CN112310799A - 面发射激光器及其制造方法 - Google Patents

面发射激光器及其制造方法 Download PDF

Info

Publication number
CN112310799A
CN112310799A CN202010730086.9A CN202010730086A CN112310799A CN 112310799 A CN112310799 A CN 112310799A CN 202010730086 A CN202010730086 A CN 202010730086A CN 112310799 A CN112310799 A CN 112310799A
Authority
CN
China
Prior art keywords
layer
mesa
emitting laser
opening
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010730086.9A
Other languages
English (en)
Inventor
熊野哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN112310799A publication Critical patent/CN112310799A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • H01S5/18313Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18352Mesa with inclined sidewall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0021Degradation or life time measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/1833Position of the structure with more than one structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供面发射激光器及其制造方法,能够抑制因热导致的劣化。面发射激光器具备:基板、设于上述基板上的下部反射镜层、设于上述下部反射镜层上的有源层及设于上述有源层上的上部反射镜层,上述下部反射镜层、上述有源层及上述上部反射镜层形成台面,上述台面具有电流狭窄构造,上述电流狭窄构造具有电流狭窄层,上述电流狭窄层具有从上述台面的周缘部延伸的氧化层及由上述氧化层包围且与上述有源层重叠的开孔,上述开孔具有长轴和短轴,上述长轴的长度为上述短轴的长度的2倍以上。

Description

面发射激光器及其制造方法
本申请主张2019年7月29日向日本申请的日本特愿2019-139138的优先权,并将该日本专利申请记载的全部内容援引于此。
技术领域
本发明涉及面发射激光器及其制造方法。
背景技术
在垂直共振型面发射激光器(VCSEL:Vertical Cavity Surface Emitting Laser(垂直腔面发射激光器),有时仅记载为面发射激光器)中,具有两个反射镜层和由反射镜层夹住的有源层。为了电流狭窄,使反射镜层的一部分选择性地氧化,形成氧化物的电流狭窄层(专利文献1等)。
现有技术文献
专利文献1:日本特开2007-251174号公报
发明内容
有源层包含pn接合且具有较高的电阻,当驱动VCSEL时会发热。有源层由热阻比基板等高的反射镜层夹住。因此,与其他激光器元件相比,VCSEL的散热性较低,VCSEL容易因热而劣化。因此,目的在于提供能够抑制因热导致的劣化的面发射激光器及其制造方法。
本发明的面发射激光器具备:基板;下部反射镜层,设于上述基板上;有源层,设于上述下部反射镜层上;及上部反射镜层,设于上述有源层上,上述下部反射镜层、上述有源层及上述上部反射镜层形成台面,上述台面具有电流狭窄构造,上述电流狭窄构造具有电流狭窄层,上述电流狭窄层具有从上述台面的周缘部延伸的氧化层及由上述氧化层包围且与上述有源层重叠的开孔,上述开孔具有长轴和短轴,上述长轴的长度为上述短轴的长度的2倍以上。
本发明的面发射激光器的制造方法包含如下的工序:在基板上依次形成下部反射镜层、有源层及上部反射镜层;从上述下部反射镜层、上述有源层及上述上部反射镜层形成台面;及在上述台面中形成电流狭窄构造,形成上述电流狭窄构造的工序包含通过从上述台面的端部使上述上部反射镜层的一部分氧化而形成氧化层及由上述氧化层包围且与上述有源层重叠的开孔的工序,上述开孔具有长轴和短轴,上述开孔的长轴的长度为上述开孔的短轴的长度的2倍以上,在上述基板的(100)面形成上述下部反射镜层、上述有源层及上述上部反射镜层。
附图说明
图1A是例示实施例1的面发射激光器的俯视图。
图1B是例示面发射激光器的剖视图。
图2A及图2B是示出台面及开孔的俯视图。
图3A及图3B是例示面发射激光器的制造方法的剖视图。
图4A及图4B是例示面发射激光器的制造方法的剖视图。
图5A及图5B是例示面发射激光器的制造方法的剖视图。
图6A是示出热阻与寿命之间的关系的图。
图6B是示出长宽比与热阻之间的关系的图。
图6C是示出长宽比与寿命之间的关系的图。
图7是例示热路径的示意图。
图8是示出台面及开孔的俯视图。
具体实施方式
[本申请发明的实施方式的说明]
首先,列举本申请发明的实施方式的内容来进行说明。
本申请发明的一方式(1)是一种面发射激光器,其具有:基板;下部反射镜层,设于上述基板上;有源层,设于上述下部反射镜层上;及上部反射镜层,设于上述有源层上,上述下部反射镜层、上述有源层及上述上部反射镜层形成台面,上述台面具有电流狭窄构造,上述电流狭窄构造具有电流狭窄层,上述电流狭窄层具有从上述台面的周缘部延伸的氧化层及由上述氧化层包围且与上述有源层重叠的开孔,上述开孔具有长轴和短轴,上述长轴的长度为上述短轴的长度的2倍以上。由此,在开孔下形成的热路径的截面积变大,热阻下降。其结果是,因热导致的面发射激光器的劣化被抑制。
(2)也可以是,上述开孔的长轴的长度为上述开孔的短轴的长度的2倍以上且10倍以下。热阻下降,且激光的长宽比的增大被抑制。
(3)也可以是,上述开孔是椭圆形。由于开孔的长宽比大于1:1,所以热阻下降,因热导致的劣化被抑制。
(4)也可以是,上述台面具有长轴和短轴,上述台面的长轴的长度为上述台面的短轴的2倍以上。通过从台面的端部朝向内侧进行氧化,能够形成具有长轴及短轴的开孔。
(5)也可以是,在上述基板的(100)面设置上述下部反射镜层、上述有源层及上述上部反射镜层,上述台面的长轴从上述基板的<011>方向倾斜。上部反射镜层的氧化的速度依赖于面方位。通过使长轴倾斜,能够减少氧化速度的差异的影响而形成目标形状的开孔。
(6)也可以是,上述台面的长轴从上述基板的<011>方向的倾斜角度为35°以上且55°以下。通过长轴从氧化速度慢的<011>方向倾斜,能够减少上部反射镜层的氧化速度的差异的影响而形成目标形状的开孔。
(7)也可以是,上述基板由砷化镓形成,上述下部反射镜层及上述上部反射镜层由砷化铝镓形成,上述电流狭窄层包含氧化铝。砷化镓的热阻较低,砷化铝镓的热阻较高。发热的有源层由砷化铝镓的下部反射镜层及上部反射镜层夹住。通过增大开孔的长宽比,热阻下降,通过开孔下的热路径及基板而放出热。
(8)本发明的一方式是一种面发射激光器的制造方法,具有如下的工序:在基板上依次形成下部反射镜层、有源层及上部反射镜层;从上述下部反射镜层、上述有源层及上述上部反射镜层形成台面;及在上述台面中形成电流狭窄构造,形成上述电流狭窄构造的工序包含通过从上述台面的端部使上述上部反射镜层的一部分氧化而形成氧化层及由上述氧化层包围且与上述有源层重叠的开孔的工序,上述开孔具有长轴和短轴,上述开孔的长轴的长度为上述开孔的短轴的长度的2倍以上,在上述基板的(100)面形成上述下部反射镜层、上述有源层及上述上部反射镜层。通过氧化的速度的差异,能够形成具有长轴和短轴的开孔。因此,在开孔下形成的热路径的截面积变大,热阻下降。其结果是,因热导致的面发射激光器的劣化被抑制。
[本申请发明的实施方式的详情]
以下,参照附图来说明本发明的实施方式的面发射激光器及其制造方法的具体例。需要说明的是,本发明不限定于这些例示,而由权利要求表示,意在包括与权利要求等同含义及范围内的所有变更。
【实施例1】
(面发射激光器)
图1A是例示实施例1的面发射激光器100的俯视图,图1B是例示面发射激光器100的剖视图。
如图1A所示,在面发射激光器100的外周部设有用于元件分离的槽11。台面19、焊盘44及46位于由槽11包围的部分。在台面19的周围设有槽13。在台面19上设有电极42,在槽13设有电极40。焊盘44与电极40电连接,焊盘46与电极42电连接。一片面发射激光器100的长度例如是300μm。
如图1B所示,面发射激光器100是具备基板10、DBR(Distributed BraggReflector:分布式布拉格反射镜)层12及20、接触层27及有源层18的VCSEL。
基板10是例如由半绝缘性的砷化镓(GaAs)形成的半导体基板。例如在基板10的(100)面上依次层叠有DBR层12(下部反射镜层)、有源层18、DBR层20(上部反射镜层)及接触层27。这些层的上表面与基板10的上表面平行。在基板10与DBR层12之间也可以设置砷化镓或者砷化铝镓的缓冲层。
DBR层12及20分别是例如将AlxGa1-xAs(x=0.16)和AlyGa1-yAs(y=0.9)以光学膜厚λ/4交替地层叠而得到的半导体多层膜。DBR层12是n型的半导体层,例如掺杂有浓度为5×1017cm-3以上且3×1018cm-3以下的硅(Si)。DBR层20是p型的半导体层,例如掺杂有浓度为1×1018cm-3以上且1×1019cm-3以下的锌(Zn)。
接触层27例如由厚度为100nm的p型AlxGa1-xAs(x=0.16)形成,掺杂有浓度为1×1019cm-3的锌。
有源层18具有例如将InyGa1-yAs层(y=0.107)和AlxGa1-xAs层(x=0.3)交替地层叠而得到的多量子阱(MQW:Multiple Quantum Well(多量子阱))构造,具有光学优点。需要说明的是,基板10、DBR层12、有源层18、DBR层20及接触层27也可以由上述以外的化合物半导体形成。
DBR层12、有源层18、DBR层20及接触层27形成例如椭圆锥台形状或椭圆柱形状的台面19。台面19的高度例如为4.5μm以上且5.0μm以下,上表面的宽度例如是30μm。台面19的上表面与基板10的上表面平行,侧面也可以相对于层的层叠方向倾斜。槽13位于台面19的周围,槽13的宽度例如是20μm。在台面19的周缘部形成有高阻值区域23。
DBR层20具有电流狭窄构造21,电流狭窄构造21包含氧化层21a及开孔21b。通过DBR层20中包含的多个层中的一部分被氧化而形成氧化层21a。氧化层21a在台面19中从DBR层20的周缘部延伸,不在DBR层20的中央部形成。开孔21b是由氧化层21a包围的未氧化部分,与有源层18重叠。氧化层21a例如包括氧化铝(Al2O3),是绝缘性的,与未被氧化的部分相比电流难以流动。与此相对,开孔21b与氧化层21a相比电流容易流动,成为电流路径。通过这样的电流狭窄构造21,能够实现高效的电流注入。
绝缘膜26例如由氮化硅(SiN)形成,覆盖台面19的侧面及上表面。绝缘膜30例如由氮化硅形成,覆盖绝缘膜26及台面19。电极40及42配置于绝缘膜30的开口部。电极40设于DBR层12的上表面,电极42设于台面19上的、接触层27的上表面。
焊盘44及46设于绝缘膜30上,分别与电极40及42接触。电极42例如由钛(Ti)、铂(Pt)、金(Au)的层叠体等金属形成。电极40例如由金、镉(Ge)、镍(Ni)等金属形成。焊盘44及46例如由金等金属形成。
图2A及图2B是示出台面19及开孔21b的俯视图,省略了焊盘44及46等。如图2A及图2B所示,台面19及开孔21b具有例如椭圆形的平面形状,分别具有长轴及短轴。开孔21b的长轴a是指横穿开孔21b的直线中的最长的直线。短轴b是指比长轴a短且与长轴a正交的直线。台面19的长轴及短轴也是同样的。
在图2A的例子中,台面19及开孔21b的长轴及短轴相对于基板10的[011]方向及[01-1]方向倾斜。倾斜角度例如处于35°以上且55°以下的范围内,例如是45°。开孔21b的长轴a朝向[001]方向,短轴b朝向[010]方向。台面19的长轴及短轴也朝向与开孔21b相同的方向。
台面19的长轴的长度La大于开孔21b的长轴a的长度2ra,台面19的短轴的长度Lb大于开孔21b的短轴b的长度2rb。在此,将长半径与短半径之比定义为长宽比。开孔21b的长宽比(长半径ra与短半径rb之比)例如为2:1以上且10:1以下。也就是说,长轴a的长度2ra为短轴b的长度2rb的2倍以上且10倍以下。台面19的长宽比也为2:1以上且10:1以下,即,长轴的长度La为短轴的长度Lb的2倍以上且10倍以下。
如后所述,氧化层21a通过使DBR层20的一部分氧化而形成,未氧化部分成为开孔21b。即,开孔21b的形状及大小能够通过氧化层21a形成时的氧化来控制。DBR层20的氧化的速度具有面方位依存性,在[011]方向及[01-1]方向上慢,在[001]方向及[010]方向上快。如图2A那样,台面19的长轴朝向[001]方向,短轴朝向[010]方向,通过从台面19的端部进行氧化,能够形成椭圆的开孔21b。
图2B的例子中的台面19及开孔21b朝向相对于图2A的例子而旋转了90°的方向。也就是说,长轴朝向[010]方向,短轴朝向[001]方向。实施例1中的台面19及开孔21b可以是图2A及图2B的任一个,以下,以图2A为例。
(制造方法)
图3A~图5B是例示面发射激光器100的制造方法的剖视图。如图3A所示,例如通过有机金属气相生长(MOCVD:Metal Organic Chemical Vapor Deposition(金属有机化合物化学气相沉淀))法或分子束外延(MBE:Molecular Beam Epitaxy(分子束外延))法等,在晶片状态下的基板10上依次外延生长DBR层12、有源层18、DBR层20及接触层27。这些层生长于基板10的(100)面。DBR层20包含用于氧化层21a形成的AlxGa1-xAs层(0.9≤x≤1.0)。
如图3B所示,在接触层27上形成掩模50,并注入例如质子(H+)等离子,从而形成高阻值区域23。离子的注入深度例如为3μm以上且4.5μm以下。对于由掩模50覆盖的部分不注入离子。
如图4A所示,去除掩模50后,设置掩模52。掩模52比掩模50大,是椭圆形,覆盖未被注入离子的区域及高阻值区域23的一部分。例如使用感应耦合等离子体反应性离子蚀刻(ICP-RIE)装置来进行干式蚀刻,而形成台面19。此时,在台面19的周围形成槽13。如图2A所示,台面19例如是椭圆形,长轴朝向[001]方向,短轴朝向[010]方向。
如图4B所示,通过例如在水蒸气氛围中加热为400℃左右,使DBR层20的AlxGa1-xAs层(0.9≤x≤1.0)从端部侧氧化,而形成氧化层21a。以使氧化层21a达到预定的宽度且在氧化层21a内侧留下预定的宽度的未氧化部分即开孔21b的方式规定加热时间。DBR层20的氧化的速度具有面方位依存性,在[011]方向及[01-1]方向上慢,在[001]方向及[010]方向上快。通过从台面19的端部进行氧化,能够形成图2A所示的椭圆形的开孔21b。开孔21b的长轴a朝向[001]方向,短轴b朝向[010]方向。
如图5A所示,通过从DBR层12到基板10为止进行干式蚀刻,形成例如深度8μm的元件分离用的槽11。在槽11的形成后,例如通过等离子体CVD法等来形成绝缘膜26。
如图5B所示,在绝缘膜26中的台面19上的部分及槽13内的部分形成开口部。例如通过抗蚀剂图案化及真空蒸镀法,在接触层27上设置电极42,在DBR层12上设置电极40。例如通过等离子体CVD法等,在绝缘膜26、电极40及42上形成绝缘膜30。使绝缘膜30的与电极40或42重叠的部分形成开口。
例如通过电镀处理等,在绝缘膜30上形成焊盘44及46。焊盘44与电极40电连接,焊盘46与电极42电连接。例如在槽11处分割晶片,形成芯片状的面发射激光器100。
(热阻)
接着,对热阻进行说明。若使用焊盘44及46向台面19注入电流,则从电极40内侧的有源层18射出激光。面发射激光器100在驱动时发热。有源层18包含pn接合,因此与其他层相比电阻高,产生的热量也大。
一般,半导体激光器元件会发热,发光性能因温度上升而劣化。尤其是,VCSEL与端面发射型的激光器元件相比水平方向的散热性低,且由于热传导率低的DBR层从上下夹住有源层,所以上下方向上的散热性也低。因此,容易因热而劣化。
图6A是示出热阻与寿命之间的关系的图。VCSEL的层构造设为与图1B所示的层构造相同,VCSEL的温度设为与热阻和投入能量(1.5eV)之积成比例,模拟了VCSEL的热阻与寿命之间的关系。横轴表示VCSEL的标准化的热阻,纵轴表示VCSEL的标准化的寿命。如图6A所示,热阻越高,则VCSEL的劣化越加剧,寿命越短。另一方面,热阻越下降,则寿命越长。例如,若热阻下降1成,则寿命成为2倍。在实施例1中,通过使开孔21b的长宽比大于1:1来使热阻下降,抑制面发射激光器100的劣化。
(模拟)
进行了热阻及寿命的模拟。图6B是示出长宽比与热阻之间的关系的图,图6C是示出长宽比与寿命之间的关系的图,都是模拟的结果。在图6A及图6B的计算中,使用图1A及图1B所示的面发射激光器100,且将面发射激光器100内的热路径60如图7那样假定。
图7是例示热路径的示意图。如图7所示,热路径60是椭圆锥台形状,从开孔21b朝着下侧(基板10侧)扩展。热路径60的上表面及底面与基板10的主面平行。热路径60的底面与侧面的角度θ例如是45°。图1B的层构造中的热路径60包含DBR层20~DBR层12。各层的热阻Rth由下式计算。h是层的热传导率,T是厚度,S是截面积。
【数学式1】
Figure BDA0002602820170000101
热路径60整体的热阻是各层的热阻Rth之和。需要说明的是,热路径60设为不包括基板10。这是因为,基板10由GaAs形成,与其他层相比具有较高的热传导率,且截面积大,对热阻的贡献小。在热路径60中传递的热通过基板10而向外部放出。
数学式1所示的热传导率h由层的材料确定。截面积S是各深度下的层的面积,从开孔21b开始越朝向深度方向则越大。热传导率h及厚度T即使改变开孔21b的长宽比也不变化。另一方面,截面积S根据长宽比而变化,根据数学式1可知,截面积S越大则热阻Rth越小。
例如开孔21b的长宽比设为6.25∶1,长半径ra设为8.75μm,短半径rb设为1.4μm。上面(深度0)的热路径60的截面积与开孔21b的截面积相等,由数学式2表示。
【数学式2】
S=π×ra×rb
=π×12.25
深度d下的热路径60的截面积由数学式3表示,比深度0下的截面积大。
【数学式3】
S=π×(ra+d)×(rb+d)
=π×(ra×rb+(ra+rb)d+d2)
=π×(12.25+9.65d+d2)
在长宽比为1∶1即正圆形状的开孔中,深度0下的截面积由数学式4表示,深度d下的截面积由数学式5表示。半径r例如是3.5μm。
【数学式4】
S=π×r2
=π×12.25
【数学式5】
S=π×(r+d)2
=π×(r2+2r×d+d2)
=π×(12.25+7d+d2)
根据数学式2和数学式4可知,在椭圆形状和正圆形状中,深度0下的截面积相等。另一方面,若比较数学式3和数学式5,则根据数学式3算出的截面积更大。也就是说,通过使开孔21b的长宽比大于1:1,热路径60的截面积变大,热阻下降,散热性提高。
接着,对图6B及图6C的结果进行说明。将面发射激光器100放置于90℃的环境,施加8mA、2.1V的电力。热路径60设为图7那样的形状。
图6B的横轴表示开孔21b的长宽比,纵轴表示面发射激光器100的标准化的热阻。如图6B所示,长宽比越大则热阻越下降。当长宽比成为5∶1时,与1∶1的情况相相热阻下降约1成,当长宽比成为10∶1时,热阻下降约2成。
图6C的横轴表示开孔21b的长宽比,纵轴表示面发射激光器100的标准化的寿命。如图6C所示,长宽比越大则寿命越延长。当长宽比成为5:1时,与1:1的情况相比,寿命成为约2倍,当长宽比成为10:1时,寿命成为3.5倍左右。
根据实施例1,开孔21b的长轴a的长度2ra为短轴b的长度2rb的2倍以上。即,开孔21b的长宽比为2:1以上。由此,如通过数学式2及数学式3说明的那样,热路径60的截面积朝向深度方向变大。因此,如图6B所示,热阻下降,因热导致的面发射激光器100的劣化被抑制。其结果是,例如如图6C所示,面发射激光器100的寿命变长。
开孔21b的长轴a的长度2ra优选为短轴b的长度2rb的2倍以上。由此,长宽比变大,如图6B及图6C所示,热阻下降,寿命变长。另一方面,若开孔21b的长宽比变大,则激光的长宽比也会变大。为了得到期望的激光,长轴a的长度2ra优选为短轴b的长度2rb的10倍以下。即,长宽比优选为5:1以上且10:1以下。与长宽比为1:1的例子相比,能够使热阻减小1成~2成左右,使寿命延长2倍~3.5倍左右。需要说明的是,长宽比例如也可以为1.5:1以上、3:1以上,还可以为8:1以下、9:1以下、11:1以下、12:1以下等。
开孔21b是椭圆形,具有长轴a及短轴b。由于长宽比大于1:1,所以热阻下降,因热导致的劣化被抑制。
台面19是具有长轴及短轴的椭圆形,长轴的长度La为短轴的长度Lb的2倍以上。通过从台面19的端部将DBR层20的一部分氧化,能够形成具有长轴a及短轴b的开孔21b。
由于DBR层20的氧化速度具有面方位依存性,所以能够通过调整台面19的长轴及短轴的方向,来通过氧化而形成开孔21b。DBR层20的氧化的速度在[011]方向及[01-1]方向上慢,在[001]方向及[010]方向上快。因此,将台面19形成于基板10的(100)面,使台面19的长轴从[010]方向倾斜。能够减少氧化速度的差异的影响,形成长宽比较大的开孔21b。
台面19及开孔21b的长轴及短轴从[011]方向的倾斜角度例如为35°以上且55°以下,尤其优选为45°。即,如图2A那样,台面19的长轴朝向[001]方向,短轴朝向[010]方向。由此,能够形成开孔21b。长轴a及短轴b朝向与台面19的长轴及短轴相同的方向。
需要说明的是,也可以如图2B所示,长轴朝向[010]方向,短轴朝向[001]方向。也就是说,长轴及短轴从<011>方向倾斜例如35°以上且55°以下,优选的是朝向<001>方向。
DBR层12及20由砷化铝镓形成,热阻比砷化镓的基板10高。另一方面,热从由DBR层12及20夹住的有源层18散发是重要的。根据实施例1,通过使开孔21b的长宽比为2:1以上,热阻变小。因此,通过向开孔21b的下方扩展的热路径60及基板10,能够从有源层18有效地放出热,劣化被抑制。
【实施例2】
图8是示出台面19及开孔21b的俯视图。如图8所示,台面19是圆角长方形,开孔21b是椭圆形。它们的长轴朝向基板10的[011]方向,短轴朝向[01-1]方向。开孔21b的长宽比例如为2:1以上且10:1以下。其他结构与实施例1相同。
根据实施例2,与实施例1相同地,通过使开孔21b的长宽比为2:1以上,热阻下降,因热导致的劣化被抑制。台面19的长轴朝向[011]方向,短轴朝向[01-1]方向。通过<011>方向与<001>方向的氧化速度的差异,能够形成椭圆形的开孔21b。
台面19及开孔21b的形状不限于椭圆形及圆角长方形,只要是在一个方向上长且在别的方向上短的形状即可。换言之,台面19及开孔21b具有长轴和短轴即可。长轴是指横穿台面19或开孔21b的最长的直线,短轴是指与长轴交叉且比长轴短的直线。长轴和短轴可以正交,也可以不正交。
附图标记说明
10 基板
11、13 槽
12、20 DBR层
18 有源层
19 台面
21 电流狭窄构造
21a 氧化层
21b 开孔
23 高阻值区域
26、30 绝缘膜
27 接触层
40、42 电极
44、46 焊盘
50、52 掩模
60 热路径
100 面发射激光器。

Claims (8)

1.一种面发射激光器,具备:
基板;
下部反射镜层,设于所述基板上;
有源层,设于所述下部反射镜层上;及
上部反射镜层,设于所述有源层上,
所述下部反射镜层、所述有源层及所述上部反射镜层形成台面,
所述台面具有电流狭窄构造,
所述电流狭窄构造具有电流狭窄层,所述电流狭窄层具有从所述台面的周缘部延伸的氧化层及由所述氧化层包围且与所述有源层重叠的开孔,
所述开孔具有长轴和短轴,
所述长轴的长度为所述短轴的长度的2倍以上。
2.根据权利要求1所述的面发射激光器,其中,
所述开孔的长轴的长度为所述开孔的短轴的长度的2倍以上且10倍以下。
3.根据权利要求1所述的面发射激光器,其中,
所述开孔是椭圆形。
4.根据权利要求1~3中任一项所述的面发射激光器,其中,
所述台面具有长轴和短轴,
所述台面的长轴的长度为所述台面的短轴的2倍以上。
5.根据权利要求3或4所述的面发射激光器,其中,
在所述基板的(100)面设置所述下部反射镜层、所述有源层及所述上部反射镜层,
所述台面的长轴从所述基板的<011>方向倾斜。
6.根据权利要求5所述的面发射激光器,其中,
所述台面的长轴从所述基板的<011>方向的倾斜角度为35°以上且55°以下。
7.根据权利要求1~6中任一项所述的面发射激光器,其中,
所述基板由砷化镓形成,
所述下部反射镜层及所述上部反射镜层由砷化铝镓形成,
所述电流狭窄层包含氧化铝。
8.一种面发射激光器的制造方法,具有如下的工序:
在基板上依次形成下部反射镜层、有源层及上部反射镜层;
从所述下部反射镜层、所述有源层及所述上部反射镜层形成台面;及
在所述台面形成电流狭窄构造,
形成所述电流狭窄构造的工序包含通过从所述台面的边缘部分使所述上部反射镜层的一部分氧化而形成氧化层及由所述氧化层包围且与所述有源层重叠的开孔的工序,
所述开孔具有长轴和短轴,
所述开孔的长轴的长度为所述开孔的短轴的长度的2倍以上,
在所述基板的(100)面形成所述下部反射镜层、所述有源层及所述上部反射镜层。
CN202010730086.9A 2019-07-29 2020-07-27 面发射激光器及其制造方法 Pending CN112310799A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-139138 2019-07-29
JP2019139138A JP2021022679A (ja) 2019-07-29 2019-07-29 面発光レーザおよびその製造方法

Publications (1)

Publication Number Publication Date
CN112310799A true CN112310799A (zh) 2021-02-02

Family

ID=74260371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010730086.9A Pending CN112310799A (zh) 2019-07-29 2020-07-27 面发射激光器及其制造方法

Country Status (3)

Country Link
US (1) US20210036490A1 (zh)
JP (1) JP2021022679A (zh)
CN (1) CN112310799A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783105B (zh) 2021-09-07 2022-11-01 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器及其制备方法
WO2024095504A1 (ja) * 2022-11-01 2024-05-10 ソニーセミコンダクタソリューションズ株式会社 面発光レーザ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027938A (ja) * 1996-07-10 1998-01-27 Fuji Xerox Co Ltd 面発光型半導体レーザ装置およびその製造方法
JP2006245512A (ja) * 2005-03-07 2006-09-14 Sumitomo Electric Ind Ltd 面発光型半導体素子及び面発光型半導体素子の製造方法
CN101685941A (zh) * 2008-09-26 2010-03-31 佳能株式会社 面发光激光器及其制造方法
US20110182314A1 (en) * 2010-01-25 2011-07-28 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, and optical transmission device
CN104734010A (zh) * 2013-12-20 2015-06-24 精工爱普生株式会社 面发光激光器以及原子振荡器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532321B2 (ja) * 2009-11-17 2014-06-25 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
US10305254B2 (en) * 2017-09-18 2019-05-28 Finisar Corporation VCSEL with elliptical aperture having reduced rin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027938A (ja) * 1996-07-10 1998-01-27 Fuji Xerox Co Ltd 面発光型半導体レーザ装置およびその製造方法
JP2006245512A (ja) * 2005-03-07 2006-09-14 Sumitomo Electric Ind Ltd 面発光型半導体素子及び面発光型半導体素子の製造方法
CN101685941A (zh) * 2008-09-26 2010-03-31 佳能株式会社 面发光激光器及其制造方法
US20110182314A1 (en) * 2010-01-25 2011-07-28 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, and optical transmission device
CN104734010A (zh) * 2013-12-20 2015-06-24 精工爱普生株式会社 面发光激光器以及原子振荡器

Also Published As

Publication number Publication date
JP2021022679A (ja) 2021-02-18
US20210036490A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN110383486B (zh) 实现vcsel阵列或vcsel器件的集成电路
JPH10229248A (ja) 表面発光レーザ及びその製造方法
US7526008B2 (en) Surface emitting laser diode
US11441484B2 (en) Vertical-cavity surface-emitting laser device
US11973315B2 (en) VCSEL with integrated electrodes
EP3905459A1 (en) Vertical-cavity surface-emitting laser
CN211295696U (zh) 垂直腔面发射激光器
TWI234322B (en) Vertical cavity surface emitting laser having a gain guide aperture interior to an oxide confinement layer
CN113519099A (zh) 垂直腔面发射激光器
US20210336422A1 (en) Integrated vertical emitter structure having controlled wavelength
EP4131678A2 (en) Multi-wavelength light-emitting semiconductor devices
WO2017212887A1 (ja) 垂直共振器面発光レーザ
CN112310799A (zh) 面发射激光器及其制造方法
KR102556555B1 (ko) 다중 터널 접합을 구비한 vcsel 레이저 및 그 제조 방법
CN112152073A (zh) 面发射激光器
US11539188B2 (en) Surface emitting laser and method of manufacturing the same
TWI781739B (zh) 垂直腔面射型雷射及其形成方法
US20230096932A1 (en) Surface emitting laser
CN113851927A (zh) 一种半导体激光器
JP2006253340A (ja) 面発光レーザ素子およびその製造方法および面発光レーザアレイおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
TWI826050B (zh) 面射型雷射裝置及其製造方法
JP2006228959A (ja) 面発光半導体レーザ
JP2006261521A (ja) 面発光型装置及びその製造方法
KR20240043742A (ko) 면 발광 소자 및 면 발광 소자의 제조 방법
CN114122912A (zh) 一种半导体激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination