CN112283048A - 一种风电机组叶片净空检测方法及装置 - Google Patents

一种风电机组叶片净空检测方法及装置 Download PDF

Info

Publication number
CN112283048A
CN112283048A CN202011173869.8A CN202011173869A CN112283048A CN 112283048 A CN112283048 A CN 112283048A CN 202011173869 A CN202011173869 A CN 202011173869A CN 112283048 A CN112283048 A CN 112283048A
Authority
CN
China
Prior art keywords
blade
wind
clearance
tower
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011173869.8A
Other languages
English (en)
Other versions
CN112283048B (zh
Inventor
刘河生
张瑞刚
雷航
余成
田晓璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202011173869.8A priority Critical patent/CN112283048B/zh
Publication of CN112283048A publication Critical patent/CN112283048A/zh
Application granted granted Critical
Publication of CN112283048B publication Critical patent/CN112283048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • F03D7/0268Parking or storm protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/33Proximity of blade to tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/821Displacement measuring means, e.g. inductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种风电机组叶片净空检测方法及装置,根据固定在塔筒上的电磁铁和固定在叶片上的绕组线圈发生高速相对运动的原理产生感应电动势,该感应电动势经由线圈、滑动变阻器、浪涌保护器以及模拟量输入模块组成的闭合回路形成感应电流,从而控制器可以通过模拟量输入模块实时、精确感知叶片的净空距离;所述的控制逻辑可以极大限度的提高该装置的工作效率,降低风电机组因为不必要的停机而带来的发电量损失。该装置简单、高效、易维护,降低了机组的安全风险,提高了风电场的经济效益。

Description

一种风电机组叶片净空检测方法及装置
技术领域
本发明属于风电机组检测及控制领域,尤其涉及一种风电机组叶片净空检测方法及装置。
背景技术
随着风力发电行业的迅猛发展,风电机组大型化的趋势越来越明显,机组的大型化趋势对机组的稳定运行、可靠性等提出了越来越严格的要求。机组在湍流强度大、阵风风况下的运行会使叶片的挠度变大,有可能发生叶片打塔的现象,叶片打塔轻则损坏叶片,重则发生倒塔。同时,巨大的风轮直径使得风切变对机组运行安全造成了越来越大的困扰。无论哪一种故障,带来的发电量损失和设备更换损失都是非常巨大的。因此,实时检测叶片的净空在风电机组风轮直径越来越大的当下是非常重要且有必要的。
现如今,对于风电机组叶片净空的检测主要有两种方式。其一为激光检测:激光检测容易受天气影响,会出现误判的现象,从而可靠性不高;其二为雷达探头检测:雷达探头也容易受到其他物体干扰而发生误判、所要求的探头数量较多、经济性较差。
发明内容
本发明的目的在于提出了一种可以实时感知叶尖净空的方法及装置,该装置所应用的该方法更加全面和准确,从而使机组运行更加安全,减少不必要的发电量损失。
本发明采用如下技术方案来实现的:
一种风力发电机组叶片净空检测方法,包括以下步骤:
步骤一:风电机组叶片A的叶尖在顺时针方向将要高速通过塔筒时,PLC控制接触器触点吸合,电磁铁带电有磁性;
步骤二:风电机组叶片A的叶尖在顺时针方向高速通过塔筒时,叶尖位置的绕组线圈通过与电磁铁之间的相对运动产生感应电动势;
步骤三:PLC的模拟量输入模块采集感应电流,将感应电流模拟量转化为数字量传递给PLC;
步骤四:PLC检测该数字量值的大小,从而确定叶片与塔筒的净空距离;
步骤五:当风电机组叶片A在顺时针方向高速通过塔筒后,PLC控制接触器触点断开,电磁铁失电失去磁性;
步骤六:当风电机组三个叶片依次通过塔筒时,B、C叶片通过时的控制逻辑和A的一样;
步骤七:当机组运行时检测到叶片净空小于设计值一定范围时,立即启用附加控制算法;
步骤八:当机组处于由于其他原因造成的停机状态时,PLC控制接触器触点断开,电磁铁失电失去磁性;
步骤九:风电机组叶片净空小于设计值,绝大多数发生在额定风速附近、额定风速以上、强阵风情况以及其他故障状态,因此针对不同的风速,设计不同的检测装置工作周期;
步骤十:当机舱对风方向不同时,控制器控制不同的电磁铁来提供磁场。
本发明进一步的改进在于,步骤二中,感应电动势的计算公式如下:
Figure BDA0002748141880000021
式子中,E为感应电动势,单位为V;
N为线圈匝数;
Figure BDA0002748141880000022
为磁通量的变化率,单位为Wb;
Δt为变化时间,单位为s。
本发明进一步的改进在于,所述步骤七包含以下四个步骤:
1):假设对于某一型号的机组而言,在极限净空距离为h1(即当测量到的净空值小于h1时,机组触发停机标志位,自动停机),机组设计净空值为h2;
2):当测量净空值h>h2,机组正常运行,无附加控制条件;
3):当测量净空值h<h1,机组触发停机标志,无附加控制条件;
4):当测量净空值有h2<h<h1,机组则需要限制功率来主动降低叶片挠度,即限制的功率根据检测的净空值通过插值法来确定。
本发明进一步的改进在于,所述步骤九包含以下四个步骤:
1):控制程序里设置一个阵风风况的标志L1和强湍流风况的标志L2;当主控程序根据风速值判断到当前风况为阵风风况时,L1触发,当主控程序根据风速值判断到当前风况为强湍流风况时,L2触发;
2):当机组运行在额定风速以下且L1和L2均没有触发时,设置一个检测装置工作的时间间隔T1,此时间间隔T根据轮毂处测量到的1s的平均风速值采用插值方法确定,检测装置每隔T1时间来工作一次,间歇性检测叶片的净空值;
3):当机组运行在额定风速以下,同时L1和L2至少有一个触发时,控制程序缩短检测装置工作的时间间隔,调整为T2,每隔T2时间,检测装置工作一次;
4):当机组运行在额定风速附近或者额定风速以上,同时L1和L2至少有一个触发时,检测装置工作时间间隔根据风轮转速来确定,假设风轮转速为n rpm,风轮直径为2R(m),塔筒高度为H(m),离塔筒基础
Figure BDA0002748141880000031
高度的塔筒直径为D,则叶片的叶尖线速度为
Figure BDA0002748141880000032
Figure BDA0002748141880000033
则每个叶片通过塔筒的时间小于t3=D/v,风轮旋转一周的时间为
Figure BDA0002748141880000034
假设此时叶片A即将通过塔筒,设为0时刻,则0时刻~t3时刻,控制器控制接触器触点闭合,电磁铁带电,t3时刻~
Figure BDA0002748141880000035
时刻,控制器不输出控制指令,接触器触点断开,电磁铁失电;
Figure BDA0002748141880000036
时刻~
Figure BDA0002748141880000037
时刻,控制器控制接触器触点闭合,电磁铁带电,该时间段内叶片B通过塔筒;在
Figure BDA0002748141880000038
时刻~
Figure BDA0002748141880000039
时刻,控制器不输出控制指令,接触器触点断开,电磁铁失电;在
Figure BDA00027481418800000310
时刻~
Figure BDA00027481418800000311
时刻,控制器控制接触器触点闭合,电磁铁带电,该时间段内叶片C通过塔筒。
一种风力发电机组叶片净空检测装置,包括:
机舱、叶片、轮毂、塔筒、电磁铁、绕组、滑动变阻器、浪涌保护器、模拟量输入模块、PLC和接触器;其中,轮毂与叶片连接,同时轮毂后端与机舱前端连接,机舱下端与塔筒上端连接,电磁铁位于塔筒的设定高度处;绕组位于叶片的前端,滑动变阻器以及浪涌保护器位于机舱中,依次串联在绕组的后端,PLC将模拟量输入模块采集的电信号转化为数字信号;滑动变阻器、浪涌保护器、模拟量输入模块均位于机舱的控制柜当中,接触器控制电磁铁的供电,其和PLC安装在塔筒里的控制柜当中;PLC和模拟量输入模块通过光纤连接,两者通过设定的通讯协议来实现数据传输。
本发明进一步的改进在于,塔筒下端与地基连接。
本发明至少具有如下有益的技术效果:
本发明提供的检测方法和装置完全不受天气和外界因素影响,可以全天候工作;不会发生利用其他传感器探头检测而产生的误判,精度高、装置简单;控制策略能够减少因为检测失误停机引起的发电量损失;设计的控制思路能够最大化的提高该装置的性价比;
附图说明
图1示出了根据本发明的PLC控制器采集绕组线圈产生的感应电流的示意图。
图2示出了根据本发明的电磁铁安装位置所在处的塔筒截面图。
图3示出了风电机组构造图。
图4示出了根据本发明的PLC控制器通过接触器控制电磁铁的示意图。
具体实施方式
以下结合附图对本发明做出进一步的说明。
本发明提供的一种风力发电机组叶片净空检测方法,包括以下步骤:
步骤一:风电机组叶片A的叶尖在顺时针方向将要高速通过塔筒时,PLC控制接触器触点闭合,电磁铁带电有磁性;
步骤二:风电机组叶片A的叶尖在顺时针方向高速通过塔筒时,叶尖位置的绕组线圈通过与电磁铁之间的相对运动产生感应电动势;
Figure BDA0002748141880000051
式子中,E为感应电动势,单位为V;
N为线圈匝数;
Figure BDA0002748141880000052
为磁通量的变化率,单位为Wb;
Δt为变化时间,单位为s;
步骤三:PLC的模拟量输入模块采集感应电流,将感应电流模拟量转化为数字量传递给PLC;
步骤四:PLC检测该数字量值的大小,从而确定叶片净空;
步骤五:当风电机组叶片A在顺时针方向高速通过塔筒后,PLC控制接触器-触点断开,电磁铁失电失去磁性;
步骤六:当风电机组三个叶片依次通过塔筒时,B、C叶片通过时的控制逻辑和A的一样。
步骤七:当机组运行时检测到叶片净空小于设计值时,立即启用附加控制算法。
步骤八:当机组处于由于其他原因起因的停机状态时,PLC控制接触器-触点断开,电磁铁失电失去磁性;
步骤九:风电机组叶片净空小于设计值,绝大多数发生在额定风速附近、额定风速以上、强阵风情况以及其他故障状态。因此针对不同的风速,设计不同的检测装置工作周期。
步骤十:当机舱对风方向不同时,控制器控制不同的电磁铁来提供磁场。即PLC只控制来流风速方向上的电磁铁。
所述步骤七包含以下四个步骤:
1):假设对于某一型号的机组而言,在极限净空距离为h1(即当测量到的净空值小于h1时,机组触发停机标志位,自动停机),机组设计净空值为h2。
2):当测量净空值h>h2,机组正常运行,无附加控制条件;
3):当测量净空值h<h1,机组触发停机标志,无附加控制条件;
4):当测量净空值有h2<h<h1,机组则需要限制功率来主动降低叶片挠度。即限制的功率根据检测的净空值通过插值法来确定。
所述步骤九包含以下四个步骤:
1):控制程序里设置一个阵风风况的标志L1和强湍流风况的标志L2;当主控程序根据风速值判断到当前风况为阵风风况时,L1触发,当主控程序根据风速值判断到当前风况为强湍流风况时,L2触发。
2):当机组运行在额定风速以下且L1和L2均没有触发时,设置一个检测装置工作的时间间隔T1,此时间间隔T根据轮毂处测量到的1s的平均风速值采用插值方法确定。检测装置每隔T1时间来工作一次,间歇性检测叶片的净空值。
3):当机组运行在额定风速以下,同时L1和L2至少有一个触发时,控制程序缩短检测装置工作的时间间隔,调整为T2,每隔T2时间,检测装置工作一次。
4):当机组运行在额定风速附近或者额定风速以上,同时L1和L2至少有一个触发时,检测装置工作时间间隔根据风轮转速来确定。假设风轮转速为n rpm,风轮直径为2R(m),塔筒高度为H(m),离塔筒基础
Figure BDA0002748141880000061
高度的塔筒直径为D,则叶片的叶尖线速度为
Figure BDA0002748141880000062
Figure BDA0002748141880000063
则每个叶片通过塔筒的时间小于t3=D/v,风轮旋转一周的时间为
Figure BDA0002748141880000064
设置这样的控制策略,假设此时叶片A即将通过塔筒,设置为0时刻,则0时刻~t3时刻,控制器控制接触器闭合,电磁铁带电,t3时刻~
Figure BDA0002748141880000065
时刻,控制器不输出控制指令,接触器触点断开,电磁铁失电;
Figure BDA0002748141880000071
时刻~
Figure BDA0002748141880000072
时刻,控制器控制接触器触点闭合,电磁铁带电,该时间段内叶片B通过塔筒;在
Figure BDA0002748141880000073
时刻~
Figure BDA0002748141880000074
时刻,控制器不输出控制指令,接触器触点断开,电磁铁失电;在
Figure BDA0002748141880000075
时刻~
Figure BDA0002748141880000076
时刻,控制器控制接触器触点闭合,电磁铁带电,该时间段内叶片C通过塔筒。
基于上述技术问题,本发明提供的一种风电机组叶片净空检测装置,包括机舱1、叶片2、轮毂3、塔筒4、电磁铁6、绕组7、滑动变阻器8、浪涌保护器9、模拟量输入模块10、PLC11和接触器12。
其中,轮毂3与叶片2连接,同时轮毂3后端与机舱1前端连接,机舱1下端与塔筒4上端连接,塔筒4下端与地基5连接,电磁铁6位于塔筒4的设定高度处,具体高度根据机组叶片的长度确定;绕组7位于叶片2的前端,滑动变阻器8以及浪涌保护器9位于机舱中,依次串联在绕组7的后端,PLC11将模拟量输入模块10采集的电信号转化为数字信号;滑动变阻器8、浪涌保护器9、模拟量输入模块10均位于机舱的控制柜当中,接触器12只参与电磁铁6的供电,其和PLC11安装在塔筒里的控制柜当中,;PLC11和模拟量输入模块10通过光纤连接,两者通过设定的通讯协议来实现数据传输。
当叶片2即将高速通过塔筒时,PLC11控制接触器12闭合,电磁铁6带电,产生磁场;当叶片2前端装置的绕组7高速通过电磁铁6提供的磁场时,生成感应电流,滑动变阻器8调节该电流值以使其范围为4-20mA,PLC11从而根据模拟量输入模块11采集到的值确定此时刻叶片的净空值;当叶片2通过塔筒后,PLC11不再控制接触器12闭合,从而电磁铁6失电,不产生磁场。
需要备注的专业术语有:
额定风速:风电机组达到额定功率时对应的风速。
挠度:叶片受到风力作用发生弯曲变形的程度。
轮毂:安装叶片并和机舱进行连接的机构。
塔筒:支撑机舱和风轮的钢制结构。

Claims (6)

1.一种风力发电机组叶片净空检测方法,其特征在于,包括以下步骤:
步骤一:风电机组叶片A的叶尖在顺时针方向将要高速通过塔筒时,PLC控制接触器触点吸合,电磁铁带电有磁性;
步骤二:风电机组叶片A的叶尖在顺时针方向高速通过塔筒时,叶尖位置的绕组线圈通过与电磁铁之间的相对运动产生感应电动势;
步骤三:PLC的模拟量输入模块采集感应电流,将感应电流模拟量转化为数字量传递给PLC;
步骤四:PLC检测该数字量值的大小,从而确定叶片与塔筒的净空距离;
步骤五:当风电机组叶片A在顺时针方向高速通过塔筒后,PLC控制接触器触点断开,电磁铁失电失去磁性;
步骤六:当风电机组三个叶片依次通过塔筒时,B、C叶片通过时的控制逻辑和A的一样;
步骤七:当机组运行时检测到叶片净空小于设计值一定范围时,立即启用附加控制算法;
步骤八:当机组处于由于其他原因造成的停机状态时,PLC控制接触器触点断开,电磁铁失电失去磁性;
步骤九:风电机组叶片净空小于设计值,绝大多数发生在额定风速附近、额定风速以上、强阵风情况以及其他故障状态,因此针对不同的风速,设计不同的检测装置工作周期;
步骤十:当机舱对风方向不同时,控制器控制不同的电磁铁来提供磁场。
2.根据权利要求1所述的一种风力发电机组叶片净空检测方法,其特征在于,步骤二中,感应电动势的计算公式如下:
Figure FDA0002748141870000011
式子中,E为感应电动势,单位为V;
N为线圈匝数;
Figure FDA0002748141870000021
为磁通量的变化率,单位为Wb;
Δt为变化时间,单位为s。
3.根据权利要求1所述的一种风力发电机组叶片净空检测方法,其特征在于,所述步骤七包含以下四个步骤:
1):假设对于某一型号的机组而言,在极限净空距离为h1(即当测量到的净空值小于h1时,机组触发停机标志位,自动停机),机组设计净空值为h2;
2):当测量净空值h>h2,机组正常运行,无附加控制条件;
3):当测量净空值h<h1,机组触发停机标志,无附加控制条件;
4):当测量净空值有h2<h<h1,机组则需要限制功率来主动降低叶片挠度,即限制的功率根据检测的净空值通过插值法来确定。
4.根据权利要求1所述的一种风力发电机组叶片净空检测方法,其特征在于,所述步骤九包含以下四个步骤:
1):控制程序里设置一个阵风风况的标志L1和强湍流风况的标志L2;当主控程序根据风速值判断到当前风况为阵风风况时,L1触发,当主控程序根据风速值判断到当前风况为强湍流风况时,L2触发;
2):当机组运行在额定风速以下且L1和L2均没有触发时,设置一个检测装置工作的时间间隔T1,此时间间隔T根据轮毂处测量到的1s的平均风速值采用插值方法确定,检测装置每隔T1时间来工作一次,间歇性检测叶片的净空值;
3):当机组运行在额定风速以下,同时L1和L2至少有一个触发时,控制程序缩短检测装置工作的时间间隔,调整为T2,每隔T2时间,检测装置工作一次;
4):当机组运行在额定风速附近或者额定风速以上,同时L1和L2至少有一个触发时,检测装置工作时间间隔根据风轮转速来确定,假设风轮转速为n rpm,风轮直径为2R(m),塔筒高度为H(m),离塔筒基础
Figure FDA0002748141870000022
高度的塔筒直径为D,则叶片的叶尖线速度为
Figure FDA0002748141870000023
Figure FDA0002748141870000031
则每个叶片通过塔筒的时间小于t3=D/v,风轮旋转一周的时间为
Figure FDA0002748141870000032
假设此时叶片A即将通过塔筒,设为0时刻,则0时刻~t3时刻,控制器控制接触器触点闭合,电磁铁带电,
Figure FDA0002748141870000033
控制器不输出控制指令,接触器触点断开,电磁铁失电;
Figure FDA0002748141870000034
控制器控制接触器触点闭合,电磁铁带电,该时间段内叶片B通过塔筒;在
Figure FDA0002748141870000035
控制器不输出控制指令,接触器触点断开,电磁铁失电;在
Figure FDA0002748141870000036
控制器控制接触器触点闭合,电磁铁带电,该时间段内叶片C通过塔筒。
5.一种风力发电机组叶片净空检测装置,其特征在于,包括:
机舱(1)、叶片(2)、轮毂(3)、塔筒(4)、电磁铁(6)、绕组(7)、滑动变阻器(8)、浪涌保护器(9)、模拟量输入模块(10)、PLC(11)和接触器(12);
其中,轮毂(3)与叶片(2)连接,同时轮毂(3)后端与机舱(1)前端连接,机舱(1)下端与塔筒(4)上端连接,电磁铁(6)位于塔筒(4)的设定高度处;绕组(7)位于叶片(2)的前端,滑动变阻器(8)以及浪涌保护器(9)位于机舱中,依次串联在绕组(7)的后端,PLC(11)将模拟量输入模块(10)采集的电信号转化为数字信号;滑动变阻器(8)、浪涌保护器(9)、模拟量输入模块(10)均位于机舱的控制柜当中,接触器(12)控制电磁铁(6)的供电,其和PLC(11)安装在塔筒里的控制柜当中;PLC(11)和模拟量输入模块(10)通过光纤连接,两者通过设定的通讯协议来实现数据传输。
6.根据权利要求5所述的一种风力发电机组叶片净空检测装置,其特征在于,塔筒(4)下端与地基(5)连接。
CN202011173869.8A 2020-10-28 2020-10-28 一种风电机组叶片净空检测方法及装置 Active CN112283048B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011173869.8A CN112283048B (zh) 2020-10-28 2020-10-28 一种风电机组叶片净空检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011173869.8A CN112283048B (zh) 2020-10-28 2020-10-28 一种风电机组叶片净空检测方法及装置

Publications (2)

Publication Number Publication Date
CN112283048A true CN112283048A (zh) 2021-01-29
CN112283048B CN112283048B (zh) 2022-03-08

Family

ID=74373839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011173869.8A Active CN112283048B (zh) 2020-10-28 2020-10-28 一种风电机组叶片净空检测方法及装置

Country Status (1)

Country Link
CN (1) CN112283048B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116009008A (zh) * 2023-03-28 2023-04-25 南京牧镭激光科技股份有限公司 基于雷达的叶片虚警抑制方法
CN116009008B (zh) * 2023-03-28 2024-05-24 南京牧镭激光科技股份有限公司 基于雷达的叶片虚警抑制方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005953A1 (en) * 1989-10-12 1991-05-02 Holec Projects B.V. Wind turbine
US5570859A (en) * 1995-01-09 1996-11-05 Quandt; Gene A. Aerodynamic braking device
EP0853197A1 (en) * 1997-01-14 1998-07-15 Aerpac UK Ltd. Damped wind turbine blade
CN1842632A (zh) * 2003-08-25 2006-10-04 再生动力系统股份公司 用于风能设备的塔柱
WO2007054098A1 (en) * 2005-11-14 2007-05-18 Lm Glasfiber A/S Wind power plant and method of controlling the blades in order to prevent tower strike
CN1324235C (zh) * 2002-02-06 2007-07-04 威斯塔斯风力系统公开有限公司 风力涡轮机塔架组件、风力塔架悬挂装置及相互附着部件的系统的安装方法
CN101675245A (zh) * 2007-03-30 2010-03-17 维斯塔斯风力系统有限公司 风力涡轮机叶片位置确定系统
CN101967018A (zh) * 2010-09-14 2011-02-09 蒯琦 高效磁化叶轮式磁化水处理器
CN102384028A (zh) * 2010-06-30 2012-03-21 通用电气公司 用于检测风力涡轮叶片与塔架壁之间的接近性的系统
CN102466649A (zh) * 2010-11-06 2012-05-23 北京大学 圆柱型Halbach磁体匀场线圈
CN202441542U (zh) * 2012-02-21 2012-09-19 成都阜特科技有限公司 一种超级电容监控系统
CN202645874U (zh) * 2012-03-09 2013-01-02 钟乾麟 风力发电机的结构改良
CN103696913A (zh) * 2013-12-31 2014-04-02 西安热工研究院有限公司 一种实时监测风电机组运行时的风能利用偏差的方法
CN105221335A (zh) * 2015-10-12 2016-01-06 大连理工大学 一种减小风机叶片摆振的智能控制器及其方法
CN106321364A (zh) * 2016-11-08 2017-01-11 常州神力电机股份有限公司 具有轮毂与发电机外转子复合结构的风力发电机组
CN107250534A (zh) * 2014-12-12 2017-10-13 远景能源(江苏)有限公司 塔架高度降低的浮动风力涡轮机结构及其重量优化方法
CN109340061A (zh) * 2018-11-30 2019-02-15 北京金风科创风电设备有限公司 用于塔架净空监测系统的安装结构及风力发电机组
CN109812390A (zh) * 2019-02-28 2019-05-28 明阳智慧能源集团股份公司 一种风力发电机组的叶片净空监测方法
CN109826760A (zh) * 2019-02-28 2019-05-31 北京金风科创风电设备有限公司 确定风力发电机组的塔架净空的方法和装置
CN110454334A (zh) * 2019-08-16 2019-11-15 陈伟春 一种叶片净空距离监测系统及叶片净空距离监测方法
CN210003452U (zh) * 2019-06-27 2020-01-31 北京金风科创风电设备有限公司 风力发电机组的塔架净空监测装置
CN110886679A (zh) * 2019-11-20 2020-03-17 明阳智慧能源集团股份公司 一种用于风力发电机组主动控制叶片净空的方法
CN210396977U (zh) * 2019-05-14 2020-04-24 天津中德应用技术大学 一种风电机组叶片与塔筒净空的测量结构
CN111255637A (zh) * 2018-11-30 2020-06-09 北京金风科创风电设备有限公司 塔架净空实时监测系统及其方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005953A1 (en) * 1989-10-12 1991-05-02 Holec Projects B.V. Wind turbine
US5570859A (en) * 1995-01-09 1996-11-05 Quandt; Gene A. Aerodynamic braking device
EP0853197A1 (en) * 1997-01-14 1998-07-15 Aerpac UK Ltd. Damped wind turbine blade
CN1324235C (zh) * 2002-02-06 2007-07-04 威斯塔斯风力系统公开有限公司 风力涡轮机塔架组件、风力塔架悬挂装置及相互附着部件的系统的安装方法
CN1842632A (zh) * 2003-08-25 2006-10-04 再生动力系统股份公司 用于风能设备的塔柱
WO2007054098A1 (en) * 2005-11-14 2007-05-18 Lm Glasfiber A/S Wind power plant and method of controlling the blades in order to prevent tower strike
CN101675245A (zh) * 2007-03-30 2010-03-17 维斯塔斯风力系统有限公司 风力涡轮机叶片位置确定系统
CN102384028A (zh) * 2010-06-30 2012-03-21 通用电气公司 用于检测风力涡轮叶片与塔架壁之间的接近性的系统
CN101967018A (zh) * 2010-09-14 2011-02-09 蒯琦 高效磁化叶轮式磁化水处理器
CN102466649A (zh) * 2010-11-06 2012-05-23 北京大学 圆柱型Halbach磁体匀场线圈
CN202441542U (zh) * 2012-02-21 2012-09-19 成都阜特科技有限公司 一种超级电容监控系统
CN202645874U (zh) * 2012-03-09 2013-01-02 钟乾麟 风力发电机的结构改良
CN103696913A (zh) * 2013-12-31 2014-04-02 西安热工研究院有限公司 一种实时监测风电机组运行时的风能利用偏差的方法
CN107250534A (zh) * 2014-12-12 2017-10-13 远景能源(江苏)有限公司 塔架高度降低的浮动风力涡轮机结构及其重量优化方法
CN105221335A (zh) * 2015-10-12 2016-01-06 大连理工大学 一种减小风机叶片摆振的智能控制器及其方法
CN106321364A (zh) * 2016-11-08 2017-01-11 常州神力电机股份有限公司 具有轮毂与发电机外转子复合结构的风力发电机组
CN109340061A (zh) * 2018-11-30 2019-02-15 北京金风科创风电设备有限公司 用于塔架净空监测系统的安装结构及风力发电机组
CN111255637A (zh) * 2018-11-30 2020-06-09 北京金风科创风电设备有限公司 塔架净空实时监测系统及其方法
CN109812390A (zh) * 2019-02-28 2019-05-28 明阳智慧能源集团股份公司 一种风力发电机组的叶片净空监测方法
CN109826760A (zh) * 2019-02-28 2019-05-31 北京金风科创风电设备有限公司 确定风力发电机组的塔架净空的方法和装置
CN210396977U (zh) * 2019-05-14 2020-04-24 天津中德应用技术大学 一种风电机组叶片与塔筒净空的测量结构
CN210003452U (zh) * 2019-06-27 2020-01-31 北京金风科创风电设备有限公司 风力发电机组的塔架净空监测装置
CN110454334A (zh) * 2019-08-16 2019-11-15 陈伟春 一种叶片净空距离监测系统及叶片净空距离监测方法
CN110886679A (zh) * 2019-11-20 2020-03-17 明阳智慧能源集团股份公司 一种用于风力发电机组主动控制叶片净空的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李学平 等: "风力发电机组气动不平衡振动监测研究", 《机电工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116009008A (zh) * 2023-03-28 2023-04-25 南京牧镭激光科技股份有限公司 基于雷达的叶片虚警抑制方法
CN116009008B (zh) * 2023-03-28 2024-05-24 南京牧镭激光科技股份有限公司 基于雷达的叶片虚警抑制方法

Also Published As

Publication number Publication date
CN112283048B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US8046109B2 (en) Method and systems for operating a wind turbine
EP2738904B1 (en) Method and systems for operating a wind turbine when recovering from a grid contingency event
US7121795B2 (en) Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed
US8021112B2 (en) Methods and systems for monitoring operation of a wind turbine
CA2810157C (en) Method of rotor-stall prevention in wind turbines
EP2230637A1 (en) Wind turbine operation system and method
EP3004634B1 (en) Wind power plant controller
EP2306003A2 (en) System and methods for controlling a wind turbine
CN112177863A (zh) 振动监控系统、风力发电系统及风电场
CN105909470B (zh) 风力发电机组的自适应最大功率跟踪控制方法
CN102105684A (zh) 风力发电装置及风力发电装置的控制方法
CN107917043A (zh) 风力发电机的通信闪断的处理方法和系统
CN210622977U (zh) 一种基于水平轴风力机塔筒的垂直轴风力机
CN112283048B (zh) 一种风电机组叶片净空检测方法及装置
CN104265578A (zh) 一种风力发电机解缆系统及其解缆方法
CN202417819U (zh) 永磁变桨风力发电机组控制系统
CN102536651B (zh) 永磁变桨风力发电机组控制系统
CN201116514Y (zh) 一种垂直轴风力发电装置
CN103122931A (zh) 一种用于磁悬浮风力发电机的驱动控制电路
CN201513295U (zh) 一种直驱式风力发电机组
CN205025692U (zh) 一种风力发电系统
CN201396246Y (zh) 风信号采集系统
CN210343605U (zh) 一种风电机组的变桨系统故障报警装置
KR102126732B1 (ko) 풍향 및 풍속 신호를 이용하여 정상 하중보다 큰 축방향 및 반경방향 외란에 강인한 마그네트 베어링 및 그를 구비하는 풍력발전기
CN220151475U (zh) 一种风电齿轮箱远程在线监测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant