CN112346162B - 金属-介质型光谱选择性多波段隐身薄膜及其制备方法 - Google Patents

金属-介质型光谱选择性多波段隐身薄膜及其制备方法 Download PDF

Info

Publication number
CN112346162B
CN112346162B CN202011125777.2A CN202011125777A CN112346162B CN 112346162 B CN112346162 B CN 112346162B CN 202011125777 A CN202011125777 A CN 202011125777A CN 112346162 B CN112346162 B CN 112346162B
Authority
CN
China
Prior art keywords
film
stealth
multiband
metal
dielectric type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011125777.2A
Other languages
English (en)
Other versions
CN112346162A (zh
Inventor
赵大鹏
时家明
陈宗胜
陈蕾蕾
吕相银
汪家春
程立
李志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202011125777.2A priority Critical patent/CN112346162B/zh
Publication of CN112346162A publication Critical patent/CN112346162A/zh
Application granted granted Critical
Publication of CN112346162B publication Critical patent/CN112346162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种金属‑介质型光谱选择性多波段隐身薄膜及其制备方法,该薄膜为多层膜结构,所述多层膜结构包括基底,以及在所述的基底上由内向外依次交替叠加的硅膜层和钨膜层;所述基底材料为无纺布,或PI、PET、TPU、PVC、BOPP中的一种。本发明的金属‑介质型光谱选择性多波段隐身薄膜,实现了中远红外波段(3‑5μm和8‑14μm)和1.064μm激光波长的兼容隐身,同时在非探测波段(5‑8μm)具有较强散热能力,若将其应用于装备上,对于保护我军重要军事目标,提高武器装备的生存概率具有重要的意义。

Description

金属-介质型光谱选择性多波段隐身薄膜及其制备方法
技术领域
本发明涉及军事隐身技术领域,尤其涉及一种金属-介质型光谱选择性多波段隐身薄膜及其制备方法。
背景技术
现代战争中,多波段光电侦察与精确制导武器的广泛应用,对军事目标的生存带来巨大的威胁。隐身作为一种重要的对抗措施,目的是要降低目标和背景的辐射对比度或者减弱回波信号。由此产生了红外隐身、激光隐身等军事需求。
为了能实现良好的多波段隐身效果,需要隐身材料在中远红外探测波段(3-5μm和8-14μm)具有低发射率(高反射率),在激光测距或激光目标指示器的工作波长上(1.064μm)具有低反射率,虽然用含金属的材料制作成涂料或者薄膜能实现红外隐身,但是其在整个红外波段对激光的反射都比较大,这和激光隐身的低反射率要求是矛盾的,随着激光制导武器的广泛应用,必需解决激光和红外的多波段兼容隐身问题。
由于目标温度通常比背景高,用低发射率材料进行红外隐身就能抑制目标的红外辐射,和背景融为一体。但是发射率低意味着向外发出的辐射弱,会影响目标自身的散热,严重的可能影响目标的正常工作,所以实现良好隐身还要解决隐身和散热的问题,需要隐身材料的光谱具有波段选择性。
用不含金属的全介质材料制作红外低发射、激光低反射的薄膜,能够实现激光和红外的多波段兼容隐身,但是一般实现这一功能的薄膜层数较多,厚度较大,在一定程度上限制了其应用性能。
发明内容
本发明的目的在于提供一种金属-介质型光谱选择性多波段隐身薄膜及其制备方法,以实现中远红外波段和激光波长的兼容隐身,并且在非探测波段具有较强散热能力。
为实现上述目的,本发明采用了以下技术方案:
一种金属-介质型光谱选择性多波段隐身薄膜,该薄膜为多层膜结构,所述多层膜结构包括基底,以及在所述的基底上由内向外依次交替叠加的硅膜层和钨膜层;所述基底材料为无纺布,或PI、PET、TPU、PVC、BOPP中的一种。
优选的,所述多层膜在3-5μm的平均反射率>75%,在8-14μm的平均反射率>80%,在5-8μm的平均反射率<40%,在1.05-1.08μm的最大反射率<10%。
优选的,所述基底上共叠加有5层膜层,且最内层和最外层均为硅膜层;5层膜层由内向外各层的厚度依次为:180±20nm、20-300nm、780±30nm、20±10nm、370±20nm。
本发明还提供了上述金属-介质型光谱选择性多波段隐身薄膜的制备方法,具体为采用镀膜法在所述基底材料上依次交替镀制硅膜层和钨膜层。
优选的,所述镀膜法为电子束蒸发镀膜、热蒸发镀膜、磁控溅射镀膜中的一种。
本发明的有益效果在于:
本发明的金属-介质型光谱选择性多波段隐身薄膜,实现了中远红外波段(3-5μm和8-14μm)和1.064μm激光波长的兼容隐身,同时在非探测波段(5-8μm)具有较强散热能力,若将其应用于装备上,对于保护我军重要军事目标,提高武器装备的生存概率具有重要的意义。
本发明的金属-介质型光谱选择性多波段隐身薄膜制作原材料只有两种材料,膜层层数5层,结构简单,重量轻、厚度薄,加工制作工艺成熟,易于规模化生产和应用。
附图说明
图1为本发明的金属-介质型光谱选择性多波段隐身薄膜的结构示意图;
图2为本发明的金属-介质型光谱选择性多波段隐身薄膜在380nm-15000nm波长范围的法向反射光谱图;
图3为本发明的金属-介质型光谱选择性多波段隐身薄膜在1000nm-1150nm波长范围的法向反射光谱图。
具体实施方式
下面结合具体实施方式对本发明做进一步说明:
图1为本发明的金属-介质型光谱选择性多波段隐身薄膜的结构示意图。基底3材料为PI薄膜,在基底3材料上交替镀制了硅(Si)膜层1和钨(W)膜层2,本实施例的基底材料为无纺布,或PI、PET、TPU、PVC、BOPP等高分子薄膜材料中的一种。各膜层的厚度自内向外依次为:178nm、20nm、779nm、18nm、372nm。
隐身薄膜在中远红外探测波段(3-5μm和8-14μm)具有低发射率(高反射率),在激光测距或激光目标指示器的1.064μm工作波长上具有低反射率,在非探测波段(5-8μm)具有高发射率(低反射率),具备光谱选择性和激光红外多波段兼容隐身能力。
上述隐身薄膜使用电子束蒸发镀膜方式制备。制备的工艺参数为背景真空度为5.0×10-3Pa,硅的沉积速率为0.3nm/s,钨的沉积速率为0.05nm/s,基底温度为120℃。
图2和图3为本发明的金属-介质型光谱选择性多波段隐身薄膜的法向反射光谱图。从图中分析可得,在3-5μm的平均反射率为77.3%,在8-14μm的平均反射率为84.3%,在5-8μm的平均反射率为38.8%,在1.05-1.08μm的最大反射率为7.0%,能够实现中远红外波段(3-5μm和8-14μm)和1.064μm激光波长的兼容隐身,同时在非探测波段(5-8μm)具有较强散热能力。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (4)

1.一种金属-介质型光谱选择性多波段隐身薄膜,其特征在于:该薄膜为多层膜结构,所述多层膜结构包括基底,以及在所述的基底上由内向外依次交替叠加的硅膜层和钨膜层;所述基底材料为无纺布,或PI、PET、TPU、PVC、BOPP中的一种;
所述金属-介质型光谱选择性多波段隐身薄膜在中远红外探测波段具有低发射率,在激光测距或激光目标指示其的1.064 μm工作波长上具有低反射率,在非探测波段具有高发射率;
所述基底上共叠加有5层膜层,且最内层和最外层均为硅膜层;5层膜层由内向外各层的厚度依次为:180±20nm、20-300nm、780±30nm、20±10nm、370±20nm。
2.根据权利要求1所述的金属-介质型光谱选择性多波段隐身薄膜,其特征在于:所述多层膜在3-5μm的平均反射率>75%,在8-14μm的平均反射率>80%,在5-8μm的平均反射率<40%,在1.05-1.08μm的最大反射率<10%。
3.根据权利要求1-2任意一项所述的金属-介质型光谱选择性多波段隐身薄膜的制备方法,其特征在于:采用镀膜法在所述基底材料上依次交替镀制硅膜层和钨膜层。
4.根据权利要求3所述的金属-介质型光谱选择性多波段隐身薄膜的制备方法,其特征在于:所述镀膜法为电子束蒸发镀膜、热蒸发镀膜、磁控溅射镀膜中的一种。
CN202011125777.2A 2020-10-20 2020-10-20 金属-介质型光谱选择性多波段隐身薄膜及其制备方法 Active CN112346162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011125777.2A CN112346162B (zh) 2020-10-20 2020-10-20 金属-介质型光谱选择性多波段隐身薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011125777.2A CN112346162B (zh) 2020-10-20 2020-10-20 金属-介质型光谱选择性多波段隐身薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112346162A CN112346162A (zh) 2021-02-09
CN112346162B true CN112346162B (zh) 2023-03-24

Family

ID=74358894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011125777.2A Active CN112346162B (zh) 2020-10-20 2020-10-20 金属-介质型光谱选择性多波段隐身薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112346162B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668067A (zh) * 2013-12-09 2014-03-26 西南技术物理研究所 大角度多波段红外高反射膜系的制备方法
FR3005286A1 (fr) * 1995-11-10 2014-11-07 Thomson Csf Revetement permettant une reduction de la signature visible, infrarouge et radar d une cible, optimise pour l absorption de plusieurs bandes de frequences radar
JP2019192608A (ja) * 2018-04-27 2019-10-31 国立研究開発法人物質・材料研究機構 狭帯熱放射スペクトルを有する構造体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319972B2 (en) * 2010-04-28 2012-11-27 Raytheon Company Passive reflective tracking media compositions and methods for covertly tracking objects
CN108828695B (zh) * 2018-06-25 2020-05-01 中国人民解放军国防科技大学 可用于红外隐身的光谱选择性发射材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005286A1 (fr) * 1995-11-10 2014-11-07 Thomson Csf Revetement permettant une reduction de la signature visible, infrarouge et radar d une cible, optimise pour l absorption de plusieurs bandes de frequences radar
CN103668067A (zh) * 2013-12-09 2014-03-26 西南技术物理研究所 大角度多波段红外高反射膜系的制备方法
JP2019192608A (ja) * 2018-04-27 2019-10-31 国立研究開発法人物質・材料研究機構 狭帯熱放射スペクトルを有する構造体

Also Published As

Publication number Publication date
CN112346162A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112346160B (zh) 非金属可见光激光红外多波段兼容隐身薄膜及其制备方法
CN110737035B (zh) 一种选择性红外辐射与雷达吸波兼容的隐身材料及其制备方法
CN112363263B (zh) 金属-介质型激光红外多波段兼容隐身薄膜及其制备方法
GB1591812A (en) Photodetector devices
CN114185117B (zh) 一种多波段兼容隐身膜系结构及其制备方法
CN108828695A (zh) 可用于红外隐身的光谱选择性发射材料及其制备方法
CN103293581A (zh) 激光及中远红外兼容隐身膜系结构
CN111562685B (zh) 一种用于红外窗口材料的智能红外光开关及制作方法
CN109696716A (zh) 一种超宽角度激光、长波红外双波段高强减反射膜的膜系结构
CN112323023B (zh) 一种基于ZnS基底的多波段耐盐雾减反射膜及其制备方法
CN112346162B (zh) 金属-介质型光谱选择性多波段隐身薄膜及其制备方法
CN112882227A (zh) 一种红外光谱选择性低发射率材料的设计与制备方法
CN115508921A (zh) 一种可见光兼容近红外激光隐身的增透薄膜
CN113805262A (zh) 一种可见光高透过率的复合膜红外选择辐射体及其用途
CN112363262B (zh) 一种用于雷达天线的红外隐身薄膜及其制备方法
CN113341491A (zh) 一种超宽截止的六氟化硫红外滤光片及其制备方法
CN112363261B (zh) 非金属材料的激光红外多波段兼容隐身薄膜及其制备方法
CN110095022B (zh) 一种双效应红外隐身结构
US20120263885A1 (en) Method for the manufacture of a reflective layer system for back surface mirrors
CN108539430B (zh) 具有单通带和双侧吸收频带的超材料
CN115061229B (zh) 激光与中远红外兼容隐身膜系结构
CN114924342A (zh) 一种选择性红外辐射隐身材料及其制备方法
KR102601839B1 (ko) Emi로부터 ir 투과 윈도우 및 돔을 보호하는 방법
CN109828324B (zh) 一种具有高效雷达波屏蔽功能的宽角度激光高强减反射膜的膜系结构
CN114086121A (zh) 一种高性能辐射制冷无机多层膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant