxidation desulfurization of diesel oil
KR20210069038A (ko) 폴리스티렌으로부터 에틸벤젠을 형성하는 방법
Jiao et al. In situ highly dispersed loading of molybdenum dioxide with oxygen vacancies on N-doped graphene for enhanced oxidative desulfurization of fuel oil
Liu et al. Oxidative desulfurization of fuel oil catalyzed by a carbon nitride supported phosphotungstic acid based dicationic ionic liquid
WO2023082628A1 (zh) 利用芬顿试剂制备得到的碳纳米管催化剂及方法和应用
CN112774690B (zh) 一种负载型单原子贵金属催化剂及其制备方法和应用
CN112705244B (zh) 一种三维有序介孔钼基催化剂及其制备方法和应用
Hasannia et al. Investigations of the ODS process utilizing CNT-and CNF-based WO3 catalysts for environmental depollution: experimental and theoretical aspects
CN113842948B (zh) 一种纳米酚醛树脂基脱硫催化剂及其制备方法
CN106492797B (zh) 一种Ag2O@Ti-Ce-O双功能催化吸附脱硫剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210219