CN112371145B - 含d-a结构的二维氮化碳光催化剂及制备方法和用途 - Google Patents

含d-a结构的二维氮化碳光催化剂及制备方法和用途 Download PDF

Info

Publication number
CN112371145B
CN112371145B CN202011089065.XA CN202011089065A CN112371145B CN 112371145 B CN112371145 B CN 112371145B CN 202011089065 A CN202011089065 A CN 202011089065A CN 112371145 B CN112371145 B CN 112371145B
Authority
CN
China
Prior art keywords
carbon nitride
dimensional carbon
preparing
photocatalyst containing
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011089065.XA
Other languages
English (en)
Other versions
CN112371145A (zh
Inventor
宋相海
汪梅
张馨予
李鑫
霍鹏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202011089065.XA priority Critical patent/CN112371145B/zh
Publication of CN112371145A publication Critical patent/CN112371145A/zh
Application granted granted Critical
Publication of CN112371145B publication Critical patent/CN112371145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明属于新能源转化材料的制备技术领域,特指含D‑A结构的二维氮化碳光催化剂及制备方法和用途。本发明首先通过高温聚合法制备出体相氮化碳材料(g‑C3N4),再经过高温下氧化剥离的方法制备出二维氮化碳(2D g‑C3N4)纳米片。最终通过2D g‑C3N4和有机分子反应的方法制备出具有分子内D‑A结构的2D g‑C3N4‑DA催化材料;本发明通过简单的高温聚合以及和有机分子反应的方法制备出具有分子内D‑A结构的光催化材料,操作简便;并将所得2D g‑C3N4‑DA光催化材料用于CO2分子的催化转化制备碳氢燃料,反应过程中无需额外的能源投入,且无需添加助催化剂和牺牲剂,绿色环保。

Description

含D-A结构的二维氮化碳光催化剂及制备方法和用途
技术领域
本发明属于新能源转化材料的制备技术领域,特指含D-A结构的二维氮化碳光催化剂及制备方法和用途。本发明首先通过高温聚合法制备出体相氮化碳材料(g-C3N4),再经过高温下氧化剥离的方法制备出二维氮化碳(2D g-C3N4)纳米片。最终通过2D g-C3N4和有机分子反应的方法制备出具有分子内供体-受体(D-A)结构的2D g-C3N4(2D g-C3N4-DA)催化材料并用于光催化CO2还原制备CO、CH4等碳氢燃料领域。
背景技术
光催化技术是指利用光能,在催化剂存在的条件下将需要在剧烈的条件下进行的化学反应转化为在温和的条件下进行反应的技术。该技术利用清洁且无限的太阳光作为能源,绿色环保、可持续,且反应过程中无需额外投入能源,避免了二次污染。利用光催化技术将CO2转化为碳氢燃料不仅能够缓解化石能源过渡消耗引发的能源危机,而且可有效降低大气中CO2的浓度减少温室效应的影响。同时,CO2转化所得的碳氢燃料中不含氮氧化物、硫化物等污染物,是一种清洁的能源。另外,该策略实现了碳循环,符合当今社会绿色可持续发展的理念。但是,现有光催化剂普遍存在光能利用率低、光生电子-空穴复合率高、载流子迁移速率慢等缺点,限制了光催化剂的催化活性。因此,急需开发一种新型的光催化材料,在光能驱动下实现CO2向碳氢燃料的高效转化。
石墨相氮化碳(g-C3N4)由于其独特的光电性质和成本优势在光催化领域引起了广泛的关注。但体相g-C3N4比表面积低、光吸收能力差及导电性能差等缺陷限制了其在光催化中的应用。将体相g-C3N4制备成二维层状可以明显提升其光吸收性能和电子迁移效率,并能够有效抑制载流子复合率、延长载流子寿命,进而提高光催化效率。另外,二维层状g-C3N4(2D g-C3N4)比表面积较大、暴露活性位点多、底物扩散路径短,有利于其催化活性的提高:如大连理工大学全燮教授课题组发现将g-C3N4制备成单层时,其电荷传输阻力减小、电荷分离效率明显提高,同时光催化活性明显增加。但2D g-C3N4结构中的缺陷和较差的结晶度等使得其存在一些固有的缺点,如可见光吸收不足、激子结合能高、电子-空穴对复合率高等,这些缺点限制了2D g-C3N4的应用。
发明内容
针对上述问题,本发明提供一种一种含D-A结构的二维氮化碳光催化剂制备方法及用途。
半导体材料中电子的供体-受体(D-A)结构具有显著的有点:如能够通过电子-空穴的空间分离显著提高光生电子-空穴的分离效率;由于电荷空间分离而形成的内建电场能够显著促进载流子的传输速率;同时,还能够调控半导体的带隙结构、提高光能利用效率,增加活性位点数量,进而提高半导体材料的光催化活性。
本发明结合2D g-C3N4和D-A结构的优点,以2D g-C3N4作为主题主体,通过引入有机分子在2D g-C3N4内部构建D-A结构,从而得到光响应范围广,光生电子-空穴分离效率高,载流子传输速率快,电子传输路径段、活性位点多的高效光催化剂,实现CO2向碳氢燃料的快速转化。
本发明利用高温焙烧法,将三聚氰胺高温焙烧得到体相g-C3N4,随后以体相g-C3N4为原料,经过二次焙烧得到2D g-C3N4。然后将2D g-C3N4和溴代芳香衍生物在一定温度下发生取代反应,得到含有分子内D-A结构的2D g-C3N4高效光催化剂。
本发明通过以下技术手段实现上述技术目的。
一种具有分子内D-A结构的2D g-C3N4光催化剂制备方法,包括如下步骤:
(1)体相氮化碳(g-C3N4)的制备:
将三聚氰胺置于瓷舟中,锡箔纸密封后,置于马弗炉中,在一定温度下焙烧,得到体相g-C3N4
(2)二维g-C3N4(2D g-C3N4)的制备:
将步骤(1)所得的体相g-C3N4研磨成粉状,随后置于瓷舟中,锡箔纸密封,用注射器针头在锡箔纸上开孔,然后置于马弗炉中,在一定温度下二次焙烧,得到2D g-C3N4
(3)具有分子内供体-受体结构的2D g-C3N4(2D g-C3N4-DA)的制备:
将与2D g-C3N4构建D-A结构的有机分子分散到溶剂中,超声至分散均匀得到溶液1,随后将步骤(2)所得的2D g-C3N4加入到溶液1中,充分搅拌至分散均匀,于烘箱中烘干,得到2D g-C3N4-DA前驱体;然后将2D g-C3N4-DA前驱体置于瓷舟中,锡箔纸密封,于马弗炉中焙烧,得到2D g-C3N4-DA光催化剂。
步骤(1)中,所述马弗炉的焙烧温度为550℃,升温速率为2℃/min,焙烧时间为4h。
步骤(2)中,所述锡箔纸上开孔的数量为1~10个,孔径为0.1~3mm;马弗炉的焙烧温度为550℃,升温速率为2~5℃/min,焙烧的时间为2~8h。
步骤(3)中,所述有机分子为含苯环的芳香族二溴化物或含苯环的芳香族多溴化物:如1,4-二溴苯、3,6-二溴咔唑、2,7-二溴咔唑、二溴萘(蒽、菲)、4,7-二溴代-2,1,3-苯并噻二唑或二溴代吲哚;所述溶剂为水、乙醇、甲醇、二氯甲烷、氯仿、丙酮、苯、四氢呋喃或乙腈;所述超声功率为100~1000W,时间为0.5-5h;所述搅拌速率为200~1000r/min,搅拌时间为1-5h;所述烘箱温度为80℃,干燥时间为12h;所述焙烧温度为200~500℃,焙烧时间为2~6h。所述有机分子与2D g-C3N4的质量比为1:40-1:4;此外溶液1中,有机分子的浓度为0.05g/100mL~0.5g/100mL。
将本发明制备的2D g-C3N4-DA催化剂应用于光催化还原二氧化碳(CO2)制备碳氢燃料。
本发明的有益效果:
(1)本发明通过在2D g-C3N4中构建分子内D-A结构,显著提高了2D g-C3N4-DA的可见光响应范围,所得光催化剂的电子-空穴分离效率、载流子传输效率显著增加;另外,分子内D-A结构构建过程中形成大量的缺陷结构作为催化的活性位点。2D g-C3N4-DA表现出高效的光催化还原CO2活性。
(2)本发明通过简单的焙烧法的到体相氮化碳,然后通过热刻蚀的方法得到2D g-C3N4,并通过2D g-C3N4和有机芳香溴代衍生物反应的方法制备了含分子内D-A结构的2D g-C3N4光催化,制备方法简单、便捷,易于放大生产。
(3)本发明中的2D g-C3N4-DA光催化剂,可见光照射下在水中进行CO2的还原反应,通过将CO2和H+吸附到催化剂的表面,和光激发产生的电子相互作用发生还原反应,生成碳氢燃料;而吸附在催化剂表面的H2O则和光激发产生的空穴相互作用发生氧化反应,生成H+和氧气。该反应无需添加任何有机溶剂和牺牲剂,是一种绿色环保的还原CO2的技术。
附图说明
图1本发明所制备的2D g-C3N4-DA光催化材料的结构示意图。
图2本发明所制备光催化材料的XRD谱图。
图3本发明所制备光催化材料的XRD谱图的(002)衍射峰放大图。
图4本发明所制备光催化材料的UV-vis DRS图。
图5是利用标定好的曲线计算碳氢燃料的产率图;(A)CO产量标准曲线;(B)CH4产量标准曲线。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例1:
(1)体相g-C3N4的制备:
将3g三聚氰胺置于2×4cm的瓷舟中,锡箔纸密封。随后于马弗炉中以2℃/min的升温速率升至在550℃,焙烧处理4h,自然冷却,所得黄色块状固体研磨成粉;
(2)2D g-C3N4纳米片的制备:
将体相g-C3N4粉末加入到2×4cm的瓷舟中,锡箔纸密封。使用直径1mm的针在锡箔纸中间开一排小孔(5个)。随后于马弗炉中以5℃/min的升温速率升至550℃,并于该温度下焙烧处理4h,自然冷却,得2D g-C3N4纳米片。
(3)2D g-C3N4-DA的制备
将0.005g、0.01g、0.03g、0.05g的3,6-二溴咔唑分散到10mL丙酮中,超声功率1000W,超声时间为0.5h,超声得到溶液1。随后将0.2g 2D g-C3N4纳米片加入到溶液1中,以400r/min的搅拌速率搅拌4h至分散均匀,80℃烘箱中干燥12h。然后将所得固体粉末置于2×4cm的瓷舟中,锡箔纸密封。于马弗炉中以2℃/min的升温速率升至300℃,并于该温度下焙烧处理4h,自然冷却,得2D g-C3N4-DA1、g-C3N4-DA2、2D g-C3N4-DA3、2D g-C3N4-DA4。
(4)将0.02g 2D g-C3N4-DA2催化剂分散于含100mL去离子水的石英反应器中。利用CO2充分吹扫反应器10min,将其内的空气排净,然后将反应器两端封闭,使整个反应体系处于CO2氛围中。磁力搅拌下,利用300W氙灯照射反应体系,每隔1小时取样,所得样品采用装有甲烷化设备的气相色谱进行分析。经4小时反应后CO产率为9.60μmol/g。
实施例2:
(1)体相g-C3N4的制备:
将3g三聚氰胺置于2×4cm的瓷舟中,锡箔纸密封。随后于马弗炉中以2℃/min的升温速率升至在550℃,焙烧处理4h,自然冷却,所得黄色块状固体研磨成粉;
(2)2D g-C3N4纳米片的制备:
将体相g-C3N4粉末加入到2×4cm的瓷舟中,锡箔纸密封。使用直径1mm的针在锡箔纸中间开一排小孔(5个)。随后于马弗炉中以5℃/min的升温速率升至550℃,并于该温度下焙烧处理4h,自然冷却,得2D g-C3N4纳米片。
(3)2D g-C3N4-DAb的制备
将0.01g 1,4-二溴苯分散到10mL丙酮中,超声功率1000W,超声时间为0.5h,超声得到溶液1。随后将0.2g 2D g-C3N4纳米片加入到溶液1中,以400r/min的搅拌速率搅拌4h至分散均匀,80℃烘箱中干燥12h。然后将所得固体粉末置于2×4cm的瓷舟中,锡箔纸密封。于马弗炉中以2℃/min的升温速率升至300℃,并于该温度下焙烧处理4h,自然冷却,得2D g-C3N4-DAb。
(4)将0.02g 2D g-C3N4-DAb催化剂分散于含100mL去离子水的石英反应器中。利用CO2充分吹扫反应器10min,将其内的空气排净,然后将反应器两端封闭,使整个反应体系处于CO2氛围中。磁力搅拌下,利用300W氙灯照射反应体系,每隔1小时取样,所得样品采用装有甲烷化设备的气相色谱进行分析。经4小时反应后CO产率为4.82μmol/g。
实施例3:
(1)体相g-C3N4的制备:
将3g三聚氰胺置于2×4cm的瓷舟中,锡箔纸密封。随后于马弗炉中以2℃/min的升温速率升至在550℃,焙烧处理4h,自然冷却,所得黄色块状固体研磨成粉;
(2)2D g-C3N4纳米片的制备:
将体相g-C3N4粉末加入到2×4cm的瓷舟中,锡箔纸密封。使用直径1mm的针在锡箔纸中间开一排小孔(5个)。随后于马弗炉中以5℃/min的升温速率升至550℃,并于该温度下焙烧处理4h,自然冷却,得2D g-C3N4纳米片。
(3)2D g-C3N4-DAdbt的制备
将0.01g 4,7-二溴-2,1,3-苯并噻二唑分散到10mL甲醇中,超声功率1000W,超声时间为0.5h,超声得到溶液1。随后将0.2g 2D g-C3N4纳米片加入到溶液1中,以400r/min的搅拌速率搅拌4h至分散均匀,80℃烘箱中干燥12h。然后将所得固体粉末置于2×4cm的瓷舟中,锡箔纸密封。于马弗炉中以2℃/min的升温速率升至300℃,并于该温度下焙烧处理4h,自然冷却,得2D g-C3N4-DAdbt。
(4)将0.02g 2D g-C3N4-DAdbt催化剂分散于含100mL去离子水的石英反应器中。利用CO2充分吹扫反应器10min,将其内的空气排净,然后将反应器两端封闭,使整个反应体系处于CO2氛围中。磁力搅拌下,利用300W氙灯照射反应体系,每隔1小时取样,所得样品采用装有甲烷化设备的气相色谱进行分析。经4小时反应后CO产率为6.01μmol/g。
图1为本发明所制备的具有D-A结构的2D g-C3N4催化剂样品的结构示意图。由图可知,2D g-C3N4为具有规则的重复单元的聚合物结构,和有机分子3,6-二溴咔唑反应后,2Dg-C3N4边缘的氨基基团和3,6-二溴咔唑的溴发生取代反应,进而咔唑分子被引入到2D g-C3N4的结构中,形成具有分子内D-A结构的2D g-C3N4。图2为所制备样品的XRD谱图,从中可以看出有机分子3,6-二溴咔唑引入前后,催化材料的衍射峰几乎未发生变化,都分别在13°和27°显示出(100)和(002)两个衍射峰,且没有峰消失,也没有新的衍射峰生成,说明有机分子3,6-二溴咔唑引入后2D g-C3N4的结构没有发生明显的改变。随着3,6-二溴咔唑加入量的增加,2D g-C3N4的(100)、(002)衍射峰强度变小,说明引入3,6-二溴咔唑后催化剂的结晶性变差。图3为所制备催化剂的XRD谱图中(002)衍射峰的放大图,有图可知引入3,6-二溴咔唑后催化剂的(002)峰向小衍射角偏移,表明所得催化剂样品的层间距增大,说明3,6-二溴咔唑成功的引入到2D g-C3N4的结构中。图4为所制备样品的UV-Vis DRS谱图,从中可以看出随着3,6-二溴咔唑加入量的增加,所得催化剂在450~800nm范围内的光吸收先增加后减小,这是由于引入咔唑基团作为供体机构后,其会对2D g-C3N4的带隙结构产生影响,进而影响2D g-C3N4-DA的光吸收性能。2D g-C3N4和咔唑都含有离域的大π键,2D g-C3N4中引入咔唑后2D g-C3N4的大π键的离域性能进一步加强,因而光吸收范围增大,当2D g-C3N4-DA中咔唑的含量较少时,随着咔唑含量的增加光吸收范围逐渐增加;但是,咔唑会在2D g-C3N4中引入缺陷结构,当缺陷达到一定程度后能够破坏共轭结构,因而光吸收先增大后减小。其中2Dg-C3N4-DA2表现出最好的光吸收效果。
本发明中所制备的光催化剂的光催化活性评价:在定做的300mL光化学石英反应器(购自艾尔法石英)中进行,用300W氙灯经模拟可见光照射,具体反应过程如下:将0.02g催化剂分散于含100mL去离子水的石英反应器中。利用CO2充分吹扫反应器10min,将其内的空气排净,然后将反应器两端封闭,使整个反应体系处于CO2氛围中。磁力搅拌下,利用氙灯照射反应体系,每隔1小时取样,所得样品采用装有甲烷化设备的气相色谱进行分析。利用标定好的曲线计算碳氢燃料的产率,见图5。
CO和CH4的产率计算方法如下:
YCO=CO产量/(催化剂用量×反应时间);
YCH4=CH4产量/(催化剂用量×反应时间)。
实验结果表明,在2D g-C3N4中构建D-A结构能够显著提升2D g-C3N4的光催化活性。如2D g-C3N4催化条件下CO的产率为0.33μmolg-1h-1
实施例1中制备的2D g-C3N4-DA2催化材料的CO产率为2.40μmolg-1h-1,其光催化还原CO2制备CO的活性相比2D g-C3N4提高了7.27倍。
实施例2中制备的2D g-C3N4-DAb催化材料的CO产率为1.21μmolg-1h-1,其光催化还原CO2制备CO的活性相比2D g-C3N4提高了3.65倍。
实施例3中制备的2D g-C3N4-DAdbt催化材料的CO产率为1.50μmolg-1h-1,其光催化还原CO2制备CO的活性相比2D g-C3N4提高了4.55倍。
综上所述,在2D g-C3N4中构建D-A结构能够显著提升2D g-C3N4光催化还原CO2的活性。

Claims (6)

1.含D-A结构的二维氮化碳光催化剂的制备方法,其特征在于,具体步骤如下:将与2Dg-C3N4构建D-A结构的有机分子分散到溶剂中,所述有机分子为含苯环的芳香族二溴化物,超声至分散均匀得到溶液1,随后将2D g-C3N4加入到溶液1中,充分搅拌至分散均匀,于烘箱中烘干,得到2D g-C3N4-DA前驱体;然后将2D g-C3N4-DA前驱体置于瓷舟中,锡箔纸密封,于马弗炉中焙烧,得到2D g-C3N4-DA光催化剂。
2.如权利要求1所述的含D-A结构的二维氮化碳光催化剂的制备方法,其特征在于,所述有机分子为1,4-二溴苯、3,6-二溴咔唑、2,7-二溴咔唑、二溴萘、二溴蒽、二溴菲、4,7-二溴代-2,1,3-苯并噻二唑或二溴代吲哚。
3.如权利要求1所述的含D-A结构的二维氮化碳光催化剂的制备方法,其特征在于,所述溶剂为水、乙醇、甲醇、二氯甲烷、氯仿、丙酮、苯、四氢呋喃或乙腈。
4.如权利要求1所述的含D-A结构的二维氮化碳光催化剂的制备方法,其特征在于,所述超声功率为100~1000W,时间为0.5-5h;所述搅拌速率为200~1000r/min,搅拌时间为1-5h;所述烘箱温度为80℃,干燥时间为12h;所述焙烧温度为200~500℃,焙烧时间为2~6h。
5.如权利要求1所述的含D-A结构的二维氮化碳光催化剂的制备方法,其特征在于,所述有机分子与2D g-C3N4的质量比为1:40-1:4;溶液1中,有机分子的浓度为0.05g/100mL~0.5g/100mL。
6.如权利要求1~5任一制备方法制得的含D-A结构的二维氮化碳光催化剂的用途,其特征在于,用于光催化还原二氧化碳制备碳氢燃料。
CN202011089065.XA 2020-10-13 2020-10-13 含d-a结构的二维氮化碳光催化剂及制备方法和用途 Active CN112371145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011089065.XA CN112371145B (zh) 2020-10-13 2020-10-13 含d-a结构的二维氮化碳光催化剂及制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011089065.XA CN112371145B (zh) 2020-10-13 2020-10-13 含d-a结构的二维氮化碳光催化剂及制备方法和用途

Publications (2)

Publication Number Publication Date
CN112371145A CN112371145A (zh) 2021-02-19
CN112371145B true CN112371145B (zh) 2023-05-05

Family

ID=74581362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011089065.XA Active CN112371145B (zh) 2020-10-13 2020-10-13 含d-a结构的二维氮化碳光催化剂及制备方法和用途

Country Status (1)

Country Link
CN (1) CN112371145B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768869A (zh) * 2022-05-21 2022-07-22 深圳市绿蔓科技有限公司 一种氮杂稠环g-C3N4复合材料的制备方法和应用
CN114904552B (zh) * 2022-05-21 2024-04-02 电子科技大学长三角研究院(湖州) 一种表面疏水氮化碳光催化剂的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013452A (ko) * 2015-07-27 2017-02-07 한국화학연구원 로듐이 함유된 카본 나이트라이드 불균일계 촉매, 그의 제조방법 및 이를 이용한 아세트산의 제조방법
WO2019081036A1 (en) * 2017-10-27 2019-05-02 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V. PHOTOCATALYTIC SYSTEM AND APPLICATIONS THEREOF
CN110467162A (zh) * 2019-08-21 2019-11-19 湖北大学 一种新型石墨相氮化碳聚合物材料及其制备方法和应用
CN110624589A (zh) * 2019-09-25 2019-12-31 江苏大学 基于氮化碳纳米管的d-a型光催化剂及制备方法和应用
CN111203256A (zh) * 2020-02-18 2020-05-29 江苏大学 一种SnS2/Au/g-C3N4复合光催化剂的制备方法及其应用
CN111439732A (zh) * 2020-05-21 2020-07-24 东北师范大学 一种具有良好可见光响应的c6n7氮化碳材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013452A (ko) * 2015-07-27 2017-02-07 한국화학연구원 로듐이 함유된 카본 나이트라이드 불균일계 촉매, 그의 제조방법 및 이를 이용한 아세트산의 제조방법
WO2019081036A1 (en) * 2017-10-27 2019-05-02 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V. PHOTOCATALYTIC SYSTEM AND APPLICATIONS THEREOF
CN110467162A (zh) * 2019-08-21 2019-11-19 湖北大学 一种新型石墨相氮化碳聚合物材料及其制备方法和应用
CN110624589A (zh) * 2019-09-25 2019-12-31 江苏大学 基于氮化碳纳米管的d-a型光催化剂及制备方法和应用
CN111203256A (zh) * 2020-02-18 2020-05-29 江苏大学 一种SnS2/Au/g-C3N4复合光催化剂的制备方法及其应用
CN111439732A (zh) * 2020-05-21 2020-07-24 东北师范大学 一种具有良好可见光响应的c6n7氮化碳材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Boosting charge carrier separation efficiency by constructing an intramolecular DA system towards efficient photoreduction of CO2;Xinyu Zhang;《New J. Chem.》;20210319;第45卷;全文 *
苯并二噻吩类共轭聚合物的光催化性能研究;霍宏彬等;《化学与生物工程》;20180705(第07期);全文 *

Also Published As

Publication number Publication date
CN112371145A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
Di et al. Defect‐rich Bi12O17Cl2 nanotubes self‐accelerating charge separation for boosting photocatalytic CO2 reduction
Yang et al. 1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution
Song et al. Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduction activity by constructing defect structures in carbon nitride
Das et al. Sustainable nitrogen-doped functionalized graphene nanosheets for visible-light-induced photocatalytic water splitting
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN112371145B (zh) 含d-a结构的二维氮化碳光催化剂及制备方法和用途
Jia et al. A dual defect co-modified S-scheme heterojunction for boosting photocatalytic CO2 reduction coupled with tetracycline oxidation
CN115069262B (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
Bhavani et al. Skeletal Cu7S4 nanocages wrapped by few‐layered black phosphorus nanosheets as an efficient H2 production photocatalyst
Wu et al. Construction of binary donor–acceptor conjugated copolymer in g-C3N4 for enhanced visible light-induced hydrogen evolution
CN110787829B (zh) 一种Mo纳米球助催化剂及其制备方法与应用
Zhang et al. Boosting charge carrier separation efficiency by constructing an intramolecular DA system towards efficient photoreduction of CO 2
CN112495402A (zh) 一种二硫化钼负载钴掺杂氧化锌光催化降解材料及制法
CN111644185A (zh) 一种利用细胞粉碎机剥离Bi3O4Cl的方法及在光催化还原CO2方面的应用
Guan et al. Dual-facet engineering of surface carboxyl functionalization and interlayer potassium ions regulation in carbon nitride for enhanced CO2 photoreduction
CN113697783B (zh) 一种多孔g-C3N4纳米薄片的制备方法及其应用
Liu et al. Construction of a novel metal-free heterostructure photocatalyst PRGO/TP-COF for enhanced photocatalytic CO2 reduction
Qin et al. Highly dispersed Ag nanoparticles in situ creating rich cyano defects in carbon nitride for efficient photocatalytic H 2 production
WO2022099957A1 (zh) 基于光热协同效应的催化重整生物质焦油的方法及装置
Liu et al. Simultaneous photocatalytic biomass conversion and CO2 reduction over high crystalline oxygen-doped carbon nitride
Ma et al. LED white-light-driven photocatalysis for effective lignocellulose reforming to co-produce hydrogen and value-added chemicals via Zn2/O@ IP-g-CN
CN111672495A (zh) 一种纳米光催化材料的制备方法
Chu et al. Controlled synthesis of 2D–2D conductive metal–organic framework/gC 3 N 4 heterojunctions for efficient photocatalytic hydrogen evolution
CN112958124B (zh) 一种铟掺杂碳化钼纳米花核壳结构光催化剂及其制备和应用
CN114768849B (zh) 一种层状硫掺杂碳氮共聚物的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant