CN112315940B - 一种促肿瘤凝血和酶/atp双重响应性释药的纳米粒子及其制备方法与应用 - Google Patents

一种促肿瘤凝血和酶/atp双重响应性释药的纳米粒子及其制备方法与应用 Download PDF

Info

Publication number
CN112315940B
CN112315940B CN201910650425.XA CN201910650425A CN112315940B CN 112315940 B CN112315940 B CN 112315940B CN 201910650425 A CN201910650425 A CN 201910650425A CN 112315940 B CN112315940 B CN 112315940B
Authority
CN
China
Prior art keywords
drug
pll
fpba
tumor
mha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910650425.XA
Other languages
English (en)
Other versions
CN112315940A (zh
Inventor
赵剑豪
吴琰
黎华强
容建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201910650425.XA priority Critical patent/CN112315940B/zh
Publication of CN112315940A publication Critical patent/CN112315940A/zh
Application granted granted Critical
Publication of CN112315940B publication Critical patent/CN112315940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • A61K33/10Carbonates; Bicarbonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6939Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being a polysaccharide, e.g. starch, chitosan, chitin, cellulose or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种促肿瘤凝血和酶/ATP双重响应性释药的纳米粒子及其制备方法与应用。纳米粒子以甲基丙烯酸酐修饰的交联透明质酸为壳层,以3‑氟‑4‑羧基苯硼酸改性聚赖氨酸后自组装形成的载药纳米粒子为核层,并原位生成CaCO3纳米粒子;经给药靶向到肿瘤组织后,在肿瘤酸性环境下快速释放Ca2+,诱发肿瘤血管凝血,阻断癌细胞的糖供应,同时中和分解肿瘤残留乳酸,消除乳酸化对癌细胞因缺糖凋亡的抵抗作用,随后进入癌细胞的纳米载体在PLL的质子海绵效应下从内涵体/溶酶体逃逸到细胞质,与三磷酸腺苷(ATP)作用快速释放药物,实现肿瘤凝血、去乳酸化和ATP响应释药三者协同快速杀死癌细胞,对肿瘤治疗有重要意义。

Description

一种促肿瘤凝血和酶/ATP双重响应性释药的纳米粒子及其制 备方法与应用
技术领域
本发明属于生物医用材料及药物控制释放领域,具体涉及一种促肿瘤凝血和酶/ATP双重响应性释药的纳米粒子及其制备方法与应用。
背景技术
随着癌症发病率和死亡率的攀升,癌症已经成为威胁人类健康的主要杀手。目前,临床上治疗癌症的方法主要有手术治疗、放射治疗、化学药物治疗以及免疫治疗等。癌症早期首选手术治疗,但对于晚期发生转移的肿瘤则主要靠化学治疗,通过药物干扰癌细胞分裂来抑制癌细胞生长。由于小分子化疗药物进入体内后会全身分布,缺乏专一性,因此在杀死癌细胞的同时也会杀死正常组织细胞,副作用极大。因此,设计具有肿瘤靶向性的化疗药物载体以降低其毒副作用成为临床中亟待解决的问题。
近年发展起来的纳米载药系统为化疗药物的临床应用提供了新的契机。肿瘤血管不同于正常组织血管,例如血管密度大、有很多促血管通透的介质、血管结构缺失、缺乏平滑肌细胞和血管紧张素等,这些特点形成了肿瘤组织独有的高渗透性和滞留效应(EPR),允许10~500nm的粒子穿过血管到达肿瘤间质,而正常血管表面致密,2nm以上的颗粒很难穿过,从而导致肿瘤组织中聚合物药物载体的积聚明显高于正常组织。同时,由于肿瘤部位淋巴回流系统受损,进一步增加这些颗粒在肿瘤部位的积聚。目前,纳米载药系统主要有脂质体、聚合物纳米粒子、无机纳米粒子等,与传统药物分子相比,这些纳米载药系统可以大大增加疏水药物的水溶性,并且通过EPR效应增加药物在肿瘤部位的浓度,降低毒副作用。然而由于网状内皮的作用,纳米粒子较小时会被肝脾等捕获,导致纳米药物载体在体内分布不佳,影响了药物的运载效率。因此,除了依靠EPR效应的被动靶向外,还应该提高纳米药物载体对肿瘤细胞的主动靶向性。通过在纳米药物载体的表面修饰适当的配体,如抗体、抗体片段、蛋白质、短肽、小分子和核酸适配体等,与细胞表面过量表达的受体发生特异性结合,借助受体介导的内吞作用进入细胞,可实现主动靶向性。
与正常细胞不同,大多数癌细胞都存在Warburg效应,即通过糖酵解而不是氧化磷酸化途径来生产三磷酸腺苷(ATP)。由于糖酵解的效率比氧化磷酸化低得多,因此癌细胞需要从血液摄取大量糖类物质来生产ATP,才能保持能量动态平衡。除了ATP,糖酵解过程还生成乳酸,使肿瘤组织呈特征酸性(癌细胞间隙pH约为6.8,内涵体5.0~6.0)。乳酸化使癌细胞在缺糖条件下处于冬眠状态,即通过极大地降低能耗而抵抗死亡,而一旦有了糖,立刻苏醒生长。浙医二院的胡汛团队最近提出“饿死肿瘤”的治疗思路,通过动脉插管化疗栓塞术阻隔血管向肿瘤提供糖物质,同时往血管注射碳酸氢钠来中和肿瘤残留乳酸,发现对晚期肝癌治疗效果显著,40例临床病人均有效。这种治疗方法虽然取得重大突破,但肿瘤血管众多,特别是一些毛细血管,靠人工操作来精准封堵和注射碳酸氢钠难度不小。并且,堵塞血管后会激发肿瘤组织因缺氧而再生血管,如果此时不能快速杀死癌细胞,肿瘤血管就会重建。
但如何通过更精准、有效且方便的思路和方法诱发肿瘤血管凝血来快速杀死癌细胞,还有待研究与突破。
发明内容
为了克服现有技术不足和缺点,本发明的首要目的在于提供具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的制备方法。
本发明的另一目的在于提供通过上述制备方法制备得到的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子,该纳米粒子具有核壳结构,核层是3-氟-4-羧基苯硼酸(FPBA)改性聚赖氨酸(PLL)后自组装形成的载药纳米粒子,带正电;壳层是甲基丙烯酸酐(MA)修饰的透明质酸(mHA),带负电;核层与壳层通过静电相互作用复合,经紫外光交联和CaCO3纳米粒子原位生成得到具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的核壳结构纳米药物载体。透明质酸(HA)被细胞膜表面高表达的CD-44受体特异性识别,具有癌细胞主动靶向性,进入癌细胞后能被内涵体中的透明质酸酶(HAase)降解,具有HAase响应性;在癌细胞质中,FPBA与高浓度ATP特异性结合使核层载药纳米粒子解体,快速释放药物,具有ATP响应性。
本发明的再一目的在于提供上述具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的应用,促肿瘤凝血、去乳酸化和ATP响应释药三种因素的协同作用促使癌细胞快速凋亡。
本发明的目的通过下述方案实现:
一种具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的制备方法,包含以下步骤:
(1)核层PLL-FPBA载药纳米粒子的制备
聚赖氨酸PLL与3-氟-4-羧基苯硼酸FPBA混合反应后透析、干燥后获得双亲性聚合物PLL-FPBA,将PLL-FPBA溶于由无机酸溶液与有机溶剂组成的混合溶剂中,加入待载药物,待药物溶解后去除溶剂,然后加水形成均匀分散的混悬液,去除混悬液中未负载药物,干燥后得到载药纳米粒子Drug@PLL-FPBA;
(2)壳层HA的甲基丙烯酸酐修饰
将甲基丙烯酸酐MA溶液加入到透明质酸HA溶液,调节pH为9~10,避光反应,透析、干燥后得到甲基丙烯酸酐修饰的透明质酸mHA;
(3)核壳结构纳米药物载体的制备与CaCO3原位生成
将步骤(1)制得的Drug@PLL-FPBA配制为混悬液,步骤(2)制得的mHA配制成溶液,将Drug@PLL-FPBA混悬液加入到mHA溶液,避光反应,随后加入光引发剂,进行紫外光交联,高速离心收集得到纳米粒子,去除残留的mHA和光引发剂,干燥后的得到核壳结构纳米药物载体Drug@PLL-FPBA/mHA;将干燥的Drug@PLL-FPBA/mHA分散在可溶性钙盐的水溶液中,达到溶胀平衡后,高速离心收集纳米粒子,然后再将纳米粒子分散到可溶性碳酸盐水溶液中,充分搅拌后进行透析,干燥后得到原位生成CaCO3的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子Drug@PLL-FPBA/CaCO3/mHA。
步骤(1)中PLL的重均分子量优选为3×103~1×104g/mol。
步骤(1)中PLL和FPBA的摩尔比优选为(1:5)~(1:20)。
步骤(1)中所述的聚赖氨酸PLL与3-氟-4-羧基苯硼酸FPBA反应优选同时加入催化剂,所述的催化剂优选为4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基-吗啉氯化物(DMTMM)。
所述的DMTMM与PLL的摩尔投料比优选为3:1。
步骤(1)中PLL和FPBA优选先配制为溶液后再混合进行反应;所述的PLL和/或FPBA的浓度优选为5mg/mL。
步骤(1)中FPBA在PLL上的取代度为10~50%。
步骤(1)中所述的待载药物优选为抗癌药物;亦可以是疏水性药物;进一步优选为四氢吲唑酮(SNX)、紫杉醇(PTX)和阿霉素(DOX)中的至少一种。
步骤(1)中制得的载药纳米粒子Drug@PLL-FPBA的粒径大小为100~250nm。
步骤(1)中有机溶剂优选为二甲基亚砜(DMSO);
步骤(1)中所述的无机酸溶液优选为稀盐酸;所述的稀盐酸优选为浓度为0.1M的盐酸溶液。
所述的混合溶剂优选为0.1M的稀盐酸溶液与DMSO的按体积比为1:4组成的混合溶剂。
步骤(1)中所述的药物和双亲性聚合物PLL-FPBA的质量投料比优选为(1:1)~(1:4)。
步骤(1)中载药纳米粒子Drug@PLL-FPBA的载药量为8~25%。
步骤(1)中所述的反应的温度优选为室温,反应的时间优选为24h。
步骤(1)中所述的透析优选用截留分子量MWCO为2kDa的透析袋进行;透析的时间优选为7天。
步骤(1)中所述的去除溶剂优选为通过旋转蒸发进行,所述的旋转蒸发的温度优选为60℃。
步骤(1)中所述的加水形成均匀分散的混悬液优选通过加水后进行超声实现,所述的超声的时间优选为10min。
步骤(1)中所述的去除为负载药物的方式优选为高速离心,所述的高速离心的条件优选为5000rpm下离心4min。
步骤(2)中HA的重均分子量优选为2×104~2×105g/mol。
步骤(2)中HA溶液的浓度优选为5mg/mL。
步骤(2)中所述的甲基丙烯酸酐MA溶液和/或透明质酸HA溶液的溶剂优选为水。
步骤(2)所述的加入优选为滴加。
步骤(2)中HA和MA的摩尔投料比优选为(1:1)~(1:6)。
步骤(2)中所述的调节pH优选用NaOH水溶液进行调节。
步骤(2)中所述的避光反应的时间优选为24h。
步骤(2)中所述的避光反应优选在4℃下进行。
步骤(2)中所述的透析优选为用水透析,所述的透析优选用截留分子量MWCO为8~14kDa的透析袋进行;透析的时间优选为7天。
步骤(3)中所述的避光反应优选为室温避光反应,所述的避光反应的时间优选为1h。
步骤(3)中所述的Drug@PLL-FPBA加入到mHA溶液优选为将Drug@PLL-FPBA缓慢滴加入mHA溶液中。
步骤(3)中载药纳米粒子Drug@PLL-FPBA和mHA的浓度均优选为0.1~1mg/mL。
步骤(3)中载药纳米粒子Drug@PLL-FPBA和mHA的质量投料比优选为(2:1)~(1:2)。
步骤(3)中所述的紫外光交联的具体操作为在360nm下紫外光照3min。
步骤(3)中光引发剂优选为Irgacure 2959;光引发剂与mHA的质量比优选为0.1%~0.5%;
步骤(3)中所述的去除残留的mHA优选通过离心进行。
步骤(3)中所述的去除残留的光引发剂优选通过超滤离心进行。
步骤(3)中所述的可溶性钙盐优选为CaCl2,所述的可溶性钙盐溶液的浓度优选为0.25~3mg/mL。当氯化钙浓度超过3mg/mL时和碳酸钠反应就会形成沉淀,无法很好地在纳米药物载体中原位生成碳酸钙纳米粒子。
步骤(3)中所述的可溶性碳酸盐优选为Na2CO3,所述的可溶性碳酸盐的浓度优选为1~5mg/mL。
步骤(3)中所述的透析优选为用水透析;所述的透析优选用截留分子量MWCO为8~14kDa的透析袋进行,透析的时间优选为7天。
步骤(1)、(2)或(3)中所述的水优选为去离子水、蒸馏水或超纯水。
步骤(1)、(2)或(3)中所述的干燥优选为冷冻干燥。
一种具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子,通过所述的制备方法制备得到的。
所述的纳米粒子的粒径大小为100~400nm。
所述纳米粒子中的CaCO3质量分数为10%~40%。
所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米药物载体在生物医用材料领域或制备抗肿瘤药物中的应用。
所述的肿瘤包括乳腺癌、膀胱癌、前列腺癌、肺癌、子宫内膜癌、结肠癌、静脉平滑肌瘤、淋巴瘤。
本发明的原理在于:本发明借鉴“饿死肿瘤”的思路,设计并构建了一种具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米药物载体Drug@PLL-FPBA/CaCO3/mHA。HA是人体细胞外基质的一种主要成分,具有良好的生物相容性,与癌细胞膜表面高表达的CD-44受体特异性识别,可以提高对肿瘤细胞的主动靶向性。HA交联壳层可以提高纳米载体的血液稳定性,避免纳米载体在输送过程中发生解体,延长纳米载体的血液循环时间。原位生成CaCO3纳米粒子有利于控制CaCO3在纳米药物载体中的含量以及均匀分布。CaCO3,已获美国FDA认证用于临床药剂,是一种难溶于水的碱性物质(25℃下溶解度为0.15mmol/L,升高温度溶解度下降),但在酸性条件下溶解度大大增加。肿瘤组织由于癌细胞的糖酵解生成大量乳酸,呈明显酸性,CaCO3与乳酸反应生成水溶性的乳酸钙(25℃下溶解度为6.7g/100mL,即307mmol/L)、CO2和H2O(25℃下乳酸的pKa=3.86,碳酸的pKa1=6.35),可以快速释放出Ca2+,释放的Ca2+向肿瘤血管迁移,诱发凝血,堵塞肿瘤血管,阻断肿瘤的糖供应,同时乳酸被消除。PLL具有质子海绵效应,在癌细胞的内涵体/溶酶体中可以被质子化,引起内涵体/溶酶体里外的离子产生渗透压,导致内涵体/溶酶体破裂,可以帮助载药纳米粒子从内涵体/溶酶体逃逸到细胞质,进一步与ATP反应释放药物,在细胞质中释放的药物更有利于攻击细胞核。FPBA与ATP特异性结合,有利于载药纳米粒子在细胞质高浓度ATP作用下快速响应释放药物。因此,促肿瘤凝血、去乳酸化和ATP响应释药三种因素的协同作用促使癌细胞快速凋亡。
经给药后(如静脉注射)靶向到肿瘤部位后,本发明的多功能的纳米药物载体借助肿瘤环境刺激作用诱发肿瘤血管凝血,堵塞血管,阻断肿瘤的糖供应,同时释放碱性物质,将乳酸分解,消除乳酸在缺糖环境下对癌细胞生存的维持作用,从而使癌细胞缺糖凋亡,而纳米药物载体进入癌细胞后在微环境(如酸性、酶、ATP等)刺激作用下释放药物,通过三种因素的协同作用来快速杀死癌细胞。
本发明相对于现有技术,具有如下的优点:
(1)本发明制备得到的纳米药物载体的壳层是具有交联结构的HA,具有癌细胞主动靶向性,此外还可以提高纳米药物载体的血液循环稳定性,延长血液循环时间。
(2)本发明借助“饿死肿瘤”的思路,通过巧妙的设计创新地构建独特的纳米药物载体,成功实现了在肿瘤酸性环境下,利用CaCO3与肿瘤乳酸反应,快速释放Ca2+,诱发肿瘤血管凝血,隔断癌细胞的营养供应,达到饿死癌细胞的目的,同时有效消耗乳酸,达到消除肿瘤乳酸的目的,加快癌细胞凋亡,与现有技术采用动脉插管化疗栓塞术封堵肿瘤血管并注射碳酸氢钠来中和肿瘤乳酸不同,本发明采用的化学方法比现有的使用动脉插管化疗栓塞术和注射碳酸氢钠的治疗方法操作更简单。
(3)本发明制备得到的纳米药物载体在癌细胞内的药物释放具有HAase和ATP双重刺激响应性,有利于提高癌细胞的给药效率。
(4)本发明通过创新的制备方法,实现了原位生成CaCO3纳米粒子,成功控制CaCO3在纳米药物载体中的含量以及均匀分布,将HAase和ATP双重刺激响应性与在目标区域释放Ca2+、释放药物有机地结合,通过系统性的协同作用来快速杀死癌细胞;制备方法易于控制,操作简便。
附图说明
图1是本发明的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的结构及与乳腺肿瘤作用过程示意图。
图2是实施例1所得的PLL-FPBA的核磁共振氢谱图。
图3是实施例1所得的PLL-FPBA纳米粒子的临界胶束浓度分析图。
图4是实施例1所得的SNX@PLL-FPBA载药纳米粒子的粒径和电位分布图。
图5是实施例1所得的SNX@PLL-FPBA载药纳米粒子的透射电镜图。
图6是实施例1所得的mHA的核磁共振氢谱图。
图7是实施例1所得的SNX@PLL-FPBA/CaCO3/mHA纳米药物载体的粒径和电位分布图。
图8是实施例1所得的SNX@PLL-FPBA/CaCO3/mHA纳米药物载体的透射电镜图。
图9是实施例1所得的PLL-FPBA/CaCO3/mHA和PLL-FPBA/mHA纳米粒子的X射线衍射图。
图10是实施例1所得的SNX@PLL-FPBA/CaCO3/mHA纳米药物载体的热失重曲线图。
图11是实施例1所得的SNX@PLL-FPBA/CaCO3/mHA纳米药物载体的HAase/ATP响应性药物释放曲线图。
图12是实施例1所得的PLL-FPBA/CaCO3/mHA纳米粒子的凝血试验历时3h时的结果照片图。
图13是实施例1所得的SNX@PLL-FPBA/CaCO3/mHA纳米药物载体对MCF-7和MDA-MB-231乳腺癌细胞的细胞毒性图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)核层PLL-FPBA载药纳米粒子的制备
将100mgε-聚赖氨酸盐酸盐(PLL·HCl,重均分子量5×103g/mol)溶于20mL去离子水,将44mg FPBA(3-氟-4-羧基苯硼酸)溶于8.8mL去离子水中,两溶液混合后(PLL和FPBA的摩尔比为1:10),加入560mg活化剂4-(4,6二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM,摩尔比DMTMM:PLL·HCl=3:1),室温下搅拌反应24h,反应结束后将溶液转移带透析袋(MWCO:2kDa)中用去离子水透析7d,冷冻干燥后得到双亲性聚合物PLL-FPBA。PLL-FPBA的1HNMR谱图如图2所示,FPBA的取代度为36.7%。荧光光谱法测得PLL-FPBA的临界胶束浓度CMC值为5.9μg/mL,如图3所示。
将20mg PLL-FPBA溶于20mL DMSO/HCl(体积比,0.1M HCl/DMSO=1:4),搅拌溶解后加入10mg抗癌药物SNX(四氢吲唑酮)(质量比,药物:载体=1:2),室温下磁力搅拌24h,60℃下旋蒸除去溶剂后加入20mL去离子水,超声分散10min,使用离心机在5000rpm下离心4min,冷冻干燥后得到核层载药纳米粒子SNX@PLL-FPBA。如图4所示,动态激光散射法测得纳米粒子的粒径约为180nm,电位为+20.5mV。透射电镜照片如图5所示,纳米粒子呈圆球形。紫外光谱法测得纳米粒子的载药量为18.5%。
(2)壳层透明质酸分子的甲基丙烯酸酐修饰
取100mg透明质酸HA(重均分子量为1×105g/mol)溶于20mL去离子水中,加入0.11mL甲基丙烯酸酐MA(摩尔比,HA:MA=1:3),用0.1M NaOH调pH为8~9,4℃下避光反应24h,反应完后转移到透析袋(MWCO:8~14kDa)中用去离子水中透析7d,冷冻干燥后得到产物mHA。mHA的1H NMR谱图如图6所示,MA在HA上的取代度为15.7%。
(3)核壳结构纳米药物载体的制备与CaCO3原位生成
将50mg SNX@PLL-FPBA载药纳米胶束分散于100mL的去离子水中制成纳米粒子悬浮液,将50mg mHA溶解于100mL去离子水中配成溶液,将SNX@PLL-FPBA纳米粒子悬液缓慢滴加入mHA水溶液中,室温下避光磁力搅拌1h,随后加入光引发剂Irgacure 2959(质量比,Irgacure 2959:mHA=0.2%),在360nm下紫外光照3min,高速离心收集纳米粒子,离心去除残留的mHA,收集纳米粒子悬浮液并用超滤离心管除去残留的光引发剂,冷冻干燥后得到核壳结构纳米药物载体SNX@PLL-FPBA/mHA。将干燥的SNX@PLL-FPBA/mHA分散在2mg/mL CaCl2水溶液中,达到溶胀平衡后,高速离心收集纳米粒子,然后再将纳米粒子分散到2mg/mLNa2CO3水溶液中,充分搅拌后移至透析袋(MWCO:8~14kDa)中,在去离子水中透析7d,冷冻干燥后得到原位生成CaCO3的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子SNX@PLL-FPBA/CaCO3/mHA。粒径大小和分布图如图7所示,平均粒径大小为240nm,电位-13.46mV。透射电镜如图8所示,可以明显看见CaCO3颗粒(如箭头指示处)。X射线衍射仪图谱如图9所示,可以证明其中所含确实是碳酸钙。热失重法测得SNX@PLL-FPBA/CaCO3/mHA纳米粒子中碳酸钙的质量分数为20%,如图10所示。设置4组处理组:中性生理盐水(pH7.4)处理组、调节生理盐水的pH5.0的处理组、在中性生理盐水中加入终浓度为150units/mL HAase和4mM ATP的处理组及在调节生理盐水的pH5.0的处理组的基础上加入终浓度为150units/mL HAase和4mM ATP的处理组,在不同HAase(透明质酸酶,Sigma-Aldrich产品,产品货号:H3506-500MG,购买来源:阿拉丁)/ATP刺激条件下,SNX@PLL-FPBA/CaCO3/mHA纳米药物载体的释药曲线如图11所示。结果显示SNX@PLL-FPBA/CaCO3/mHA在pH5.0+150units/mL HAase+4mM ATP三重刺激下48h内的释药量为76%,在中性生理盐水中48h的累计药物释放量仅为5%,没有提前药物释放。
为了证实本发明的SNX@PLL-FPBA/CaCO3/mHA纳米药物载体在模拟肿瘤酸性环境中有促凝血功能,进行如下研究:实验血液自广东省医学动物实验中心采购的成年雄性新西兰大白兔,取自实验动物心脏全血,使用肝素钠含量15±2.5IU/mL的抗凝管收集并保存在4℃冰箱里(使用期限为一周)。不加入药物制得PLL-FPBA/CaCO3/mHA纳米粒子(未载药,药物本身不引起凝血)在不同pH值的血液中分散,浓度为4.0mg/mL,记录其凝血时间,并以PLL-FPBA/mHA纳米粒子(未载药)、CaCO3纳米粒子(未载药,购自喀斯玛商城,产品货号:XFI11-1)以及生理盐水作为对照,如表1和图12所示,图12为凝血实验历时3h时的结果照片图。
表1
Figure BDA0002135033760000101
*——表示在3h内未出现凝血现象
结果显示,在pH7.4条件下,所有样品均不凝血,说明在静脉注射后的血液循环中,纳米粒子不会引起正常血管凝血,但随着pH的降低,在肿瘤酸性的微环境中pH6.8和pH5.0,CaCO3NPs和PLL-FPBA/CaCO3/mHA纳米粒子会促进凝血,并且酸性越强,凝血时间越短。在此基础上,进一步探究在pH 5.0条件下不同的PLL-FPBA/CaCO3/mHA纳米粒子浓度对凝血情况的影响,如表2。结果显示,随着纳米粒子的浓度增加,凝血时间缩短。
表2
Figure BDA0002135033760000102
CCK-8法测得SNX@PLL-FPBA/CaCO3/mHA纳米药物载体对MCF-7和MDA-MB-231两种乳腺癌细胞的细胞毒性如图13所示。由图可知,SNX@PLL-FPBA/CaCO3/mHA对MCF-7(货号:APN20190412,商家信息:深圳艾普诺生物医疗科技有限公司,购自喀斯玛商城)和MDA-MB-231两种癌细胞(货号:CX0201,商家信息:武汉博士德生物工程有限公司,购自喀斯玛商城)的毒性均与纯药物相近,说明本发明制备的具有癌细胞主动靶向性、血液稳定性和癌细胞内响应性快速释药的纳米药物载体仍然可以像纯药物一样高效快速杀死癌细胞。
实施例2
(1)核层PLL-FPBA载药纳米粒子的制备
将100mgε-聚赖氨酸盐酸盐(PLL·HCl,重均分子量1×104g/mol)溶于20mL去离子水,将22mg FPBA溶于4.4mL去离子水中,两溶液混合后(PLL和FPBA的摩尔比为1:5)。加入560mg活化剂4-(4,6二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM,摩尔比DMTMM:PLL·HCl=3:1),室温下搅拌反应24h,反应结束后将溶液转移带透析袋(MWCO:2kDa)中用去离子水透析7d,冷冻干燥后得到双亲性聚合物PLL-FPBA。1H NMR测试FPBA的取代度为10%。荧光光谱法测得PLL-FPBA的临界胶束浓度CMC值为8.0μg/mL。
将20mg PLL-FPBA溶于20mL DMSO/HCl(体积比,0.1M HCl/DMSO=1:4),搅拌溶解后加入5mg抗癌药物紫杉醇PTX(质量比,药物:载体=1:4),室温下磁力搅拌24h,60℃下旋蒸除去溶剂后加入20mL去离子水,超声分散10min,使用离心机在5000rpm下离心4min,冷冻干燥后得到核层载药纳米粒子PTX@PLL-FPBA。动态激光散射法测得纳米粒子的粒径为~250nm,电位为+15.2mV。透射电镜照片显示纳米粒子呈圆球形。紫外光谱法测得纳米粒子的载药量为8%。
(2)壳层透明质酸分子的甲基丙烯酸酐修饰
取100mg透明质酸HA(重均分子量为2×104g/mol)溶于20mL去离子水中,加入0.04mL甲基丙烯酸酐(摩尔比,HA:MA=1:1),用0.1M NaOH调pH为8~9,4℃下避光反应24h,反应完后转移到透析袋(MWCO:8~14kDa)中用去离子水中透析7d,冷冻干燥后得到产物mHA。1H NMR测得MA的取代度为10.2%。
(3)核壳结构纳米药物载体的制备与CaCO3原位生成
将50mg PTX@PLL-FPBA载药纳米胶束分散于500mL的去离子水中制成纳米粒子悬浮液,将25mg mHA溶解于250mL去离子水中配成溶液,将PTX@PLL-FPBA纳米粒子悬液缓慢滴加入mHA水溶液中,室温下避光磁力搅拌1h,随后加入光引发剂Irgacure 2959(质量比,Irgacure 2959:mHA=0.1%),在360nm下紫外光照3min,高速离心收集纳米粒子,离心去除残留的mHA,收集纳米粒子悬浮液并用超滤离心管除去残留的光引发剂,冷冻干燥后得到核壳结构纳米药物载体PTX@PLL-FPBA/mHA。将干燥的PTX@PLL-FPBA/mHA分散在0.5mg/mLCaCl2水溶液中,达到溶胀平衡后,高速离心收集纳米粒子,然后再将纳米粒子分散到1mg/mL Na2CO3水溶液中,充分搅拌后移至透析袋中,在去离子水中透析7d,冷冻干燥后得到原位生成CaCO3的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子PTX@PLL-FPBA/CaCO3/mHA。动态激光散射测得纳米粒子的平均粒径为~400nm,电位-9.8mV。透射电镜观察有CaCO3颗粒形成。X射线衍射法测试证实碳酸钙的生成。热失重法测得PTX@PLL-FPBA/CaCO3/mHA纳米粒子中碳酸钙的质量分数为10%。不同HAase/ATP刺激条件下,PTX@PLL-FPBA/CaCO3/mHA纳米药物载体在pH5.0+150units/mL HAase+4mM ATP三重刺激下48h内的释药量为85%,在中性生理盐水中48h的累计药物释放量仅为10%,没有提前药物释放。
为了证实本发明的PTX@PLL-FPBA/CaCO3/mHA纳米药物载体在模拟肿瘤酸性环境中有促凝血功能,将步骤(3)所制得的PLL-FPBA/CaCO3/mHA纳米粒子(未载药,药物本身不引起凝血)在不同pH值的血液中分散,浓度为4.0mg/mL,记录其凝血时间,并以PLL-FPBA/mHA纳米粒子(未载药)、CaCO3纳米粒子(未载药)以及生理盐水作为对照。结果显示,在pH7.4条件下,所有样品均不凝血,说明在静脉注射后的血液循环中,纳米粒子不会引起正常血管凝血,但随着pH的降低,在肿瘤酸性的微环境中pH6.8和pH5.0,PLL-FPBA/CaCO3/mHA纳米粒子会促进凝血,并且酸性越强,凝血时间越短。在此基础上,进一步探究在pH 5.0条件下不同的PLL-FPBA/CaCO3/mHA纳米粒子浓度对凝血情况的影响。结果显示,随着纳米粒子的浓度增加,凝血时间缩短。
CCK-8法测得PTX@PLL-FPBA/CaCO3/mHA纳米药物载体对MCF-7和MDA-MB-231两种乳腺癌细胞的毒性均与纯药物相近,说明本发明制备的具有癌细胞主动靶向性、血液稳定性和癌细胞内响应性快速释药的纳米药物载体仍然可以像纯药物一样高效快速杀死癌细胞。
实施例3
(1)核层PLL-FPBA载药纳米粒子的制备
将100mgε-聚赖氨酸盐酸盐(PLL·HCl,重均分子量3×103g/mol)溶于20mL去离子水,将88mg FPBA溶于17.6mL去离子水中,两溶液混合后(PLL和FPBA的摩尔比为1:20),加入560mg活化剂4-(4,6二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM,摩尔比DMTMM:PLL·HCl=3:1),室温下搅拌反应24h,反应结束后将溶液转移带透析袋(MWCO:2kDa)中用去离子水透析7d,冷冻干燥后得到双亲性聚合物PLL-FPBA。1H NMR测试FPBA的取代度为50%。荧光光谱法测得PLL-FPBA的临界胶束浓度CMC值为3.3μg/mL。
将20mg PLL-FPBA溶于20mL DMSO/HCl(体积比,0.1M HCl/DMSO=1:4),搅拌溶解后加入20mg抗癌药物阿霉素DOX(质量比,药物:载体=1:1),室温下磁力搅拌24h,60℃下旋蒸除去溶剂后加入20mL去离子水,超声分散10min,使用离心机在5000rpm下离心4min,冷冻干燥后得到核层载药纳米粒子DOX@PLL-FPBA。动态激光散射法测得纳米粒子的粒径为~100nm,电位为+23.8mV。透射电镜照片显示纳米粒子呈圆球形。紫外光谱法测得纳米粒子的载药量为25%。
(2)壳层透明质酸分子的甲基丙烯酸酐修饰
取100mg透明质酸HA(重均分子量为2×105g/mol)溶于20mL去离子水中,加入0.22mL甲基丙烯酸酐(摩尔比,HA:MA=1:6),用0.1M NaOH调pH为8~9,4℃下避光反应24h,反应完后转移到透析袋(MWCO:8~14kDa)中用去离子水中透析7d,冷冻干燥后得到产物mHA。1H NMR测得MA的取代度为24.6%。
(3)核壳结构纳米药物载体的制备与CaCO3原位生成
将50mg DOX@PLL-FPBA载药纳米胶束分散于50mL的去离子水中制成纳米粒子悬浮液,将100mg mHA溶解于100mL去离子水中配成溶液,将DOX@PLL-FPBA纳米粒子悬液缓慢滴加入mHA水溶液中,室温下避光磁力搅拌1h,随后加入光引发剂Irgacure 2959(质量比,Irgacure 2959:mHA=0.5%),在360nm下紫外光照3min,高速离心收集纳米粒子,离心去除残留的mHA,收集纳米粒子悬浮液并用超滤离心管除去残留的光引发剂,冷冻干燥后得到核壳结构纳米药物载体DOX@PLL-FPBA/mHA。将干燥的DOX@PLL-FPBA/mHA分散在3mg/mL CaCl2水溶液中,达到溶胀平衡后,高速离心收集纳米粒子,然后再将纳米粒子分散到5mg/mLNa2CO3水溶液中,充分搅拌后移至透析袋中,在去离子水中透析7d,冷冻干燥后得到原位生成CaCO3的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子DOX@PLL-FPBA/CaCO3/mHA。动态激光散射测得纳米粒子的平均粒径为~100nm,电位-16.5mV。透射电镜观察有CaCO3颗粒形成。热失重法测得DOX@PLL-FPBA/CaCO3/mHA纳米粒子中碳酸钙的质量分数为40%。X射线衍射法测试证实碳酸钙的生成。不同HAase/ATP刺激条件下,DOX@PLL-FPBA/CaCO3/mHA纳米药物载体在pH5.0+150units/mLHAase+4mM ATP三重刺激下48h内的释药量为72%,在中性生理盐水中48h的累计药物释放量仅为4%,没有提前药物释放。
为了证实本发明的DOX@PLL-FPBA/CaCO3/mHA纳米药物载体在模拟肿瘤酸性环境中有促凝血功能,将步骤(3)所制得的PLL-FPBA/CaCO3/mHA纳米粒子(未载药,药物本身不引起凝血)在不同pH值的血液中分散,浓度为4.0mg/mL,记录其凝血时间,并以PLL-FPBA/mHA纳米粒子(未载药)、CaCO3纳米粒子(未载药)以及生理盐水作为对照。结果显示,在pH7.4条件下,所有样品均不凝血,说明在静脉注射后的血液循环中,纳米粒子不会引起正常血管凝血,但随着pH的降低,在肿瘤酸性的微环境中pH6.8和pH5.0,PLL-FPBA/CaCO3/mHA纳米粒子会促进凝血,并且酸性越强,凝血时间越短。在此基础上,进一步探究在pH 5.0条件下不同的PLL-FPBA/CaCO3/mHA纳米粒子浓度对凝血情况的影响。结果显示,随着纳米粒子的浓度增加,凝血时间缩短。
CCK-8法测得DOX@PLL-FPBA/CaCO3/mHA纳米药物载体对MCF-7和MDA-MB-231两种乳腺癌细胞的毒性均与纯药物相近,说明本发明制备的具有癌细胞主动靶向性、血液稳定性和癌细胞内响应性快速释药的纳米药物载体仍然可以像纯药物一样高效快速杀死癌细胞。
对比例
将实施例1步骤(3)制得的干燥的SNX@PLL-FPBA/mHA浸泡在2mg/mLCaCl2水溶液中,然后用0.1M氢氧化钠调pH至8左右,生成氢氧化钙,再通CO2,但很容易就会出现絮状沉淀。由于氢氧化钙固体和二氧化碳气体之间的反应量无法控制,因而得不到纳米药物载体中原位生成碳酸钙纳米粒子,难以实现碳酸钙在纳米药物载体中的均匀分布。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的制备方法,其特征在于,包含以下步骤:
(1)核层PLL-FPBA载药纳米粒子的制备
聚赖氨酸PLL与3-氟-4-羧基苯硼酸FPBA混合反应后透析、干燥后获得双亲性聚合物PLL-FPBA,将PLL-FPBA溶于由无机酸溶液与有机溶剂组成的混合溶剂中,加入待载药物,待药物溶解后去除溶剂,然后加水形成均匀分散的混悬液,去除混悬液中未负载药物,干燥后得到载药纳米粒子Drug@PLL-FPBA;
(2)壳层HA的甲基丙烯酸酐修饰
将甲基丙烯酸酐MA溶液加入到透明质酸HA溶液,调节pH为9~10,避光反应,透析、干燥后得到甲基丙烯酸酐修饰的透明质酸mHA;
(3)核壳结构纳米药物载体的制备与CaCO3原位生成
将步骤(1)制得的Drug@PLL-FPBA配制为混悬液,步骤(2)制得的mHA配制成溶液,将Drug@PLL-FPBA混悬液加入到mHA溶液,避光反应,随后加入光引发剂,进行紫外光交联,离心收集得到纳米粒子,去除残留的mHA和光引发剂,干燥后的得到核壳结构纳米药物载体Drug@PLL-FPBA/mHA;将干燥的Drug@PLL-FPBA/mHA分散在可溶性钙盐的水溶液中,达到溶胀平衡后,离心收集纳米粒子,然后再将纳米粒子分散到可溶性碳酸盐水溶液中,充分搅拌后进行透析,干燥后得到原位生成CaCO3的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子Drug@PLL-FPBA/CaCO3/mHA;
步骤(1)中FPBA在PLL上的取代度为10~50%;
步骤(2)中HA和MA的摩尔投料比为(1:1)~(1:6);
步骤(3)中所述的可溶性钙盐溶液的浓度为0.25~3 mg/mL;
步骤(3)中载药纳米粒子Drug@PLL-FPBA和mHA的质量投料比为(2:1)~(1:2);
步骤(1)中PLL和FPBA的摩尔比为(1:5)~(1:20);
步骤(1)中所述的待载药物和双亲性聚合物PLL-FPBA的质量投料比为(1:1)~(1:4);
步骤(1)中所述的聚赖氨酸PLL与3-氟-4-羧基苯硼酸FPBA反应同时加入催化剂;
步骤(1)中所述的待载药物为抗癌药物;
步骤(2)所述的加入为滴加;
步骤(3)中所述的光引发剂与mHA的质量比为0.1%~0.5%;
步骤(3)中所述的可溶性碳酸盐的浓度为1~5 mg/mL。
2.根据权利要求1所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的制备方法,其特征在于:
步骤(1)中PLL和FPBA先配制为溶液后再混合进行反应;
步骤(1)中制得的载药纳米粒子Drug@PLL-FPBA的粒径大小为100~250 nm;
步骤(1)中PLL的重均分子量为3×103~1×104 g/mol;
步骤(1)中所述的待载药物为四氢吲唑酮、紫杉醇和阿霉素中的至少一种;
步骤(1)中有机溶剂为二甲基亚砜;
步骤(1)中所述的无机酸溶液为稀盐酸;
步骤(1)中所述的加水形成均匀分散的混悬液通过加水后进行超声实现;
步骤(2)中所述的避光反应在4℃下进行;
步骤(2)中HA的重均分子量为2×104~2×105 g/mol;
步骤(1)中所述的催化剂为4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基-吗啉氯化物,即DMTMM;
步骤(3)中载药纳米粒子Drug@PLL-FPBA和mHA的浓度均为0.1~1 mg/mL。
3.根据权利要求2所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的制备方法,其特征在于:
步骤(1)中载药纳米粒子Drug@PLL-FPBA的载药量为8~25%;
步骤(1)中所述的PLL和/或FPBA的浓度为5 mg/mL;
步骤(1)中所述的去除未负载药物的方式为高速离心;
所述的DMTMM与PLL的摩尔投料比为3:1;
所述的稀盐酸为浓度为0.1 M的盐酸溶液;
步骤(3)中光引发剂为Irgacure 2959;
步骤(3)中所述的Drug@PLL-FPBA加入到mHA溶液为将Drug@PLL-FPBA缓慢滴加入mHA溶液中。
4.根据权利要求1所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的制备方法,其特征在于:
步骤(1)中所述的待载药物为疏水性药物;
步骤(1)中所述的透析用截留分子量MWCO为2 kDa的透析袋进行;
步骤(1)中所述的混合溶剂为0.1 M的稀盐酸溶液与DMSO的按体积比为1:4组成的混合溶剂;
步骤(2)中所述的透析用截留分子量MWCO为8~14 kDa的透析袋进行;
步骤(2)中HA溶液的浓度为5 mg/mL;
步骤(3)中所述的可溶性钙盐为CaCl2
步骤(3)中所述的可溶性碳酸盐为Na2CO3
步骤(3)中所述的避光反应为室温避光反应;
步骤(3)中所述的紫外光交联的具体操作为在360 nm下紫外光照3 min;
步骤(3)中所述的透析用截留分子量MWCO为8~14 kDa的透析袋进行。
5.一种具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子,其特征在于:
通过权利要求1~4任一项所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子的制备方法制备得到的。
6.根据权利要求5所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子,其特征在于:
所述的纳米粒子的粒径大小为100~400 nm;
所述的纳米粒子中的CaCO3质量分数为10%~40%。
7.权利要求5~6任一项所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子在制备生物医用材料领域或制备抗肿瘤药物中的应用。
8.根据权利要求7所述的具有促肿瘤凝血和酶/ATP双重刺激响应性释药功能的纳米粒子在制备生物医用材料或制备抗肿瘤药物中的应用,其特征在于:
所述的肿瘤包括乳腺癌、膀胱癌、前列腺癌、肺癌、子宫内膜癌、结肠癌、静脉平滑肌瘤、淋巴瘤;
所述的促肿瘤凝血是纳米粒子经给药靶向到肿瘤组织后,在肿瘤酸性环境下快速释放Ca2+,诱发肿瘤血管凝血达到的。
CN201910650425.XA 2019-07-18 2019-07-18 一种促肿瘤凝血和酶/atp双重响应性释药的纳米粒子及其制备方法与应用 Active CN112315940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910650425.XA CN112315940B (zh) 2019-07-18 2019-07-18 一种促肿瘤凝血和酶/atp双重响应性释药的纳米粒子及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910650425.XA CN112315940B (zh) 2019-07-18 2019-07-18 一种促肿瘤凝血和酶/atp双重响应性释药的纳米粒子及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112315940A CN112315940A (zh) 2021-02-05
CN112315940B true CN112315940B (zh) 2022-12-06

Family

ID=74319388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910650425.XA Active CN112315940B (zh) 2019-07-18 2019-07-18 一种促肿瘤凝血和酶/atp双重响应性释药的纳米粒子及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112315940B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179683A (ja) * 2000-12-13 2002-06-26 Japan Science & Technology Corp ポリアミノ酸誘導体から成る核酸関連物質反応試薬
WO2003094929A2 (en) * 2002-05-06 2003-11-20 University Of Utah Research Foundation Preblocking with non-ha gags increases effectiveness of ha conjugated anticancer agents
KR101352316B1 (ko) * 2011-12-23 2014-01-16 성균관대학교산학협력단 무기화된 폴리에틸렌 글리콜 함유 양친성 나노입자를 포함하는 약물 전달체
CN105534957B (zh) * 2016-02-26 2018-05-08 暨南大学 一种还原/酶/pH多重响应性释药的核壳结构纳米粒子
EP3448406A1 (en) * 2016-04-26 2019-03-06 Institut National de la Sante et de la Recherche Medicale (INSERM) Nano-sized drug delivery structure
CN106729737A (zh) * 2016-12-30 2017-05-31 中国药科大学 一种“脱壳”式智能纳米药物复合物及其制备方法
CN107082828B (zh) * 2017-05-19 2019-09-17 暨南大学 一种活性氧响应性高分子载体及其制备方法
CN107375240B (zh) * 2017-07-21 2019-10-08 浙江理工大学 一种具有靶向性双层协同控释供药的聚合物纳米微粒的制备方法

Also Published As

Publication number Publication date
CN112315940A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
Fu et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy
Abdelhamid Zeolitic imidazolate frameworks (ZIF-8) for biomedical applications: a review
Cai et al. Biodegradable inorganic nanostructured biomaterials for drug delivery
Rastegari et al. An update on mesoporous silica nanoparticle applications in nanomedicine
Ashrafizadeh et al. (Nano) platforms in bladder cancer therapy: Challenges and opportunities
Zhang et al. Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy
Song et al. An oral drug delivery system with programmed drug release and imaging properties for orthotopic colon cancer therapy
Zeng et al. Metal-organic framework-based hydrogel with structurally dynamic properties as a stimuli-responsive localized drug delivery system for cancer therapy
An et al. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine
CN106139144A (zh) 一种具有协同抗肿瘤特性的透明质酸修饰的金‑碳纳米球及其制备方法与应用
Du et al. NIR-activated multi-hit therapeutic Ag2S quantum dot-based hydrogel for healing of bacteria-infected wounds
CN107952072B (zh) 载药载氧杂交蛋白纳米粒的制备方法、载药载氧杂交蛋白纳米粒和应用
Zhang et al. Hierarchical microparticles delivering oxaliplatin and NLG919 nanoprodrugs for local chemo-immunotherapy
Tong et al. Supramolecular hydrogel-loaded Prussian blue nanoparticles with photothermal and ROS scavenging ability for tumor postoperative treatments
Wang et al. Facile Synthesis of the Cu, N-CDs@ GO-CS hydrogel with enhanced antibacterial activity for effective treatment of wound infection
Jin et al. A multifunctional hydrogel containing gold nanorods and methylene blue for synergistic cancer phototherapy
Gao et al. AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy
CN104814934A (zh) 一种曲妥株单抗修饰的载紫杉醇的靶向纳米粒传递系统
Zhang et al. Enhanced postoperative cancer therapy by iron-based hydrogels
Chen et al. Doxorubicin-encapsulated thermosensitive liposome-functionalized photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy
CN106606778B (zh) 含磷酸胆碱聚合物包覆的核壳式磁性复合粒子及其制备方法
CN101653611B (zh) 一种白蛋白-阿霉素纳米制剂及其制备方法和应用
CN110302395B (zh) 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用
Meng et al. Pyroelectric Janus nanomotors to promote cell internalization and synergistic tumor therapy
Sattar et al. Nano‐Drug Carriers: A Potential Approach towards Drug Delivery Methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant