CN112289853A - 一种具有组分渐变的背势垒结构的hemt器件 - Google Patents

一种具有组分渐变的背势垒结构的hemt器件 Download PDF

Info

Publication number
CN112289853A
CN112289853A CN202011175903.5A CN202011175903A CN112289853A CN 112289853 A CN112289853 A CN 112289853A CN 202011175903 A CN202011175903 A CN 202011175903A CN 112289853 A CN112289853 A CN 112289853A
Authority
CN
China
Prior art keywords
gan
back barrier
inaln
hemt device
barrier structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011175903.5A
Other languages
English (en)
Inventor
杨国锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011175903.5A priority Critical patent/CN112289853A/zh
Publication of CN112289853A publication Critical patent/CN112289853A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种具有组分渐变的背势垒结构的HEMT器件,属于半导体功率器件制造技术领域。所述HEMT器件通过引入组分渐变的背势垒,有效地增强沟道中的电子约束,从而改善器件的性能。此外,背势垒中的极化渐变可以降低寄生沟道中的2DEG浓度并减弱沟道的不利影响,这有利于改善器件的电子性能。本发明通过采用极化渐变的AlGaN背势垒,使得HEMT器件的饱和电流和跨导均有所提高,电流增益截止频率峰值和功率增益截止频率峰值也得到了提高,从而获得高性能的InAlN/GaN HEMT。由此,该结构有助于GaN基功率器件的发展。

Description

一种具有组分渐变的背势垒结构的HEMT器件
技术领域
本发明涉及一种具有组分渐变的背势垒结构的HEMT器件,属于半导体功率器件制造技术领域。
背景技术
氮化镓(GaN)作为第三代宽禁带半导体材料的典型代表,由于其具有极宽的禁带宽度、高临界电场、极化引起的电子气、更高的电子迁移率和饱和速度,是制造高频大功率器件的最佳选择。因此,GaN基高电子迁移率晶体管(HEMTs)可以实现在高压下工作以及更低的导通电阻和更高的工作开关频率。此外,GaN基HEMTs具有高二维电子气浓度及高电子迁移率的优点,因此可以工作到毫米波段。
近年来,AlGaN/GaN异质结材料一直是GaN基器件的主力,考虑到AlGaN/GaN异质结处的晶格失配和压电效应引起的晶格缺陷导致了AlGaN/GaN HEMT的可靠性问题,AlInN势垒层被选择替代常用的AlGaN势垒层以改善GaN基HEMT的性能。当InxAl1-xN的Al组分为0.83时,InxAl1-xN与GaN晶格匹配。因此,In0.17Al0.83N/GaN界面处的自发极化可以诱导更高的二维电子气(2DEG)密度,并且可以增强HEMT的可靠性。
虽然所提出的InAlN/AlN/GaN结构具有所述的优点,但GaN在单一异质结结构中既是缓冲层又是沟道层会导致一部分2DEG从沟道溢出到缓冲层,导致灵活性和可靠性降低。增强异质结2DEG约束和抑制载流子溢出到缓冲层最直接的方法是使用背垒,它构成了双异质结结构。其中,加入AlGaN背势垒层是最常用的解决办法之一,其在一定程度上,它可以增强载流子约束,但同时也会在AlGaN/GaN缓冲界面产生不必要的寄生通道。而寄生通道会导致器件的击穿电压降低,并使器件的可靠性严重恶化,限制了器件的电学特性。
发明内容
为了解决HEMT器件中加入AlGaN背势垒层导致在AlGaN/GaN缓冲界面产生不必要的寄生通道的问题,本发明提供了一种具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,所述HEMT器件的外延结构依次包括:衬底,GaN缓冲层,Al组分渐变的AlGaN背势垒层,GaN沟道,AlN插入层,In组分为0.17的InAlN势垒层,以及钝化层,栅极、源极和漏极;
其中靠近GaN主沟道侧的渐变AlGaN背势垒层的Al成分为0.1,并且远离主沟道逐渐减小至0。
可选的,所述HEMT器件中,Al组分渐变的AlGaN背势垒层中Al含量从0.1到0呈线性变化。
可选的,所述衬底的材料为蓝宝石。
可选的,所述GaN缓冲层为非故意n型掺杂,背景载流子浓度为1×1016cm-3,其厚度为2μm。
可选的,所述GaN沟道的厚度为14nm。
可选的,所述AlN插入层的厚度为1nm。
可选的,所述InAlN势垒层为未掺杂且厚度为10nm,Al组分为0.83,与厚度为14nm的GaN沟道实现晶格匹配。
可选的,源极和漏极均为欧姆接触,栅极为肖特基接触。
可选的,栅-源极之间的距离,栅-漏极之间的距离和栅极的长度分别为0.5μm,10μm和2μm。
可选的,所述钝化层采用Si3N4
本发明有益效果是:
通过引入组分渐变的背势垒,有效地增强沟道中的电子约束,从而改善器件的性能。此外,背势垒中的极化渐变可以降低寄生沟道中的2DEG浓度并减弱沟道的不利影响,这有利于改善器件的电子性能。极化渐变的AlGaN背势垒可以替代固定的Al含量AlxGa1-xN背势垒设计,从而获得高性能的InAlN/GaN HEMT。由此,该结构有助于GaN基功率器件的发展。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例中提出的具有组分渐变的背势垒层InAlN/GaN HEMT器件的层结构示意图;
图2是传统的具有组分固定的背势垒层InAlN/GaN HEMT器件的层结构示意图;
图3是本发明提出的具有组分渐变和传统组分固定的背势垒的两种HEMT器件在漏电压为5v时的传输特性仿真图,其中图3A为栅电压-漏电流仿真图,图3B为栅电压-跨导仿真图;
图4是具有组分渐变和组分固定的背势垒的两种HEMT器件在8v漏电压下的模拟射频(RF)性能仿真图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一:
本实施例提供一种具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,所述HEMT器件采用极化渐变的AlGaN背势垒代替了传统组分固定的Al0.1Ga0.9N背势垒,其中靠近GaN主沟道侧的渐变AlGaN背势垒层的Al成分为0.1,并且远离主沟道逐渐减小至0,以减少寄生沟道的危害,提高器件的性能。
参见图1,所述具有组分渐变的背势垒结构的InAlN/GaN HEMT器件的外延结构依次包括:衬底,GaN缓冲层,Al组分渐变的AlGaN背势垒层,GaN沟道,AlN插入层,In组分为0.17的InAlN势垒层。
所述HEMT器件还包括钝化层以及栅极、源极和漏极。钝化层的厚度为100nm。
所述结构中的衬底材料为蓝宝石。
GaN缓冲层为非故意n型掺杂,背景载流子浓度为1×1016cm-3,其厚度为2μm。
AlN插入层厚度为1nm,InAlN势垒层为未掺杂且厚度为10nm,Al组分为0.83,与厚度为14nm的GaN沟道实现晶格匹配。
所述HEMT器件的Al组分渐变的AlGaN背势垒层的厚度为25nm,其中Al含量沿外延生长从0%(底部)到10%(顶部)线性变化。
源极和漏极均为欧姆接触,栅极为肖特基接触。栅-源极之间的距离,栅-漏极之间的距离和栅极的长度分别为0.5μm,10μm和2μm。通过使用Si3N4薄膜钝化器件表面,以减少HEMT中的电流崩塌效应。
为验证本申请提出的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件相对于传统组分固定的背势垒层InAlN/GaN HEMT器件的优势,本申请发明人对二者的相关性能指标进行了仿真对比,其中传统组分固定的背势垒层InAlN/GaN HEMT器件的结构如图2所示,其背势垒层Al组分固定为0.1,厚度为25nm。
通过使用SilvacoTCAD的Atlas二维器件仿真工具分别对传统的组分固定Al0.1Ga0.9N背势垒HEMT器件和本申请提出的组分渐变的背势垒HEMT器件性能进行仿真比较。在二维数值计算中,使用了漂移扩散输运模型以及其它几个重要的物理模型,例如费米-狄拉克,低场电子迁移率,高场迁移率,载流子产生复合模型(SRH)和极化,并且设置了压电极化参数和自发极化参数。在小信号交流仿真的基础上,讨论了器件的频率特性。对于所有模拟,在In0.17Al0.83N处引入了供体陷阱,陷阱能级为0.42eV,密度为3.86×1013cm-3,而在非故意掺杂(UID)GaN缓冲层中考虑了受体陷阱,陷阱能级低于导带0.4eV,陷阱密度为1×1017cm-3
图3展示了本申请提出的具有组分渐变和传统组分固定的背势垒的两种HEMT器件在漏电压(Vds)为5V时的传输特性,其中图3A为栅电压-漏电流仿真图,图3B为栅电压-跨导仿真图。根据图3可知,与传统具有组分固定的Al0.1Ga0.9N背势垒的HEMT相比,本申请提出的组分渐变的AlGaN背势垒HEMT的饱和电流和跨导均有所提高。这是由于逐渐形成的Al成分会削弱寄生沟道对主沟道的影响并增加2DEG的迁移率。
本申请提出的具有组分渐变和传统组分固定的背势垒的两种HEMT器件在Vds为8V时的射频(RF)性能如图4所示,本申请提出的具有组分渐变的背势垒的HEMT器件通过AlGaN背势垒中渐变的Al组分,改善了器件的RF性能。由图4可知,本申请提出的具有渐变组分的背势垒层的器件实现了5GHz的电流增益截止频率峰值和19GHz的功率增益截止频率峰值,均高于传统组分固定的的背势垒的HEMT器件。此结果的原因主要是由于AlGaN背势垒中的分级极化导致更高的跨导和更高的输出电阻,从而使得电流增益截止频率峰值更高且功率增益截止频率峰值也较高。
本发明通过对Atlas漂移-扩散模拟的二维分析,提出了具有极化渐变AlGaN背势垒的晶格匹配In0.17Al0.83N/AlN/GaN HEMT。通过引入具有极化渐变AlGaN背势垒,可以有效地增强沟道中的电子约束,从而改善器件的性能。
此外,背势垒中的极化渐变可以降低寄生沟道中的2DEG浓度并减弱沟道的不利影响,这有利于改善器件的电子性能。极化渐变的AlGaN背势垒可以替代固定的Al含量AlxGa1-xN背势垒设计,从而获得高性能的InAlN/GaN HEMT。
由此,该结构有助于GaN基功率器件的发展。
本发明实施例中的部分步骤,可以利用软件实现,相应的软件程序可以存储在可读取的存储介质中,如光盘或硬盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述HEMT器件的外延结构依次包括:衬底,GaN缓冲层,Al组分渐变的AlGaN背势垒层,GaN沟道,AlN插入层,In组分为0.17的InAlN势垒层,以及钝化层,栅极、源极和漏极;
其中靠近GaN主沟道侧的渐变AlGaN背势垒层的Al成分为0.1,并且远离主沟道逐渐减小至0。
2.根据权利要求1所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述HEMT器件中,Al组分渐变的AlGaN背势垒层中Al含量从0.1到0呈线性变化。
3.根据权利要求2所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述衬底的材料为蓝宝石。
4.根据权利要求3所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述GaN缓冲层为非故意n型掺杂,背景载流子浓度为1×1016cm-3,其厚度为2μm。
5.根据权利要求4所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述GaN沟道的厚度为14nm。
6.根据权利要求5所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述AlN插入层的厚度为1nm。
7.根据权利要求6所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述InAlN势垒层为未掺杂且厚度为10nm,Al组分为0.83,与厚度为14nm的GaN沟道实现晶格匹配。
8.根据权利要求7所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,源极和漏极均为欧姆接触,栅极为肖特基接触。
9.根据权利要求8所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,栅-源极之间的距离,栅-漏极之间的距离和栅极的长度分别为0.5μm,10μm和2μm。
10.根据权利要求9所述的具有组分渐变的背势垒结构的InAlN/GaN HEMT器件,其特征在于,所述钝化层采用Si3N4
CN202011175903.5A 2020-10-29 2020-10-29 一种具有组分渐变的背势垒结构的hemt器件 Pending CN112289853A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011175903.5A CN112289853A (zh) 2020-10-29 2020-10-29 一种具有组分渐变的背势垒结构的hemt器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011175903.5A CN112289853A (zh) 2020-10-29 2020-10-29 一种具有组分渐变的背势垒结构的hemt器件

Publications (1)

Publication Number Publication Date
CN112289853A true CN112289853A (zh) 2021-01-29

Family

ID=74373174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011175903.5A Pending CN112289853A (zh) 2020-10-29 2020-10-29 一种具有组分渐变的背势垒结构的hemt器件

Country Status (1)

Country Link
CN (1) CN112289853A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914316A (zh) * 2022-05-23 2022-08-16 南京大学 近红外表面等离激元近场增强型高迁移率晶体管探测器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001888A1 (ja) * 2007-06-27 2008-12-31 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
CN102646700A (zh) * 2012-05-07 2012-08-22 中国电子科技集团公司第五十五研究所 复合缓冲层的氮化物高电子迁移率晶体管外延结构
CN102969341A (zh) * 2012-11-09 2013-03-13 中国电子科技集团公司第五十五研究所 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构
CN103594509A (zh) * 2013-11-26 2014-02-19 电子科技大学 一种氮化镓高电子迁移率晶体管及其制备方法
US20160260827A1 (en) * 2015-03-05 2016-09-08 Fujitsu Limited Semiconductor device, fabrication method for semiconductor device, power supply apparatus and high-frequency amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001888A1 (ja) * 2007-06-27 2008-12-31 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
CN102646700A (zh) * 2012-05-07 2012-08-22 中国电子科技集团公司第五十五研究所 复合缓冲层的氮化物高电子迁移率晶体管外延结构
CN102969341A (zh) * 2012-11-09 2013-03-13 中国电子科技集团公司第五十五研究所 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构
CN103594509A (zh) * 2013-11-26 2014-02-19 电子科技大学 一种氮化镓高电子迁移率晶体管及其制备方法
US20160260827A1 (en) * 2015-03-05 2016-09-08 Fujitsu Limited Semiconductor device, fabrication method for semiconductor device, power supply apparatus and high-frequency amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914316A (zh) * 2022-05-23 2022-08-16 南京大学 近红外表面等离激元近场增强型高迁移率晶体管探测器
CN114914316B (zh) * 2022-05-23 2023-12-12 南京大学 近红外表面等离激元近场增强型高迁移率晶体管探测器

Similar Documents

Publication Publication Date Title
Palacios et al. Influence of the dynamic access resistance in the g/sub m/and f/sub T/linearity of AlGaN/GaN HEMTs
Park et al. Simulation of short-channel effects in N-and Ga-polar AlGaN/GaN HEMTs
JP6732131B2 (ja) 半導体デバイス及び半導体デバイスを設計する方法
Altuntas et al. Power performance at 40 GHz of AlGaN/GaN high-electron mobility transistors grown by molecular beam epitaxy on Si (111) substrate
US7525130B2 (en) Polarization-doped field effect transistors (POLFETS) and materials and methods for making the same
CN102856373B (zh) 高电子迁移率晶体管
CN102664188B (zh) 一种具有复合缓冲层的氮化镓基高电子迁移率晶体管
CN104201202B (zh) 一种具有复合势垒层的氮化镓基异质结场效应管
Xing et al. Planar-nanostrip-channel InAlN/GaN HEMTs on Si With Improved ${g} _ {{m}} $ and ${f} _ {\textsf {T}} $ linearity
Mondal et al. Comparative study of variations in gate oxide material of a novel underlap DG MOS-HEMT for analog/RF and high power applications
Ho et al. Suppression of current collapse in enhancement mode GaN-based HEMTs using an AlGaN/GaN/AlGaN double heterostructure
US20230411507A1 (en) Normally-off p-gan gate double channel hemt and the manufacturing method thereof
CN104916679A (zh) 半导体装置
CN103474455B (zh) 一种具有复合金属栅的氮化镓基高电子迁移率晶体管
Benkhelifa et al. Normally-off AlGaN/GaN/AlGaN double heterostructure FETs with a thick undoped GaN gate layer
CN112289853A (zh) 一种具有组分渐变的背势垒结构的hemt器件
CN102544086A (zh) 氮化镓基高电子迁移率晶体管及其制作方法
Macfarlane Design and fabrication of AlGaN/GaN HEMTs with high breakdown voltages
Chand et al. Comparative study on analog & RF parameter of InALN/AlN/GaN normally off HEMTs with and without AlGAN back barrier
CN112614778B (zh) 一种在GaN HEMT器件中形成多功能p-GaN电极的方法及器件
Nirmal et al. Impact of AlGaN Back Barrier in AlGaN/GaN HEMT on GaN substrate
Meshram et al. Normally-Off β-(Al x Ga 1-x) 2 O 3/Ga 2 O 3 Modulation-Doped Field-Effect Transistors With p-GaN Gate: Proposal and Investigation
CN205508826U (zh) 具有纵向栅极结构的常关型hemt器件
Touati et al. Study of AlGaN/GaN MOS-HEMTs with TiO2 gate dielectric and regrown source/drain
Four et al. Comparative simulation of DC and AC performances of Al0. 26Ga0. 74N/GaN HEMT with BGaN Back-barriers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210129