CN112290024A - 一种全固态电池及其制备方法 - Google Patents

一种全固态电池及其制备方法 Download PDF

Info

Publication number
CN112290024A
CN112290024A CN202011165797.2A CN202011165797A CN112290024A CN 112290024 A CN112290024 A CN 112290024A CN 202011165797 A CN202011165797 A CN 202011165797A CN 112290024 A CN112290024 A CN 112290024A
Authority
CN
China
Prior art keywords
layer
solid
based film
quantum carbon
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011165797.2A
Other languages
English (en)
Other versions
CN112290024B (zh
Inventor
刘萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guang Dong Dongbond Technology Co ltd
Guangdong Dongbond Tech Co Ltd
Original Assignee
Guang Dong Dongbond Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guang Dong Dongbond Technology Co ltd filed Critical Guang Dong Dongbond Technology Co ltd
Priority to CN202011165797.2A priority Critical patent/CN112290024B/zh
Publication of CN112290024A publication Critical patent/CN112290024A/zh
Application granted granted Critical
Publication of CN112290024B publication Critical patent/CN112290024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种全固态电池及其制备方法。本发明的全固态电池包括:正极极片、固态电解质层和负极极片。其中,正极极片包括正极材料层和量子碳基膜/金属复合界面层,正极材料层的活性材料为银掺杂的石墨烯材料,固态电解质层包括固态电解质,固态电解质为钙钛矿型(ABO3)氧化物固态电解质,负极极片包括负极材料层和量子碳基膜/金属复合界面层,负极材料层的活性材料为锰酸锂材料。本发明通过引入量子碳基膜/金属复合界面层有效解决了锂枝晶生长、低库仑效应与界面副反应这三大固态电池量产所面临的核心问题。

Description

一种全固态电池及其制备方法
技术领域
本发明涉及一种钙钛矿型型固体电解质电池及其制备方法,属固态电池技术领域。
背景技术
全固态锂离子电池是针对液体电解质锂离子电池安全性能差的问题提出来的锂离子电池体系之一,它通过使用热稳定性更高的固体电解质材料来取代隔膜和有机电解质溶液,从根本上改善锂离子电池的安全问题。固体电解质又称超离子导体,是一类在固态时即呈现离子导电性的新兴电解质材料,不仅可以克服电池内部短路及漏液的缺点,还能彻底解决因可燃性有机电解液造成的电池安全问题,实现安全装置的简化,使制造成本和生产优异,此外还具有在电池内串联层积而实现高电压化的特征。另外,在这种固体电解质中,锂离子以外并不移动,因而可以期待不发生因阴离子的移动引起的副反应等安全性和耐久的提高。
无机固态锂离子电解质主要有钙钛矿型、NASICON型、LISICON型、石榴石型、Li3N型等。这些电解质中钙钛矿型电解质(LLTO)因具有水热性能好、机械强度高、电导率较高、原料价格低廉等优点而有望用于未来的全固态锂离子电池,受到研究者的广泛关注。
然而无机固体电解质存在着一个重要问题即锂枝晶生长问题,最早认为无机固体电解质强度高,锂枝晶无法将其刺穿,故不存在锂枝晶问题,但研究显示,通过LLZO电解质离子通道的锂离子抵达负极时的位置不均匀,固态电解质与负极界面之间也存在间隙,因此容易造成锂离子的不规则沉积,从而形成锂枝晶,而锂枝晶一旦出现,则意味着电池内部的锂离子出现了不可逆的减少,同时锂枝晶会不断吸附游离的锂离子实现生长,最终可能会刺破隔膜,导致电池正负极直接产生接触引发短路。
本发明的目的就是解决现有技术中存在的问题,通过在正极/电解质界面,负极/电解质界面添加银或锡纳米层,最终制备出高品质的钙钛矿型固体电解质电池,该电池展示出优异的电化学性能,同时还能够防止锂枝晶的出现。
发明内容
为了弥补上述现有技术的不足,本发明提出一种全固态电池及其制备方法,通过引入量子碳基膜/金属复合界面层有效解决了锂枝晶生长、低库仑效应与界面副反应这三大固态电池量产所面临的核心问题。
本发明的技术问题通过以下的技术方案予以解决:
一种全固态电池,包括:正极极片、固态电解质层和负极极片,其特征在于,所述正极极片包括正极材料层和与其二面对称包夹的正极界面层,所述正极材料层的活性材料为银掺杂的石墨烯材料,所述正极界面层为量子碳基膜/金属复合界面层,所述固态电解质层材料为钙钛矿型(ABO3)氧化物固态电解质,所述负极极片包括负极材料层和与其二面对称包夹的负极界面层,所述负极材料层的活性材料为锰酸锂材料,所述负极界面层为量子碳基膜/金属复合界面层。
所述的全固态电池,其特征在于,所述正极材料层的银掺杂的石墨烯材料,其制备方法为:首先将石墨烯粉体颗粒、硝酸银、硼氢化钠按照质量比溶解于水中,混合均匀后在烘干得到。
所述的全固态电池,其特征在于,所述正极材料层的银掺杂的石墨烯材料,其制备方法为:首先将石墨烯粉体颗粒、硝酸银、硼氢化钠按照质量比溶解于水中,将混合物超声处理两小时,然后倒入坩埚中,在氩气保护下,逐渐将温度从室温升到500℃,恒温1-3h,获得银掺杂的石墨烯正极活性材料层。
所述的全固态电池,其特征在于,所述石墨烯粉体颗粒、硝酸银、硼氢化钠的质量比为10:(1~2):(1~3)。
所述的全固态电池,其特征在于,所述石墨烯粉体颗粒粒径为200nm以下。
所述的全固态电池,其特征在于,所述正极极片制备方法包括以下几个步骤:
A1:在量子碳基膜上首先涂布或溅射一层金属防护涂层,该金属为镍、银、锡中的一种;
A2:在A1所述金属涂层上再涂布一层如权利要求2或3所述的银掺杂石墨烯正极活性材料层;
A3:在另一块量子碳基膜上重复A1-A2,然后与A2中获得的涂层材料热压复合,形成量子碳基膜/金属防护层/正极材料/金属防护层/量子碳基膜的多层复合正极极片。
所述的全固态电池,其特征在于,所述固态电解质层为钙钛矿型(ABO3)氧化物固态电解质,其中A=La,Sr,Ba,Ca中的一种或多种,B=Ti,Zr,Sn,Ga,Mg,Fe中的一种或多种。
所述的全固态电池,其特征在于,所述负极极片制备方法包括以下几个步骤:
B1:在量子碳基膜上首先涂布或溅射一层金属防护涂层,该金属为镍、银、锡中的一种;
B2:在B1所述金属涂层上再涂布一层锰酸锂负极活性材料层;
B3:在另一块量子碳基膜上重复B1-B2,然后与B2中获得的涂层材料热压复合,形成量子碳基膜/金属防护层/负极材料/金属防护层/量子碳基膜的多层复合负极极片。
全固态电池的制备方法,包括:将所述的正极极片,固态电解质和负极极片按照顺序叠片组装,再用电池壳体密封得到多元固态电池极片。
本发明与现有技术对比的有益效果包括:
(1)本发明通过引入量子碳基膜/金属界面层,将正极材料与钙钛矿氧化物固体电解质,负极与钙钛矿氧化物固体电解质分隔开,阻断了固态电解质与正负极产生副反应的可能,最大限度地保证了固态电池在工作过程中的正常表现和可循环性,可有效地防止锂枝晶的形成。
(2)本发明分别对正负极层进行了量子碳基膜/金属界面层处理,增大了正负极材料与电解质界面的接触面,从而改善了正极与电解质固-固界面的阻抗性能。金属纳米涂层自身良好的电导率可实现阻抗的减小,用以提升电池系统的库伦效率。
利用本发明的技术方案制备的多元固态电池极片可实现900Wh/L的高能量密度、1000次以上的充放电循环以及95%以上的库伦效率、安全性能好,具有广阔的应用前景。
附图说明
图1是本发明全固态电池的结构示意图
其中,1-正极材料层,2-固态电解质层,3-负极材料层,41-量子碳基膜/金属界面层,42-量子碳基膜/金属界面层,43-量子碳基膜/金属界面层,44-量子碳基膜/金属界面层
具体实施方式
下面对照附图并结合优选的实施方式对本发明做进一步说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本实施例中的左、右、上、下、顶、底等方位用语,仅是互为相对概念,或是以产品的正常使用状态为参考的,而不应该认为是具有限制性的。
实施例1
(1)正极极片的制备
将200nm氧化石墨烯、硝酸银、硼氢化钠按重量比10:1:2的比例溶解于水中,将混合物超声处理两小时,然后倒入坩埚中,在氩气保护下,逐渐将温度从室温升到500℃,恒温2h,获得银掺杂的石墨烯材料。将粘合剂PVDF以质量占比5%的丁酸丁酯溶液,丁酸乙酯,作为正电极活性材料的银掺杂的石墨烯材料装在到聚丙烯容器中,使用超声波分散器混合30s,使用振动器振动30min,制备出正极浆料。将该正极浆料涂布在涂有一层纳米银金属防护的量子碳基膜上,获得两片涂层材料,之后再将这两片涂层材料热压复合,形成量子碳基膜/金属防护层/正极材料/金属防护层/量子碳基膜的多层复合正极极片。
(2)固态电解质层的制备
将粘合剂PVDF以质量占比5%的丁酸丁酯溶液,丁酸乙酯,作为固态电解质层的钙钛矿型固体电解质装载到聚丙烯容器中,使用超声波分散器混合30s,使用振动器振动30min,制备出固态电解质浆料,在真空条件下,将该固态电解质浆料涂覆于正极极片上,干燥得到固态电解质层。固态电解质层为钙钛矿型(ABO3)氧化物固态电解质,其中A=La,Sr,Ba,Ca中的一种或多种,B=Ti,Zr,Sn,Ga,Mg,Fe中的一种或多种。
(3)负极片的制备
将粘合剂PVDF以质量剂占5%的丁酸丁酯溶液,丁酸乙酯,作为负极活性材料的锰酸锂(LiMn2O4)装在到聚丙烯容器中,使用超声波分散器混合30s,使用振动器振动30min,制备出负极浆料。然后将该负极浆料涂布在涂有一层纳米银金属防护的量子碳基膜上,获得两片涂层材料,之后再将这两片涂层材料热压复合,形成量子碳基膜/金属防护层/负极材料/金属防护层/量子碳基膜的多层复合正极极片。
(4)全固态电池的制备
将涂覆有固态电解质层的量子碳基膜/金属防护层/正极材料/金属防护层/量子碳基膜的多层复合正极极片,量子碳基膜/金属防护层/负极材料/金属防护层/量子碳基膜的多层复合负极极片一次放置在模具中,在60℃下烘干30min,然后加压,压力为20Mpa,得到未封装的全固态电池,再用电池壳体密封得到全固态电池。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (9)

1.一种全固态电池,包括:正极极片、固态电解质层和负极极片,其特征在于,所述正极极片包括正极材料层和与其二面对称包夹的正极界面层,所述正极材料层的活性材料为银掺杂的石墨烯材料,所述正极界面层为量子碳基膜/金属复合界面层,所述固态电解质层材料为钙钛矿型(ABO3)氧化物固态电解质,所述负极极片包括负极材料层和与其二面对称包夹的负极界面层,所述负极材料层的活性材料为锰酸锂材料,所述负极界面层为量子碳基膜/金属复合界面层。
2.如权利要求1所述的全固态电池,其特征在于,所述正极材料层的银掺杂的石墨烯材料,其制备方法为:首先将石墨烯粉体颗粒、硝酸银、硼氢化钠按照质量比溶解于水中,混合均匀后在烘干得到。
3.如权利要求1或2所述的全固态电池,其特征在于,所述正极材料层的银掺杂的石墨烯材料,其制备方法为:首先将石墨烯粉体颗粒、硝酸银、硼氢化钠按照质量比溶解于水中,将混合物超声处理两小时,然后倒入坩埚中,在氩气保护下,逐渐将温度从室温升到500℃,恒温1-3h,获得银掺杂的石墨烯正极活性材料层。
4.如权利要求2或3所述的全固态电池,其特征在于,所述石墨烯粉体颗粒、硝酸银、硼氢化钠的质量比为10:(1~2):(1~3)。
5.如权利要求2或3所述的全固态电池,其特征在于,所述石墨烯粉体颗粒粒径为200nm以下。
6.如权利要求1所述的全固态电池,其特征在于,所述正极极片制备方法包括以下几个步骤:
A1:在量子碳基膜上首先涂布或溅射一层金属防护涂层,该金属为镍、银、锡中的一种;
A2:在A1所述金属涂层上再涂布一层如权利要求2或3所述的银掺杂石墨烯正极活性材料层;
A3:在另一块量子碳基膜上重复A1-A2,然后与A2中获得的涂层材料热压复合,形成量子碳基膜/金属防护层/正极材料/金属防护层/量子碳基膜的多层复合正极极片。
7.如权利要求1所述的全固态电池,其特征在于,所述固态电解质层为钙钛矿型(ABO3)氧化物固态电解质,其中A=La,Sr,Ba,Ca中的一种或多种,B=Ti,Zr,Sn,Ga,Mg,Fe中的一种或多种。
8.如权利要求1所述的全固态电池,其特征在于,所述负极极片制备方法包括以下几个步骤:
B1:在量子碳基膜上首先涂布或溅射一层金属防护涂层,该金属为镍、银、锡中的一种;
B2:在B1所述金属涂层上再涂布一层锰酸锂负极活性材料层;
B3:在另一块量子碳基膜上重复B1-B2,然后与B2中获得的涂层材料热压复合,形成量子碳基膜/金属防护层/负极材料/金属防护层/量子碳基膜的多层复合负极极片。
9.根据权利要求1-8之一的全固态电池的制备方法,包括:将所述的正极极片,固态电解质和负极极片按照顺序叠片组装,再用电池壳体密封得到多元固态电池极片。
CN202011165797.2A 2020-10-27 2020-10-27 一种全固态电池及其制备方法 Active CN112290024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011165797.2A CN112290024B (zh) 2020-10-27 2020-10-27 一种全固态电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011165797.2A CN112290024B (zh) 2020-10-27 2020-10-27 一种全固态电池及其制备方法

Publications (2)

Publication Number Publication Date
CN112290024A true CN112290024A (zh) 2021-01-29
CN112290024B CN112290024B (zh) 2021-12-03

Family

ID=74373350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011165797.2A Active CN112290024B (zh) 2020-10-27 2020-10-27 一种全固态电池及其制备方法

Country Status (1)

Country Link
CN (1) CN112290024B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043566A1 (ja) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 電池用焼結体、電池用焼結体の製造方法、及び全固体リチウム電池
CN108923022A (zh) * 2018-05-23 2018-11-30 中国科学院青岛生物能源与过程研究所 一种提高全固态电池锂负极稳定性的改性方法
CN110336085A (zh) * 2019-05-28 2019-10-15 浙江锋锂新能源科技有限公司 一种弱化硫化物电解质固态电池内阻的方法
CN110993956A (zh) * 2019-12-20 2020-04-10 中国科学院过程工程研究所 一种全固态电池用负极板及其制备方法和用途
CN210326016U (zh) * 2019-09-12 2020-04-14 深圳先进技术研究院 全固态二次电池和电动汽车
CN111063861A (zh) * 2019-04-08 2020-04-24 中科(马鞍山)新材料科创园有限公司 一种全固态电池用阳极板及其制备方法
JP2020129485A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 全固体電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043566A1 (ja) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 電池用焼結体、電池用焼結体の製造方法、及び全固体リチウム電池
CN108923022A (zh) * 2018-05-23 2018-11-30 中国科学院青岛生物能源与过程研究所 一种提高全固态电池锂负极稳定性的改性方法
JP2020129485A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 全固体電池
CN111063861A (zh) * 2019-04-08 2020-04-24 中科(马鞍山)新材料科创园有限公司 一种全固态电池用阳极板及其制备方法
CN110336085A (zh) * 2019-05-28 2019-10-15 浙江锋锂新能源科技有限公司 一种弱化硫化物电解质固态电池内阻的方法
CN210326016U (zh) * 2019-09-12 2020-04-14 深圳先进技术研究院 全固态二次电池和电动汽车
CN110993956A (zh) * 2019-12-20 2020-04-10 中国科学院过程工程研究所 一种全固态电池用负极板及其制备方法和用途

Also Published As

Publication number Publication date
CN112290024B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
Hao et al. Architectural design and fabrication approaches for solid-state batteries
CN108376783B (zh) 一种锂阳极表面保护涂层及其制备方法
EP3367467B1 (en) Methods for making a battery
TWI416785B (zh) 用於可充電電池之矽陽極
CN102610830B (zh) 锂离子电池
US20160118684A1 (en) Electrophoretic deposition of thin film batteries
US9673478B2 (en) Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
CN112397776B (zh) 一种Ga、Al共掺杂LLZO固态电解质、多元固态电池及其制备方法
US20090226816A1 (en) Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
WO2015107423A2 (ja) 水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム
US20100291444A1 (en) Multilayer coatings for rechargeable batteries
CA2771969A1 (en) High performance electrodes
US11374257B2 (en) Softened solid-state electrolytes for lithium ion batteries
CN110534796A (zh) 一种全固态锂电池及其制备方法
CN108365255B (zh) 一种锂电池电芯、锂电池及其制备方法
CN113097648B (zh) 用于锂金属电池的隔膜及其制备方法
CN113451580A (zh) 一种界面层及包括该界面层的锂离子电池
JP2020514948A (ja) 全固体リチウムイオン蓄電池およびその製造方法
CN111276736A (zh) 正极、电解质与无机锂盐共烧结方法
CN112290024B (zh) 一种全固态电池及其制备方法
CN109935888B (zh) 锂电池电芯及其锂电池
US20220376255A1 (en) Silicon-Based Composite Anodes for High Energy Density, High Cycle Life Solid-State Lithium-Ion Battery
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
CN114373890A (zh) 一种新型含硅负极及锂离子电池
KR20130136117A (ko) 리튬황 배터리의 유황전극과 이의 제조방법, 및 유황전극을 적용한 리튬황 배터리

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant