CN112280797B - Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof - Google Patents

Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof Download PDF

Info

Publication number
CN112280797B
CN112280797B CN202011182841.0A CN202011182841A CN112280797B CN 112280797 B CN112280797 B CN 112280797B CN 202011182841 A CN202011182841 A CN 202011182841A CN 112280797 B CN112280797 B CN 112280797B
Authority
CN
China
Prior art keywords
vector
level
sequence
coding sequence
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011182841.0A
Other languages
Chinese (zh)
Other versions
CN112280797A (en
Inventor
许晶晶
范航
陈晓亚
杨蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI CHENSHAN BOTANICAL GARDEN
Original Assignee
SHANGHAI CHENSHAN BOTANICAL GARDEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI CHENSHAN BOTANICAL GARDEN filed Critical SHANGHAI CHENSHAN BOTANICAL GARDEN
Priority to CN202011182841.0A priority Critical patent/CN112280797B/en
Publication of CN112280797A publication Critical patent/CN112280797A/en
Application granted granted Critical
Publication of CN112280797B publication Critical patent/CN112280797B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010394-Hydroxybenzoate polyprenyltransferase (2.5.1.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03047[Hydroxymethylglutaryl-CoA reductase (NADPH)]-phosphatase (3.1.3.47)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • C12Y401/0304Chorismate lyase (4.1.3.40)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a method for improving coenzyme Q in tomato 10 The method for constructing the combined vector comprises the following steps: obtaining an E8 promoter sequence, a tobacco Coq2 gene coding sequence, a DPS gene coding sequence, an HMGR2 gene coding sequence, a Ubic gene coding sequence and an hsp terminator sequence; constructing level 0 vectors of the six sequences; constructing a level 1 vector of each of the four genes; and constructing a level 2 vector. The invention also relates to a method for improving coenzyme Q 10 The production method of the content tomato comprises the steps of transforming agrobacterium GV3101 by the combined vector obtained by the construction method through heat shock, and transforming wild tomato; after obtaining independent resistant callus, further differentiating and regenerating to obtain high coenzyme Q 10 Content of tomato lines. Through cultivation and screening, the T3 generation fruit coenzyme Q of the tomato strain HUCD provided by the invention 10 The yield can reach more than 7 times (about 0.151mg/g) of wild tomato fruits at most, and the wild tomato fruits can be stably inherited without difference in phenotype; namely coenzyme Q in the tomato lines HUCD of the invention 10 The content is obviously improved.

Description

Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof
Technical Field
The invention relates to the technical field of plants, in particular to a method for improving coenzyme Q in tomato 10 The combined vector of the content and the construction method and the application thereof.
Background
Coenzyme Q 10 (Coenzyme Q 10 Also known as CoQ 10 ) The molecular structure of (a) consists of a benzoquinone parent group and a quinone with a decaisopentene side chain. Coenzyme Q 10 In the human body, it is mainly used as an electron transporter for oxidizing complex II/III in the respiratory chain, and helps the cell to produce ATP. In addition, it is alsoAn antioxidant substance on a membrane is used as a cofactor for a number of enzymes. In the human body, coenzyme Q is deficient 10 It causes various severe neurological diseases such as mitochondrial encephalomyopathy, cerebellar ataxia or Leigh's encephalopathy, etc., and affects the functions of various organs such as skeletal muscle, heart and kidney. In general, coenzyme Q 10 The level decreases with the age of the person and coenzyme Q is present in certain drugs (e.g. statins) and in the case of cardiovascular diseases 10 The content is abnormally decreased.
The present coenzyme Q 10 Production is mainly by microbial (yeast, etc.) synthesis. Coenzyme Q extracted from engineered yeast or bacterial cells in view of food safety 10 Is not completely suitable for food addition, and coenzyme Q is extracted from plant 10 This problem can be effectively avoided. But due to coenzyme Q in plants 10 The content is too low, and the coenzyme Q in the crops needs to be improved by a certain molecular biological method 10 And (4) content. Because of the coenzyme Q in the current plants 10 The synthetic route has not been completely resolved, and the improvement of coenzyme Q in crops has not been successful 10 The report of (1).
To obtain exogenous coenzyme Q from the diet 10 For maintenance of coenzyme Q in vivo 10 The horizontal stability is of great significance. Meat, fish and oil are generally rich in coenzyme Q in our dietary structure 10 (about 0.12mg/g), but coenzyme Q in vegetables and fruits 10 The content is relatively low (less than 0.02 mg/g). Under the concept of advocating increasing the ratio of the dietary structures of vegetables and fruits in the society at present, coenzyme Q in food is maintained 10 The stable intake of (2) becomes extremely difficult. In order to meet the requirement of daily nutrient intake, people have to be rich in coenzyme Q 10 The vegetable food of (b) has great demand. Thus increasing coenzyme Q in crops 10 The invention has practical production value and definite transformation prospect.
Disclosure of Invention
The invention aims to overcome the defects in the prior art and provide a method for improving coenzyme Q in tomatoes 10 Combined vector of contents and its structureA construction method and application.
In order to achieve the purpose, the invention adopts the technical scheme that:
in a first aspect, the present invention provides a method for increasing coenzyme Q in tomato 10 The method for constructing the combined vector comprises the following steps:
s1, extracting tomato genome DNA, and obtaining an E8 promoter sequence through PCR amplification; obtaining a tobacco Coq2 gene coding sequence through total synthesis, as shown in SEQ ID NO. 1; extracting tobacco genome RNA, obtaining cDNA through reverse transcription, and obtaining a DPS gene coding sequence through PCR amplification, wherein the DPS gene coding sequence is shown as SEQ ID NO. 2; obtaining an arabidopsis HMGR2 gene coding sequence through total synthesis, wherein the coding sequence is shown as SEQ ID NO. 3; obtaining an escherichia coli UbicC gene coding sequence with the N end fused with a tomato chloroplast signal peptide through total synthesis, wherein the sequence is shown as SEQ ID NO. 4; extracting arabidopsis genome DNA, and obtaining an hsp terminator sequence through PCR amplification;
s2, connecting the E8 promoter sequence into a vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the E8 promoter; the Coq2 gene coding sequence was ligated into another vector pUAP1 by the Golden Gate cloning method to obtain a level 0 vector for Coq2 gene; connecting the DPS gene coding sequence into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the DPS gene; the HMGR2 gene coding sequence is connected into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the HMGR2 gene; connecting the coding sequence of the Ubic gene into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the Ubic gene; ligating the hsp terminator sequence into another vector pUAP1 by the Golden Gate cloning method to obtain a level 0 vector for the hsp terminator;
s3, sequentially connecting the E8 promoter sequence, the Coq2 gene coding sequence and the hsp terminator sequence into a vector pICH47742 through a Golden Gate cloning method to obtain a level 1 vector of Coq2 genes; sequentially connecting the E8 promoter sequence, the DPS gene coding sequence and the hsp terminator sequence into a vector pICH47751 by a Golden Gate cloning method to obtain a level 1 vector of the DPS gene; sequentially connecting the E8 promoter sequence, the HMGR2 gene coding sequence and the hsp terminator sequence into a vector pICH47761 by a Golden Gate cloning method to obtain a level 1 vector of the HMGR2 gene; sequentially connecting the E8 promoter sequence, the ubiC gene coding sequence and the hsp terminator sequence into a vector pICH47772 by a Golden Gate cloning method to obtain a level 1 vector of the ubiC gene;
s4, connecting a 35S promoter sequence, a hygromycin resistance gene coding sequence and a 35S terminator sequence, the E8 promoter sequence, the Coq2 gene coding sequence and the hsp terminator sequence, the E8 promoter sequence, the DPS gene coding sequence and the hsp terminator sequence, the E8 promoter sequence, the HMGR2 gene coding sequence and the hsp terminator sequence in sequence by a Golden Gate cloning method, and connecting the E8 promoter sequence, the Ubic gene coding sequence and the hsp terminator sequence into a vector pICSL4723-P1 in sequence to obtain a level 2 vector, namely the combined vector, as shown in SEQ ID NO. 5.
Preferably, each of the PCR amplification systems described in step S1 is: a template, i.e., 500ng of said genomic DNA or 50ng of said cDNA; 0.2. mu.M forward primer; 0.2. mu.M reverse primer; 10. mu.L Fastpfu buffer; 0.2mM dNTPs; 2.5units Fastpfu DNA polymerase; h 2 O is complemented to 50 mu L;
the PCR amplification procedures were all as follows: at 95 ℃ for 2 min; circulating for 33 times at 95 deg.C, 20s, 58 deg.C, 20s, 72 deg.C, 2 min; 72 ℃ for 5 min.
Preferably, the PCR amplification primers of tomato genomic DNA are shown as SEQ ID NO.6 and SEQ ID NO. 7; PCR amplification primers of tobacco cDNA are shown as SEQ ID NO.8 and SEQ ID NO. 9; PCR amplification primers of arabidopsis genomic DNA are shown as SEQ ID NO.10 and SEQ ID NO. 11.
Preferably, when the corresponding gene coding sequence is obtained by the total synthesis, some of the bases therein are modified to remove BsaI and BpiI cleavage sites.
Preferably, in step S2, each of the level 0 vector construction systems is: 100ng of pUAP1 vector; the molar ratio of the corresponding sequence fragment obtained in the step S1 to the pUAP1 vector is 2: 1; 5units BpiI endonuclease; 200units T4 ligase;1.5 μ L T4 ligase buffer; 1.5. mu.L BSA, 1 mg/mL; h 2 O is complemented to 20 mu L;
the reaction procedures are as follows: circulating for 26 times at 37 deg.C, 3min, 16 deg.C, 4 min; 5min at 80 ℃;
after the reaction is finished, taking the reaction solution to transform the heat shock competence of escherichia coli DH10B, and growing on an LB solid culture medium containing chloramphenicol; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining the corresponding correct level 0 vector.
Preferably, in step S3, each of the level 1 vector constructs is: corresponding level 1 vector, 100 ng; the molar ratio of the level 0 vector of the E8 promoter obtained in the step S2 to the corresponding level 1 vector is 2: 1; the molar ratio of the level 0 vector of the corresponding gene obtained in the step S2 to the corresponding level 1 vector is 2: 1; the molar ratio of the level 0 vector of the hsp terminator obtained in the step S2 to the corresponding level 1 vector is 2: 1; 5units BsaI endonuclease; 200units T4 ligase; 1.5 μ L T4 ligase buffer; 1.5. mu.L BSA, 1 mg/mL; h 2 O is complemented to 20 mu L;
the reaction procedures are as follows: circulating for 26 times at 37 deg.C, 3min, 16 deg.C, 4 min; 5min at 80 ℃;
after the reaction is finished, taking reaction liquid to transform escherichia coli DH10B heat shock competence, and growing on an LB solid culture medium containing ampicillin; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining the corresponding correct level 1 vector.
Preferably, the level 2 vector construction systems in step S4 are all: 100ng pICSL4723-P1 vector; the molar ratio of the pICSL11059 vector to the pICSL4723-P1 vector is 2: 1; the molar ratio of the Coq2 gene level 1 vector obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the molar ratio of the level 1 vector of the DPS gene obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the molar ratio of the level 1 vector of the HMGR2 gene obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the molar ratio of the Ubic gene level 1 vector obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the PICH41800 linker vector is described,the molar ratio of the pICSL4723-P1 vector to the pICSL4723-P1 vector is 2: 1; 5units BsaI endonuclease; 5units BpiI endonuclease; 200units T4 ligase; 1.5 μ L T4 ligase buffer; 1.5. mu.L BSA, 1 mg/mL; h 2 O is complemented to 20 mu L;
the reaction procedure is as follows: circulating for 26 times at 37 deg.C, 3min, 16 deg.C, 4 min; 5min at 80 ℃;
after the reaction is finished, taking reaction liquid to transform escherichia coli DH10B heat shock competence, and growing on an LB solid culture medium containing kanamycin; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining correct level 2 vector.
A second aspect of the present invention is to provide a combination vector obtained by the above-mentioned combination vector construction method.
In a third aspect of the present invention, there is provided a method for increasing coenzyme Q 10 The production method of the content tomato comprises the steps of transforming agrobacterium GV3101 by the combined vector obtained by the construction method through heat shock, and transforming wild tomato; after obtaining independent resistant callus, further differentiating and regenerating to obtain high coenzyme Q 10 Content of tomato lines.
By adopting the technical scheme, compared with the prior art, the invention has the following technical effects:
coenzyme Q in wild type tomato fruit 10 The dry weight content is far below 0.02 mg/g. Through cultivation and screening, the T3 generation fruit coenzyme Q of the tomato strain HUCD provided by the invention 10 The yield can reach more than 7 times (about 0.151mg/g) of wild tomato fruits at most, and the wild tomato fruits can be stably inherited without difference in phenotype; namely coenzyme Q in the tomato lines HUCD of the invention 10 The content is obviously improved.
Drawings
FIG. 1 is a diagram of the design concept of the combination vector of the present invention;
FIG. 2 is a schematic structural view of a combination vector of the present invention;
FIG. 3 shows coenzyme Q in fruits of different lines of HUCD according to the example of detection of the present invention 10 Content results plot; wherein the letter a indicates that there is a significant difference between HUCD-5 and other strains; letter b denotes HUCD-4 and HUCD-2 and lower strainsSignificant differences between lines; letter c indicates significant differences between HUCD-2 and HUCD-1 and lower lines; letter d indicates a significant difference between HUCD-1 and WT; the letter bc indicates no significant difference between HUCD-3 and HUCD-4 and HUCD-2, respectively (n-5, P-value)<0.05)。
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
It should be noted that the embodiments and features of the embodiments may be combined with each other without conflict.
The invention is further described with reference to the following drawings and specific examples, which are not intended to be limiting.
Example 1
As shown in FIG. 1, coenzyme Q 10 The biosynthetic pathway of (a) mainly comprises four processes: (1) formation of a quinone ring precursor aromatic ring structure; (2) isoprene pyrophosphate polymerizes into chains; (3) the combination of an aromatic ring structure with an isoamylene side chain; (4) modification at the quinone ring after conjugation. The first three processes directly determine the downstream coenzyme Q 10 The yield of (2). Therefore, it is the main goal of our technical scheme to facilitate the first three steps of reaction process:
(1) promoting the formation of the quinone ring precursor aromatic ring structure: coenzyme Q 10 The precursor of the quinone ring structure is p-hydroxybenzoic acid (4-hydroxybenzoic acid, 4-HB). In prokaryotes, 4-HB is cleaved by chorismate lyases (Ubic) catalyzed by chorismate lyases. In eukaryotes, 4-HB is converted from phenylalanine or tyrosine, but the specific formation process is not yet clear. We therefore used overexpressed Ubics to catalyze the replacement of chorismate for phenylalanine or tyrosine to complement 4-HB synthesis.
(2) Promoting isoprene pyrophosphate polymerization into chains: isoprene pyrophosphate (IPP) is mainly synthesized in plants by Mevalonate (MVA) pathway and 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which is used for coenzyme Q 10 The synthesized IPP is mainly derived from the MVA pathway. In the MVA pathway, HMG-CoA reductase (HMGR-CoA reductase), which regulates the conversion of hydroxymethylglutaryl-CoA (HMG-CoA) to mevalonate, is a key rate-limiting enzyme, and its expression directly affects the yield of IPP downstream. For coenzyme Q 10 In particular, IPP is transported to mitochondria via the cytoplasm, and then polymerized into a decaisopentenyl side chain in the mitochondria under the catalysis of decaprenyl-diphosphate synthase (DPS). Therefore I increase IPP accumulation by increasing HMGR expression. Further IPP is then converted to the decaisopentenyl side chain by up-regulating the expression of DPS.
(3) Promote the bonding of the aromatic ring structure to the decaprenyl side chain: in mitochondria, the decaisopentenyl side chain is catalyzed by isopentenyl p-hydroxybenzoate transferase (4-hydroxybenzoate polyprenyltransferase, Coq2) to be combined with the C-3 position of 4-HB to form coenzyme Q 10 Structural precursor, reaction of which is believed to confine coenzyme Q 10 The last step of the synthesis is the key enzyme. Therefore, we promoted the upstream accumulated 4-HB and isopentenyl polymeric side chain to the downstream coenzyme Q by increasing the expression of Coq2 10 And (4) converting the direction.
Thus, this example provides a method for increasing coenzyme Q in tomato 10 The method for constructing the combined vector comprises the following steps:
s1, extracting tomato genome DNA, and obtaining an E8 promoter sequence through PCR amplification; obtaining a tobacco Coq2 gene (XM _016628012.1) coding sequence through total synthesis, which is shown as SEQ ID NO. 1; extracting genome RNA of tobacco (Nicotiana tabacum), obtaining cDNA through reverse transcription, and obtaining a DPS gene (NM-001325324.1) coding sequence through PCR amplification, wherein the sequence is shown as SEQ ID NO. 2; obtaining an arabidopsis HMGR2 gene (AY143930.1, 99 amino acids of N segment are removed) coding sequence through total synthesis, and the coding sequence is shown as SEQ ID NO. 3; obtaining an Escherichia coli Ubic gene coding sequence with the N end fused with tomato chloroplast signal peptide (NM-001308944.1, the first 67 amino acids of Solanum lycopersicum tribute carboxylase small chain 2A) through total synthesis, wherein the coding sequence is shown as SEQ ID NO. 4; extracting arabidopsis genome DNA, and obtaining an hsp terminator sequence through PCR amplification;
wherein, each PCR amplification system is as follows: a template (i.e., 500ng of the genomic DNA or 50ng of the cDNA); 0.2. mu.M forward primer; 0.2. mu.M reverse primer; 10. mu.L Fastpfu buffer; 0.2mM dNTPs; 2.5units Fastpfu DNA polymerase; h 2 O is complemented to 50 mu L;
the PCR amplification procedures were all as follows:
Figure BDA0002750646890000071
wherein, PCR amplification primers of tomato genome DNA are shown as SEQ ID NO.6 and SEQ ID NO. 7; PCR amplification primers of tobacco cDNA are shown as SEQ ID NO.8 and SEQ ID NO. 9; PCR amplification primers of arabidopsis genomic DNA are shown as SEQ ID NO.10 and SEQ ID NO. 11.
Wherein, when the corresponding gene coding sequence is obtained through the total synthesis, partial bases in the corresponding gene coding sequence are modified to remove BsaI and BpiI enzyme cutting sites.
S2, connecting the E8 promoter sequence into a vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the E8 promoter; the Coq2 gene coding sequence was ligated into another vector pUAP1 by the Golden Gate cloning method to obtain a level 0 vector for Coq2 gene; connecting the DPS gene coding sequence into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the DPS gene; the HMGR2 gene coding sequence is connected into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the HMGR2 gene; connecting the coding sequence of the Ubic gene into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the Ubic gene; ligating the hsp terminator sequence into another vector pUAP1 by the Golden Gate cloning method to obtain a level 0 vector for the hsp terminator;
wherein, the stepsIn step S2, each level 0 vector construction system is: 100ng of pUAP1 vector; the corresponding sequence fragment obtained in step S1 (in a molar ratio of 2:1 to the pUAP1 vector); 5units BpiI endonuclease; 200units T4 ligase; 1.5 μ L T4 ligase buffer; 1.5. mu.L BSA (1 mg/mL); h 2 O is complemented to 20 mu L;
the reaction procedures are as follows:
Figure BDA0002750646890000072
Figure BDA0002750646890000081
after the reaction is finished, 10 mu L of reaction liquid is taken to transform the heat shock competence of escherichia coli DH10B, and the escherichia coli is grown on an LB solid culture medium containing chloramphenicol; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining the corresponding correct level 0 vector.
S3, sequentially connecting the E8 promoter sequence, the Coq2 gene coding sequence and the hsp terminator sequence into a vector pICH47742 through a Golden Gate cloning method to obtain a level 1 vector of Coq2 genes; sequentially connecting the E8 promoter sequence, the DPS gene coding sequence and the hsp terminator sequence into a vector pICH47751 by a Golden Gate cloning method to obtain a level 1 vector of the DPS gene; sequentially connecting the E8 promoter sequence, the HMGR2 gene coding sequence and the hsp terminator sequence into a vector pICH47761 by a Golden Gate cloning method to obtain a level 1 vector of the HMGR2 gene; sequentially connecting the E8 promoter sequence, the ubiC gene coding sequence and the hsp terminator sequence into a vector pICH47772 by a Golden Gate cloning method to obtain a level 1 vector of the ubiC gene;
wherein, in the step S3, each level 1 vector construction system is: the corresponding level 1 vector (100 ng); a level 0 vector of the E8 promoter obtained in the step S2 (the molar ratio of the E8 promoter to the corresponding level 1 vector is 2: 1); level 0 vector of the corresponding Gene obtained in step S2 (corresponding to the aboveThe molar ratio of the level 1 carrier of (a) is 2: 1); level 0 vector of hsp terminator obtained in step S2 (molar ratio to the corresponding level 1 vector is 2: 1); 5units BsaI endonuclease; 200units T4 ligase; 1.5 μ L T4 ligase buffer; 1.5. mu.L BSA (1 mg/mL); h 2 O is complemented to 20 mu L;
the reaction procedures are as follows:
Figure BDA0002750646890000082
after the reaction is finished, 10 mu L of reaction liquid is taken to transform the heat shock competence of escherichia coli DH10B, and the escherichia coli is grown on an LB solid culture medium containing ampicillin; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining the corresponding correct level 1 vector.
S4, connecting a 35S promoter sequence, a hygromycin resistance gene coding sequence and a 35S terminator sequence, the E8 promoter sequence, the Coq2 gene coding sequence and the hsp terminator sequence, the E8 promoter sequence, the DPS gene coding sequence and the hsp terminator sequence, the E8 promoter sequence, the HMGR2 gene coding sequence and the hsp terminator sequence in sequence by a Golden Gate cloning method, wherein the E8 promoter sequence, the Ubic gene coding sequence and the hsp terminator sequence are connected into a vector pICSL4723-P1 in sequence, and the obtained level 2 vector is the combined vector, and is shown as SEQ ID NO. 5;
wherein, the level 2 vector construction systems in the step S4 are all as follows: 100ng pICSL4723-P1 vector; pICSL11059 vector (and the pICSL4723-P1 vector molar ratio is 2: 1); level 1 vector of Coq2 gene obtained in step S3 (molar ratio to pICSL4723-P1 vector is 2: 1); the level 1 vector of the DPS gene obtained in step S3 (the molar ratio to the pICSL4723-P1 vector is 2: 1); the level 1 vector of the HMGR2 gene obtained in step S3 (in a molar ratio of 2:1 to the pICSL4723-P1 vector); the level 1 vector of the Ubic gene obtained in the step S3 (the molar ratio to the pICSL4723-P1 vector is 2: 1); PICH41800 linker vector (2: 1 molar ratio to the pICSL4723-P1 vector); 5units BsaI endonuclease; 5units BpiI endonuclease; 200units T4 ligase; 1.5 μ L T4 ligase buffer; 1.5. mu.L BSA (1 mg/mL); h 2 O is complemented to 20 mu L;
the reaction procedure is as follows:
Figure BDA0002750646890000091
after the reaction is finished, 10 mu L of reaction liquid is taken to transform escherichia coli DH10B heat shock competence and grow on an LB solid culture medium containing kanamycin; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing to obtain correct level 2 vector, as shown in FIG. 2.
Example 2
This example provides a method for increasing coenzyme Q 10 The production method of the tomato with the content comprises the steps of transforming agrobacterium GV3101 by the level 2 vector obtained in the example 1 through heat shock, and transforming wild tomato MicroTom; and after independent resistant callus is obtained, further differentiating and regenerating to obtain a tomato strain HUCD.
Detection examples
Determination of tomato coenzyme Q 10 The content of (A): collecting and freeze-drying the fruits at the same time after the color changing period, adding isopropanol according to the proportion of 1:20, ultrasonically extracting for 1h at low temperature in a dark place, and then injecting the filtered samples into a liquid phase-mass spectrometry combination for analysis. The liquid phase conditions were as follows: HPLC-DAD-MS (1260Infinity II-6460, Agilent) is matched with a ZORBAX Eclipse XDB C18 column (3.5 mu m, 2.1 multiplied by 50mm), isopropanol is taken as a mobile phase (A), and (B) 87.5% acetonitrile water solution (containing 10mmol/L ammonium acetate) is taken as a mobile phase, and the conditions of the mobile phase are 0-10min and 70-15% B; 10.5-20min, 15-70% B, and flow rate of 0.25 mL/min. The mass spectrometry conditions were as follows: adopting an ESI ion source, setting the capillary voltage to be 4.0kV, the neutral voltage to be 15psi, high-purity nitrogen as carrier gas, and the flow rate to be 11L/min; coenzyme Q10 (parent ion m/z 863.69, daughter ion m/z 197.1) was measured in a positive ion mode under conditions of a dissociation voltage of 230V and a collision energy of 42V.
And (3) detection results: as shown in FIG. 3, generation T3 (T3 ge)neration) coenzyme Q of each strain 10 The content is obviously higher than that of a wild type strain, wherein the content of the HUCD-5 strain is the highest, about 0.151mg/g and higher than that of the wild type strain (C: (A))<0.02mg/g) 7 times or more.
In summary, coenzyme Q is present in wild-type tomato fruit 10 The dry weight content is far below 0.02 mg/g. Through cultivation and screening, the T3 generation fruit coenzyme Q of the tomato strain HUCD of the invention 10 The yield can reach more than 7 times (about 0.151mg/g) of wild tomato fruits at most, and the wild tomato fruits can be stably inherited without difference in phenotype; namely coenzyme Q in the tomato lines HUCD of the invention 10 The content is obviously improved.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Sequence listing
<110> Shanghai mountain plant garden
120 combined vector capable of improving coenzyme Q10 content in tomato and construction method and application thereof
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1206
<212> DNA
<213> Artificial Sequence
<400> 1
atggcattgt accgccgtct ttctcgaact tctcgtgtcc tccggcggca ccctcgcccc 60
tctatcgctg ccctctgctc ttctcccgat caaacaaacc ctagcacaac tgctcctcat 120
tctcagttaa tcaacccctt tcaatcttct tcttcttctg atcagtatat atatataccc 180
aactccaatt ttaagaaatc tttgacatat tattactctc cacattcttc aagaattgaa 240
cttttagggt accgtcaagt tcttcacttt tcaaccttag ctaattcaga agaggagaag 300
aagaatgagc aacaaaaaca gccttcttgg attgatacgt atttgcccca aagaattaga 360
ccctacgctc atcttgcccg acttgataag cctattggca cttggttact cgcttggccc 420
tgcatgtggt cgattgcttt ggctgctacg ccagggagcc ttcctgatgt gaaaatgatg 480
acactatttg gttgcggggc tttgcttttg cgaggtgctg gttgtacagt taacgatctt 540
cttgatcgag atattgacac taaggtggaa agaacaaggt cgaggccagt cgcgagtggt 600
gtattgacac cctttcaagg gctctgtttc cttgggttcc agttgctatt aggtcttggg 660
attcttttgc aattaaacaa ttttagccgc attttgggtg cttcatccct gttgctggtg 720
ttctcatacc ccctcatgaa gaggttgaca ttttggcctc aagcctatct tggtctaact 780
ttcaactggg gagctttgtt aggttgggct gctattaaag gaagtattga tcctgcagtt 840
gtgcttccat tgtacgcctc tggggtgttt tggacgctcg tgtatgacac aatatatgca 900
catcaggata aagaggacga tctcaaagtg ggtgtcaagt ctacagcctt gagatttgga 960
gattccacaa aagaatggat cagtggtttt ggattagcat gcatcagcag tcttgctctt 1020
tccggagtta atgctgatat tggatggcca tactatgcat ttctgacagc tgcttctggc 1080
cagttggcct ggcaaatttg gaccgttgac ttatcatctc gtgcagattg caacagaaaa 1140
tttgtgtcca acaaatggtt tggtgctttt gtctttggcg gggttctatt tggtagacta 1200
ttgtga 1206
<210> 2
<211> 1248
<212> DNA
<213> Artificial Sequence
<400> 2
atgctatttg caaggggttt gtctcagatt tcgagacgca gtatcaatag atatcaatgg 60
ctatgtcccc agcaacaaca atttcaccat tccaatcact ttccctctcc catcgatgct 120
tctcataagg ttttgggttg cagagtaatt cattcatggg tttctaatgc tcttagtggt 180
attggtcaac aaattcatca tcaaagcact gctgtagcag aggagcaagt ggacccattt 240
tcccttgttg ctgatgaatt atcccttctg acaaacaggc tgagatcaat ggtagttgcc 300
gaggtcccaa agctggcttc agctgctgag tatttcttca aaatgggagt agaagggaag 360
aggtttcgac ccacagttct gctgttgatg gcaacggcac tgaacgcacc ggtacttaga 420
ccccaggtgg atgttgattc tttgtccagg gatttgcgta cgaggcagca gtgtatagct 480
gaaatcacgg agatgatcca tgttgccagc ctactccatg atgatgtact agatgatgct 540
gacacacgac gtgggatagg ttctttaaac tttgtgatgg gaaataagtt agctgtacta 600
gctggagact ttctgctttc ccgagcgtgt gtggcacttg cctctttgaa gaatacagag 660
gttgtatccc ttctggcaac tgttgtggaa catcttgtta ctggagagac aatgcaaatg 720
acgacttctt ctgatgaacg ttgtagcatg gattattaca tgcagaaaac atattacaag 780
actgcatcat taatttcaaa cagttgcaaa gcaatagcgc tacttgctgg gcatactgct 840
gaagtctcca tgttagcttt tgactatggg aaaaatttgg gcttggcatt tcaattaata 900
gatgatgttc ttgatttcac aggcacatct gccaccctcg gcaagggttc attgtctgat 960
attcgtcatg ggattgtaac tgccccaata ttgtatgcca tggaggaatt tcctcaactg 1020
cgaacggtgg tggaccgggg attcgatgat cctgtcaatg tggagattgc tctggactac 1080
cttggtaaga gccgagggat acagagaaca agagaacttg caagaaaaca tgctaacctt 1140
gcctcagcgg ctgttgactc tcttcctgag agcgatgacg aggatgttca gagatcaaga 1200
cgggcacttg tggaacttac tcaaagagtc atcacaagaa caaaatag 1248
<210> 3
<211> 1395
<212> DNA
<213> Artificial Sequence
<400> 3
atgttccgat ccagctctga cgacgacgtg tgggtgaacg acgggatgat cccctgcaac 60
cagagtttgg actgccgaga ggtgctccca atcaagccca acagtgtcga cccaccccga 120
gagagcgagc tagactctgt cgaggacgag gagatcgtga agctcgtgat cgacggtacc 180
atcccctctt acagcctcga gactaagctc ggcgactgca agagggccgc cgcaatcagg 240
cgagaggccg tgcagcgaat caccgggaag tccttgaccg ggctccccct cgagggcttc 300
gactacaact ctatcttagg gcagtgttgc gagatgcccg tgggatacgt gcagatcccc 360
gtgggtatcg ccggaccact gctcctggat ggagtcgagt acagcgtgcc catggccacc 420
actgagggtt gcctcgtggc atcaactaac cgaggcttca aggccatcca cttgagcggc 480
ggagccttct ctgtgctcgt gaaggatgca atgacacgag ctcccgtggt gaggttccca 540
agcgcccgta gggctgcttt ggtgatgttc tacctccagg acccctcaaa cttcgagcga 600
ctctcactca tcttcaacaa gtcaagcagg ttcgccaggt tgcagtctat cacttgcacc 660
atcgccggta ggaaccttta ccccaggttc gcctgcagca ctggcgacgc catgggtatg 720
aacatggtgt caaagggtgt gcagaacgtg cttgattttg tgaagtccga attccctgac 780
atggacgtca tcggcatcag cggaaactac tgcagcgaca agaaggcctc cgccgtgaac 840
tggatcgagg ggaggggaaa gcacgtggtg tgcgaggctt tcatcaaggc agagatcgtg 900
gagaaggtcc tcaagacttc cgtcgaggct ctggtggagt tgaacaccct caagaacctc 960
gtcgggtctg ccatggccgg gagcctgggg ggtttcaacg cacactccag caacatcgtg 1020
agtgcagtgt tcatcgcaac aggccaggac cctgctcaga acgtcgaatc ttcccactgc 1080
atgaccatga tcctccctga cggtgacgac ttgcatatca gtgtgtccat gccctgcatc 1140
gaggtcggga ccgtgggtgg ggggacccag ctcgcctccc aggccgcctg cctgaacctg 1200
ctgggggtga agggctccaa caacgagaag cctggctcca acgcccagca gttggcaaga 1260
atagtggctg gttcggttct tgcaggagag ctttcactaa tgtctgctat tgcagctgga 1320
cagcttgtga agagtcacat gaaatacaac agatccagca gagacattgg cccttcgtct 1380
caagtcaaca ggtga 1395
<210> 4
<211> 699
<212> DNA
<213> Artificial Sequence
<400> 4
atggcttcct ctgtcatttc ttcagcagct gttgccacaa ggtctaacgt gacccaggcc 60
tccatggtgg cccctttcac cgggctcaag tcctccgcta ccttccctgt gaccaagaag 120
cagaacctcg acatcacatc tatcgcatcc aacggcggcc gtgtgagctg cgccgtgcca 180
ctctgcaacg gggagttcgg gatgagtcac cctgctttga cacagctgcg tgctctgcga 240
tactgcaagg agatccccgc cctcgaccct cagcttctcg actggctcct ccttgaggac 300
tccatgacaa agaggttcga gcagcaggga aagaccgtgt ccgtgaccat gatccgtgag 360
gggttcgtgg agcagaacga gatccctgag gagcttcccc tgctccccaa ggagtctagg 420
tactggctca gggagatcct gttgtgcgca gacggggagc cctggctcgc aggaaggacc 480
gtcgtccccg tgtccaccct ctcaggccct gagctcgccc tccagaagct cggtaagacc 540
cccttgggac gatacttgtt cacctccagc accctcaccc gagacttcat cgagatcggg 600
cgagacgctg gactctgggg taggaggtcc aggctcaggc tctccgggaa gccactcctc 660
ctcaccgagc tcttcctgcc agcctcccct ctctactga 699
<210> 5
<211> 22105
<212> DNA
<213> Artificial Sequence
<400> 5
ggaggaattc caatcccaca aaaatctgag cttaacagca cagttgctcc tctcagagca 60
gaatcgggta ttcaacaccc tcatatcaac tactacgttg tgtataacgg tccacatgcc 120
ggtatatacg atgactgggg ttgtacaaag gcggcaacaa acggcgttcc cggagttgca 180
cacaagaaat ttgccactat tacagaggca agagcagcag ctgacgcgta cacaacaagt 240
cagcaaacag acaggttgaa cttcatcccc aaaggagaag ctcaactcaa gcccaagagc 300
tttgctaagg ccctaacaag cccaccaaag caaaaagccc actggctcac gctaggaacc 360
aaaaggccca gcagtgatcc agccccaaaa gagatctcct ttgccccgga gattacaatg 420
gacgatttcc tctatcttta cgatctagga aggaagttcg aaggtgaagg tgacgacact 480
atgttcacca ctgataatga gaaggttagc ctcttcaatt tcagaaagaa tgctgaccca 540
cagatggtta gagaggccta cgcagcaagt ctcatcaaga cgatctaccc gagtaacaat 600
ctccaggaga tcaaatacct tcccaagaag gttaaagatg cagtcaaaag attcaggact 660
aattgcatca agaacacaga gaaagacata tttctcaaga tcagaagtac tattccagta 720
tggacgattc aaggcttgct tcataaacca aggcaagtaa tagagattgg agtctctaaa 780
aaggtagttc ctactgaatc taaggccatg catggagtct aagattcaaa tcgaggatct 840
aacagaactc gccgtcaaga ctggcgaaca gttcatacag agtcttttac gactcaatga 900
caagaagaaa atcttcgtca acatggtgga gcacgacact ctggtctact ccaaaaatgt 960
caaagataca gtctcagaag atcaaagggc tattgagact tttcaacaaa ggataatttc 1020
gggaaacctc ctcggattcc attgcccagc tatctgtcac ttcatcgaaa ggacagtaga 1080
aaaggaaggt ggctcctaca aatgccatca ttgcgataaa ggaaaggcta tcattcaaga 1140
tctctctgcc gacagtggtc ccaaagatgg acccccaccc acgaggagca tcgtggaaaa 1200
agaagaggtt ccaaccacgt ctacaaagca agtggattga tgtgacatct ccactgacgt 1260
aagggatgac gcacaatccc actatccttc gcaagaccct tcctctatat aaggaagttc 1320
atttcatttg gagaggacac gctcgagtat aagagctcat ttttacaaca attaccaaca 1380
acaacaaaca acaaacaaca ttacaattac atttacaatt atcgatacaa tgaaaaagcc 1440
tgaactcacc gcgacgtctg tcgagaagtt tctgatcgaa aagttcgaca gcgtctccga 1500
cctgatgcag ctctcggagg gcgaagaatc tcgtgctttc agcttcgatg taggagggcg 1560
tggatatgtc ctgcgggtaa atagctgcgc cgatggtttc tacaaagatc gttatgttta 1620
tcggcacttt gcatcggccg cgctcccgat tccggaagtg cttgacattg gggaattcag 1680
cgagagcctg acctattgca tctcccgccg tgcacagggt gtcacgttgc aagacctgcc 1740
tgaaaccgaa ctgcccgctg ttctgcaggt aaatttctag tttttctcct tcattttctt 1800
ggttaggacc cttttctctt tttatttttt tgagctttga tctttcttta aactgatcta 1860
ttttttaatt gattggttat ggtgtaaata ttacatagct ttaactgata atctgattac 1920
tttatttcgt gtgtctatga tgatgatgat aactgcagcc ggtcgcggag gccatggatg 1980
cgatcgctgc ggccgatctt agccagacga gcgggttcgg cccattcgga ccgcaaggaa 2040
tcggtcaata cactacatgg cgtgatttca tatgcgcgat tgctgatccc catgtgtatc 2100
actggcaaac tgtgatggac gacaccgtca gtgcgtccgt cgcgcaggct ctcgatgagc 2160
tgatgctttg ggccgaggac tgccccgaag tccggcacct cgtgcacgcg gatttcggct 2220
ccaacaatgt cctgacggac aatggccgca taacagcggt cattgactgg agcgaggcga 2280
tgttcgggga ttcccaatac gaggtcgcca acatcttctt ctggaggccg tggttggctt 2340
gtatggagca gcagacgcgc tacttcgagc ggaggcatcc ggagcttgca ggatcgccgc 2400
ggctccgggc gtatatgctc cgcattggtc ttgaccaact ctatcagagc ttggttgacg 2460
gcaatttcga tgatgcagct tgggcgcagg gtcgatgcga cgcaatcgtc cgatccggag 2520
ccgggactgt cgggcgtaca caaatcgccc gcagaagcgc ggccgtctgg accgatggct 2580
gtgtagaagt actcgccgat agtggaaacc gacgccccag cactcgtccg agggcaaagg 2640
aataggcttc tctagctaga gtcgatcgac aagctcgagt ttctccataa taatgtgtga 2700
gtagttccca gataagggaa ttagggttcc tatagggttt cgctcatgtg ttgagcatat 2760
aagaaaccct tagtatgtat ttgtatttgt aaaatacttc tatcaataaa atttctaatt 2820
cctaaaacca aaatccagta ctaaaatcca gatcgctgca agaattcaag cttggagaag 2880
ctttccctaa tgatattgtt catgtaatta agttttgtgg aagtgagaga gtccaatttt 2940
gataagaaaa gagtcagaaa acgtaatatt ttaaaagtct aaatctttct acaaataaga 3000
gcaaatttat ttatttttta atccaataaa tattaatgga ggacaaattc aattcacttg 3060
gttgtaaaat aaacttaaac caataaccaa agaactaata aatcctgaag tggaattatt 3120
aaggataaat gtacatagac aatgaagaaa taataggttc gatgaattaa taataattaa 3180
ggatgttaca atcatcatgt gccaagtata tacacaatat tctatgggat ttataatttc 3240
gttacttcac ttaacttttg cgtaaataaa acgaattatc tgatatttta taataaaaca 3300
gttaattaag aaccatcatt tttaacaaca tagatatatt atttctaata gtttaatgat 3360
acttttaaat cttttaaatt ttatgtttct tttagaaaat aaaaattcaa aaaattaaat 3420
atatttacaa aaactacaat caaacacaac ttcatatatt aaaagcaaaa tatattttga 3480
aaatttcaag tgtcctaaca aataagacaa gaggaaaatg tacgatgaga gacataaaga 3540
gaactaataa ttgaggagtc ctataatata taataaagtt tattagtaaa cttaattatt 3600
aaggactcct aaaatatatg ataggagaaa atgaatggtg agagatattg gaaaacttaa 3660
taattaagga ttttaaaata tatggtaaaa gataggcaaa gtatccatta tcccctttta 3720
acttgaagtc tactaggcgc atgtgaaagt tgattttttg tcacgtcata tagctataac 3780
gtaaaaaaag aaagtaaaat ttttaatttt ttttaatata tgacatattt taaacgaaat 3840
ataggacaaa atgtaaatga atagtaaagg aaacaaagat taatacttac tttgtaagaa 3900
tttaagataa atttaaaatt taatagatca actttacgtc tagaaagacc ctatcttaga 3960
aggaatttca gaaatcggcc ctttttcaaa aataactttt aaataatgaa ttttaaattt 4020
taagaaataa tttccaatga ataaatgaca tgtagcattt tacctaaata tttcaactat 4080
tttaatccaa tattaatttg tttattccca acaatagaaa gtcttgtgca gacatttaat 4140
ctgacttttc cagtactaaa tattaatttt ctgaagattt tcgggtttag tccacaagtt 4200
ttagtgagaa gttttgctca aaattttagg tgagaaggtt tgatatttat cttttgttaa 4260
attaatttat ctaggtgact attatttatt taagtagaaa ttcatatcat tacttttgcc 4320
aacttgtagt cataatagga gtaggtgtat atgatgaagg aataaacaag ttcagtgaag 4380
tgattaaaat aaaatataat ttaggtgtac atcaaataaa aaccttaaag tttagaaagg 4440
caccgaataa ttttgcatag aagatattag taaatttata aaaataaaag aaatgtagtt 4500
gtcaagttgt gttctttttt ttggataaaa atagcagttg gcttatgtca ttcttttaca 4560
acctccatgc cacttgtcca attgttgaca cttaactaat tagtttgatt catgtatgaa 4620
tactaaataa ttttttagga ctgactcaaa tatttttata ttatcatagt aatatttatc 4680
taatttttag gaccacttat tactaaataa taaattaact actactatat tattgttgtg 4740
aaacaacaac gttttggttg ttatgatgaa acgtacacta tatcagtatg aaaaattcaa 4800
aacgattagt ataaattata ttgaaaattt gatatttttc tattcttaat cagacgtatt 4860
gggtttcata ttttaaaaag ggactaaact tagaagagaa gtttgtttga aactactttt 4920
gtctctttct tgttcccatt tctctcttag atttcaaaaa gtgaactact ttatctcttt 4980
ctttgttcac attttatttt attctattat aaatatggca tcctcatatt gagattttta 5040
gaaattattc taatcattca cagtgcaatg gcattgtacc gccgtctttc tcgaacttct 5100
cgtgtcctcc ggcggcaccc tcgcccctct atcgctgccc tctgctcttc tcccgatcaa 5160
acaaacccta gcacaactgc tcctcattct cagttaatca acccctttca atcttcttct 5220
tcttctgatc agtatatata tatacccaac tccaatttta agaaatcttt gacatattat 5280
tactctccac attcttcaag aattgaactt ttagggtacc gtcaagttct tcacttttca 5340
accttagcta attcagaaga ggagaagaag aatgagcaac aaaaacagcc ttcttggatt 5400
gatacgtatt tgccccaaag aattagaccc tacgctcatc ttgcccgact tgataagcct 5460
attggcactt ggttactcgc ttggccctgc atgtggtcga ttgctttggc tgctacgcca 5520
gggagccttc ctgatgtgaa aatgatgaca ctatttggtt gcggggcttt gcttttgcga 5580
ggtgctggtt gtacagttaa cgatcttctt gatcgagata ttgacactaa ggtggaaaga 5640
acaaggtcga ggccagtcgc gagtggtgta ttgacaccct ttcaagggct ctgtttcctt 5700
gggttccagt tgctattagg tcttgggatt cttttgcaat taaacaattt tagccgcatt 5760
ttgggtgctt catccctgtt gctggtgttc tcataccccc tcatgaagag gttgacattt 5820
tggcctcaag cctatcttgg tctaactttc aactggggag ctttgttagg ttgggctgct 5880
attaaaggaa gtattgatcc tgcagttgtg cttccattgt acgcctctgg ggtgttttgg 5940
acgctcgtgt atgacacaat atatgcacat caggataaag aggacgatct caaagtgggt 6000
gtcaagtcta cagccttgag atttggagat tccacaaaag aatggatcag tggttttgga 6060
ttagcatgca tcagcagtct tgctctttcc ggagttaatg ctgatattgg atggccatac 6120
tatgcatttc tgacagctgc ttctggccag ttggcctggc aaatttggac cgttgactta 6180
tcatctcgtg cagattgcaa cagaaaattt gtgtccaaca aatggtttgg tgcttttgtc 6240
tttggcgggg ttctatttgg tagactattg tgagcttata tgaagatgaa gatgaaatat 6300
ttggtgtgtc aaataaaaag cttgtgtgct taagtttgtg tttttttctt ggcttgttgt 6360
gttatgaatt tgtggctttt tctaatatta aatgaatgta agatctcatt ataatgaata 6420
aacaaatgtt tctataatcc attgtgaatg ttttgttgga tctcttctgc agcatataac 6480
tactgtatgt gctatggtat ggactatgga atatgattaa agataagcgc tactagaatt 6540
cgagctcgga gaagctttcc ctaatgatat tgttcatgta attaagtttt gtggaagtga 6600
gagagtccaa ttttgataag aaaagagtca gaaaacgtaa tattttaaaa gtctaaatct 6660
ttctacaaat aagagcaaat ttatttattt tttaatccaa taaatattaa tggaggacaa 6720
attcaattca cttggttgta aaataaactt aaaccaataa ccaaagaact aataaatcct 6780
gaagtggaat tattaaggat aaatgtacat agacaatgaa gaaataatag gttcgatgaa 6840
ttaataataa ttaaggatgt tacaatcatc atgtgccaag tatatacaca atattctatg 6900
ggatttataa tttcgttact tcacttaact tttgcgtaaa taaaacgaat tatctgatat 6960
tttataataa aacagttaat taagaaccat catttttaac aacatagata tattatttct 7020
aatagtttaa tgatactttt aaatctttta aattttatgt ttcttttaga aaataaaaat 7080
tcaaaaaatt aaatatattt acaaaaacta caatcaaaca caacttcata tattaaaagc 7140
aaaatatatt ttgaaaattt caagtgtcct aacaaataag acaagaggaa aatgtacgat 7200
gagagacata aagagaacta ataattgagg agtcctataa tatataataa agtttattag 7260
taaacttaat tattaaggac tcctaaaata tatgatagga gaaaatgaat ggtgagagat 7320
attggaaaac ttaataatta aggattttaa aatatatggt aaaagatagg caaagtatcc 7380
attatcccct tttaacttga agtctactag gcgcatgtga aagttgattt tttgtcacgt 7440
catatagcta taacgtaaaa aaagaaagta aaatttttaa ttttttttaa tatatgacat 7500
attttaaacg aaatatagga caaaatgtaa atgaatagta aaggaaacaa agattaatac 7560
ttactttgta agaatttaag ataaatttaa aatttaatag atcaacttta cgtctagaaa 7620
gaccctatct tagaaggaat ttcagaaatc ggcccttttt caaaaataac ttttaaataa 7680
tgaattttaa attttaagaa ataatttcca atgaataaat gacatgtagc attttaccta 7740
aatatttcaa ctattttaat ccaatattaa tttgtttatt cccaacaata gaaagtcttg 7800
tgcagacatt taatctgact tttccagtac taaatattaa ttttctgaag attttcgggt 7860
ttagtccaca agttttagtg agaagttttg ctcaaaattt taggtgagaa ggtttgatat 7920
ttatcttttg ttaaattaat ttatctaggt gactattatt tatttaagta gaaattcata 7980
tcattacttt tgccaacttg tagtcataat aggagtaggt gtatatgatg aaggaataaa 8040
caagttcagt gaagtgatta aaataaaata taatttaggt gtacatcaaa taaaaacctt 8100
aaagtttaga aaggcaccga ataattttgc atagaagata ttagtaaatt tataaaaata 8160
aaagaaatgt agttgtcaag ttgtgttctt ttttttggat aaaaatagca gttggcttat 8220
gtcattcttt tacaacctcc atgccacttg tccaattgtt gacacttaac taattagttt 8280
gattcatgta tgaatactaa ataatttttt aggactgact caaatatttt tatattatca 8340
tagtaatatt tatctaattt ttaggaccac ttattactaa ataataaatt aactactact 8400
atattattgt tgtgaaacaa caacgttttg gttgttatga tgaaacgtac actatatcag 8460
tatgaaaaat tcaaaacgat tagtataaat tatattgaaa atttgatatt tttctattct 8520
taatcagacg tattgggttt catattttaa aaagggacta aacttagaag agaagtttgt 8580
ttgaaactac ttttgtctct ttcttgttcc catttctctc ttagatttca aaaagtgaac 8640
tactttatct ctttctttgt tcacatttta ttttattcta ttataaatat ggcatcctca 8700
tattgagatt tttagaaatt attctaatca ttcacagtgc aatgctattt gcaaggggtt 8760
tgtctcagat ttcgagacgc agtatcaata gatatcaatg gctatgtccc cagcaacaac 8820
aatttcacca ttccaatcac tttccctctc ccatcgatgc ttctcataag gttttgggtt 8880
gcagagtaat tcattcatgg gtttctaatg ctcttagtgg tattggtcaa caaattcatc 8940
atcaaagcac tgctgtagca gaggagcaag tggacccatt ttcccttgtt gctgatgaat 9000
tatcccttct gacaaacagg ctgagatcaa tggtagttgc cgaggtccca aagctggctt 9060
cagctgctga gtatttcttc aaaatgggag tagaagggaa gaggtttcga cccacagttc 9120
tgctgttgat ggcaacggca ctgaacgcac cggtacttag accccaggtg gatgttgatt 9180
ctttgtccag ggatttgcgt acgaggcagc agtgtatagc tgaaatcacg gagatgatcc 9240
atgttgccag cctactccat gatgatgtac tagatgatgc tgacacacga cgtgggatag 9300
gttctttaaa ctttgtgatg ggaaataagt tagctgtact agctggagac tttctgcttt 9360
cccgagcgtg tgtggcactt gcctctttga agaatacaga ggttgtatcc cttctggcaa 9420
ctgttgtgga acatcttgtt actggagaga caatgcaaat gacgacttct tctgatgaac 9480
gttgtagcat ggattattac atgcagaaaa catattacaa gactgcatca ttaatttcaa 9540
acagttgcaa agcaatagcg ctacttgctg ggcatactgc tgaagtctcc atgttagctt 9600
ttgactatgg gaaaaatttg ggcttggcat ttcaattaat agatgatgtt cttgatttca 9660
caggcacatc tgccaccctc ggcaagggtt cattgtctga tattcgtcat gggattgtaa 9720
ctgccccaat attgtatgcc atggaggaat ttcctcaact gcgaacggtg gtggaccggg 9780
gattcgatga tcctgtcaat gtggagattg ctctggacta ccttggtaag agccgaggga 9840
tacagagaac aagagaactt gcaagaaaac atgctaacct tgcctcagcg gctgttgact 9900
ctcttcctga gagcgatgac gaggatgttc agagatcaag acgggcactt gtggaactta 9960
ctcaaagagt catcacaaga acaaaatagg cttatatgaa gatgaagatg aaatatttgg 10020
tgtgtcaaat aaaaagcttg tgtgcttaag tttgtgtttt tttcttggct tgttgtgtta 10080
tgaatttgtg gctttttcta atattaaatg aatgtaagat ctcattataa tgaataaaca 10140
aatgtttcta taatccattg tgaatgtttt gttggatctc ttctgcagca tataactact 10200
gtatgtgcta tggtatggac tatggaatat gattaaagat aagcgcttta cgaattccca 10260
tggggagaag ctttccctaa tgatattgtt catgtaatta agttttgtgg aagtgagaga 10320
gtccaatttt gataagaaaa gagtcagaaa acgtaatatt ttaaaagtct aaatctttct 10380
acaaataaga gcaaatttat ttatttttta atccaataaa tattaatgga ggacaaattc 10440
aattcacttg gttgtaaaat aaacttaaac caataaccaa agaactaata aatcctgaag 10500
tggaattatt aaggataaat gtacatagac aatgaagaaa taataggttc gatgaattaa 10560
taataattaa ggatgttaca atcatcatgt gccaagtata tacacaatat tctatgggat 10620
ttataatttc gttacttcac ttaacttttg cgtaaataaa acgaattatc tgatatttta 10680
taataaaaca gttaattaag aaccatcatt tttaacaaca tagatatatt atttctaata 10740
gtttaatgat acttttaaat cttttaaatt ttatgtttct tttagaaaat aaaaattcaa 10800
aaaattaaat atatttacaa aaactacaat caaacacaac ttcatatatt aaaagcaaaa 10860
tatattttga aaatttcaag tgtcctaaca aataagacaa gaggaaaatg tacgatgaga 10920
gacataaaga gaactaataa ttgaggagtc ctataatata taataaagtt tattagtaaa 10980
cttaattatt aaggactcct aaaatatatg ataggagaaa atgaatggtg agagatattg 11040
gaaaacttaa taattaagga ttttaaaata tatggtaaaa gataggcaaa gtatccatta 11100
tcccctttta acttgaagtc tactaggcgc atgtgaaagt tgattttttg tcacgtcata 11160
tagctataac gtaaaaaaag aaagtaaaat ttttaatttt ttttaatata tgacatattt 11220
taaacgaaat ataggacaaa atgtaaatga atagtaaagg aaacaaagat taatacttac 11280
tttgtaagaa tttaagataa atttaaaatt taatagatca actttacgtc tagaaagacc 11340
ctatcttaga aggaatttca gaaatcggcc ctttttcaaa aataactttt aaataatgaa 11400
ttttaaattt taagaaataa tttccaatga ataaatgaca tgtagcattt tacctaaata 11460
tttcaactat tttaatccaa tattaatttg tttattccca acaatagaaa gtcttgtgca 11520
gacatttaat ctgacttttc cagtactaaa tattaatttt ctgaagattt tcgggtttag 11580
tccacaagtt ttagtgagaa gttttgctca aaattttagg tgagaaggtt tgatatttat 11640
cttttgttaa attaatttat ctaggtgact attatttatt taagtagaaa ttcatatcat 11700
tacttttgcc aacttgtagt cataatagga gtaggtgtat atgatgaagg aataaacaag 11760
ttcagtgaag tgattaaaat aaaatataat ttaggtgtac atcaaataaa aaccttaaag 11820
tttagaaagg caccgaataa ttttgcatag aagatattag taaatttata aaaataaaag 11880
aaatgtagtt gtcaagttgt gttctttttt ttggataaaa atagcagttg gcttatgtca 11940
ttcttttaca acctccatgc cacttgtcca attgttgaca cttaactaat tagtttgatt 12000
catgtatgaa tactaaataa ttttttagga ctgactcaaa tatttttata ttatcatagt 12060
aatatttatc taatttttag gaccacttat tactaaataa taaattaact actactatat 12120
tattgttgtg aaacaacaac gttttggttg ttatgatgaa acgtacacta tatcagtatg 12180
aaaaattcaa aacgattagt ataaattata ttgaaaattt gatatttttc tattcttaat 12240
cagacgtatt gggtttcata ttttaaaaag ggactaaact tagaagagaa gtttgtttga 12300
aactactttt gtctctttct tgttcccatt tctctcttag atttcaaaaa gtgaactact 12360
ttatctcttt ctttgttcac attttatttt attctattat aaatatggca tcctcatatt 12420
gagattttta gaaattattc taatcattca cagtgcaatg ttccgatcca gctctgacga 12480
cgacgtgtgg gtgaacgacg ggatgatccc ctgcaaccag agtttggact gccgagaggt 12540
gctcccaatc aagcccaaca gtgtcgaccc accccgagag agcgagctag actctgtcga 12600
ggacgaggag atcgtgaagc tcgtgatcga cggtaccatc ccctcttaca gcctcgagac 12660
taagctcggc gactgcaaga gggccgccgc aatcaggcga gaggccgtgc agcgaatcac 12720
cgggaagtcc ttgaccgggc tccccctcga gggcttcgac tacaactcta tcttagggca 12780
gtgttgcgag atgcccgtgg gatacgtgca gatccccgtg ggtatcgccg gaccactgct 12840
cctggatgga gtcgagtaca gcgtgcccat ggccaccact gagggttgcc tcgtggcatc 12900
aactaaccga ggcttcaagg ccatccactt gagcggcgga gccttctctg tgctcgtgaa 12960
ggatgcaatg acacgagctc ccgtggtgag gttcccaagc gcccgtaggg ctgctttggt 13020
gatgttctac ctccaggacc cctcaaactt cgagcgactc tcactcatct tcaacaagtc 13080
aagcaggttc gccaggttgc agtctatcac ttgcaccatc gccggtagga acctttaccc 13140
caggttcgcc tgcagcactg gcgacgccat gggtatgaac atggtgtcaa agggtgtgca 13200
gaacgtgctt gattttgtga agtccgaatt ccctgacatg gacgtcatcg gcatcagcgg 13260
aaactactgc agcgacaaga aggcctccgc cgtgaactgg atcgagggga ggggaaagca 13320
cgtggtgtgc gaggctttca tcaaggcaga gatcgtggag aaggtcctca agacttccgt 13380
cgaggctctg gtggagttga acaccctcaa gaacctcgtc gggtctgcca tggccgggag 13440
cctggggggt ttcaacgcac actccagcaa catcgtgagt gcagtgttca tcgcaacagg 13500
ccaggaccct gctcagaacg tcgaatcttc ccactgcatg accatgatcc tccctgacgg 13560
tgacgacttg catatcagtg tgtccatgcc ctgcatcgag gtcgggaccg tgggtggggg 13620
gacccagctc gcctcccagg ccgcctgcct gaacctgctg ggggtgaagg gctccaacaa 13680
cgagaagcct ggctccaacg cccagcagtt ggcaagaata gtggctggtt cggttcttgc 13740
aggagagctt tcactaatgt ctgctattgc agctggacag cttgtgaaga gtcacatgaa 13800
atacaacaga tccagcagag acattggccc ttcgtctcaa gtcaacaggt gagcttatat 13860
gaagatgaag atgaaatatt tggtgtgtca aataaaaagc ttgtgtgctt aagtttgtgt 13920
ttttttcttg gcttgttgtg ttatgaattt gtggcttttt ctaatattaa atgaatgtaa 13980
gatctcatta taatgaataa acaaatgttt ctataatcca ttgtgaatgt tttgttggat 14040
ctcttctgca gcatataact actgtatgtg ctatggtatg gactatggaa tatgattaaa 14100
gataagcgct cagagaattc gcatgcggag aagctttccc taatgatatt gttcatgtaa 14160
ttaagttttg tggaagtgag agagtccaat tttgataaga aaagagtcag aaaacgtaat 14220
attttaaaag tctaaatctt tctacaaata agagcaaatt tatttatttt ttaatccaat 14280
aaatattaat ggaggacaaa ttcaattcac ttggttgtaa aataaactta aaccaataac 14340
caaagaacta ataaatcctg aagtggaatt attaaggata aatgtacata gacaatgaag 14400
aaataatagg ttcgatgaat taataataat taaggatgtt acaatcatca tgtgccaagt 14460
atatacacaa tattctatgg gatttataat ttcgttactt cacttaactt ttgcgtaaat 14520
aaaacgaatt atctgatatt ttataataaa acagttaatt aagaaccatc atttttaaca 14580
acatagatat attatttcta atagtttaat gatactttta aatcttttaa attttatgtt 14640
tcttttagaa aataaaaatt caaaaaatta aatatattta caaaaactac aatcaaacac 14700
aacttcatat attaaaagca aaatatattt tgaaaatttc aagtgtccta acaaataaga 14760
caagaggaaa atgtacgatg agagacataa agagaactaa taattgagga gtcctataat 14820
atataataaa gtttattagt aaacttaatt attaaggact cctaaaatat atgataggag 14880
aaaatgaatg gtgagagata ttggaaaact taataattaa ggattttaaa atatatggta 14940
aaagataggc aaagtatcca ttatcccctt ttaacttgaa gtctactagg cgcatgtgaa 15000
agttgatttt ttgtcacgtc atatagctat aacgtaaaaa aagaaagtaa aatttttaat 15060
tttttttaat atatgacata ttttaaacga aatataggac aaaatgtaaa tgaatagtaa 15120
aggaaacaaa gattaatact tactttgtaa gaatttaaga taaatttaaa atttaataga 15180
tcaactttac gtctagaaag accctatctt agaaggaatt tcagaaatcg gccctttttc 15240
aaaaataact tttaaataat gaattttaaa ttttaagaaa taatttccaa tgaataaatg 15300
acatgtagca ttttacctaa atatttcaac tattttaatc caatattaat ttgtttattc 15360
ccaacaatag aaagtcttgt gcagacattt aatctgactt ttccagtact aaatattaat 15420
tttctgaaga ttttcgggtt tagtccacaa gttttagtga gaagttttgc tcaaaatttt 15480
aggtgagaag gtttgatatt tatcttttgt taaattaatt tatctaggtg actattattt 15540
atttaagtag aaattcatat cattactttt gccaacttgt agtcataata ggagtaggtg 15600
tatatgatga aggaataaac aagttcagtg aagtgattaa aataaaatat aatttaggtg 15660
tacatcaaat aaaaacctta aagtttagaa aggcaccgaa taattttgca tagaagatat 15720
tagtaaattt ataaaaataa aagaaatgta gttgtcaagt tgtgttcttt tttttggata 15780
aaaatagcag ttggcttatg tcattctttt acaacctcca tgccacttgt ccaattgttg 15840
acacttaact aattagtttg attcatgtat gaatactaaa taatttttta ggactgactc 15900
aaatattttt atattatcat agtaatattt atctaatttt taggaccact tattactaaa 15960
taataaatta actactacta tattattgtt gtgaaacaac aacgttttgg ttgttatgat 16020
gaaacgtaca ctatatcagt atgaaaaatt caaaacgatt agtataaatt atattgaaaa 16080
tttgatattt ttctattctt aatcagacgt attgggtttc atattttaaa aagggactaa 16140
acttagaaga gaagtttgtt tgaaactact tttgtctctt tcttgttccc atttctctct 16200
tagatttcaa aaagtgaact actttatctc tttctttgtt cacattttat tttattctat 16260
tataaatatg gcatcctcat attgagattt ttagaaatta ttctaatcat tcacagtgca 16320
atggatctag acaatatggc ttcctctgtc atttcttcag cagctgttgc cacaaggtct 16380
aacgtgaccc aggcctccat ggtggcccct ttcaccgggc tcaagtcctc cgctaccttc 16440
cctgtgacca agaagcagaa cctcgacatc acatctatcg catccaacgg cggccgtgtg 16500
agctgcgccg tgccactctg caacggggag ttcgggatga gtcaccctgc tttgacacag 16560
ctgcgtgctc tgcgatactg caaggagatc cccgccctcg accctcagct tctcgactgg 16620
ctcctccttg aggactccat gacaaagagg ttcgagcagc agggaaagac cgtgtccgtg 16680
accatgatcc gtgaggggtt cgtggagcag aacgagatcc ctgaggagct tcccctgctc 16740
cccaaggagt ctaggtactg gctcagggag atcctgttgt gcgcagacgg ggagccctgg 16800
ctcgcaggaa ggaccgtcgt ccccgtgtcc accctctcag gccctgagct cgccctccag 16860
aagctcggta agaccccctt gggacgatac ttgttcacct ccagcaccct cacccgagac 16920
ttcatcgaga tcgggcgaga cgctggactc tggggtagga ggtccaggct caggctctcc 16980
gggaagccac tcctcctcac cgagctcttc ctgccagcct cccctctcta ctgagaggaa 17040
aaaaatatgg agtggagtct gacgcagaat ggggatcctc tagagtcgag cttatatgaa 17100
gatgaagatg aaatatttgg tgtgtcaaat aaaaagcttg tgtgcttaag tttgtgtttt 17160
tttcttggct tgttgtgtta tgaatttgtg gctttttcta atattaaatg aatgtaagat 17220
ctcattataa tgaataaaca aatgtttcta taatccattg tgaatgtttt gttggatctc 17280
ttctgcagca tataactact gtatgtgcta tggtatggac tatggaatat gattaaagat 17340
aagcgcttgt ggaggatgca catgtgaccg agggacacga agtgatccgt ttaaactatc 17400
agtgtttgac aggatatatt ggcgggtaaa cctaagagaa aagagcgttt attagaataa 17460
tcggatattt aaaagggcgt gaaaaggttt atccgttcgt ccatttgtat gtgcatgcca 17520
accacagggt tcccctcggg agtcagccgt gcggctgcat gaaatcctgg ccggtttgtc 17580
tgatgccaag ctggcggcct ggccggccag cttggccgct gaagaaaccg agcgccgccg 17640
tctaaaaagg tgatgtgtat ttgagtaaaa cagcttgcgt catgcggtcg ctgcgtatat 17700
gatgcgatga gtaaataaac aaatacgcaa ggggaacgca tgaaggttat cgctgtactt 17760
aaccagaaag gcgggtcagg caagacgacc atcgcaaccc atctagcccg cgccctgcaa 17820
ctcgccgggg ccgatgttct gttagtcgat tccgatcccc agggcagtgc ccgcgattgg 17880
gcggccgtgc gggaagatca accgctaacc gttgtcggca tcgaccgccc gacgattgac 17940
cgcgacgtga aggccatcgg ccggcgcgac ttcgtagtga tcgacggagc gccccaggcg 18000
gcggacttgg ctgtgtccgc gatcaaggca gccgacttcg tgctgattcc ggtgcagcca 18060
agcccttacg acatatgggc caccgccgac ctggtggagc tggttaagca gcgcattgag 18120
gtcacggatg gaaggctaca agcggccttt gtcgtgtcgc gggcgatcaa aggcacgcgc 18180
atcggcggtg aggttgccga ggcgctggcc gggtacgagc tgcccattct tgagtcccgt 18240
atcacgcagc gcgtgagcta cccaggcact gccgccgccg gcacaaccgt tcttgaatca 18300
gaacccgagg gcgacgctgc ccgcgaggtc caggcgctgg ccgctgaaat taaatcaaaa 18360
ctcatttgag ttaatgaggt aaagagaaaa tgagcaaaag cacaaacacg ctaagtgccg 18420
gccgtccgag cgcacgcagc agcaaggctg caacgttggc cagcctggca gacacgccag 18480
ccatgaagcg ggtcaacttt cagttgccgg cggaggatca caccaagctg aagatgtacg 18540
cggtacgcca aggcaagacc attaccgagc tgctatctga atacatcgcg cagctaccag 18600
agtaaatgag caaatgaata aatgagtaga tgaattttag cggctaaagg aggcggcatg 18660
gaaaatcaag aacaaccagg caccgacgcc gtggaatgcc ccatgtgtgg aggaacgggc 18720
ggttggccag gcgtaagcgg ctgggttgtc tgccggccct gcaatggcac tggaaccccc 18780
aagcccgagg aatcggcgtg agcggtcgca aaccatccgg cccggtacaa atcggcgcgg 18840
cgctgggtga tgacctggtg gagaagttga aggccgcgca ggccgcccag cggcaacgca 18900
tcgaggcaga agcacgcccc ggtgaatcgt ggcaagcggc cgctgatcga atccgcaaag 18960
aatcccggca accgccggca gccggtgcgt cgtcgattag gaagccgccc aagggcgacg 19020
agcaaccaga ttttttcgtt ccgatgctct atgacgtggg cacccgcgat agtcgcagca 19080
tcatggacgt ggccgttttc cgtctgtcga agcgtgaccg acgagctggc gaggtgatcc 19140
gctacgagct tccagacggg cacgtagagg tttccgcagg gccggccggc atggccagtg 19200
tgtgggatta cgacctggta ctgatggcgg tttcccatct aaccgaatcc atgaaccgat 19260
accgggaagg gaagggagac aagcccggcc gcgtgttccg tccacacgtt gcggacgtac 19320
tcaagttctg ccggcgagcc gatggcggaa agcagaaaga cgacctggta gaaacctgca 19380
ttcggttaaa caccacgcac gttgccatgc agcgtacgaa gaaggccaag aacggccgcc 19440
tggtgacggt atccgagggt gaagccttga ttagccgcta caagatcgta aagagcgaaa 19500
ccgggcggcc ggagtacatc gagatcgagc tagctgattg gatgtaccgc gagatcacag 19560
aaggcaagaa cccggacgtg ctgacggttc accccgatta ctttttgatc gatcccggca 19620
tcggccgttt tctctaccgc ctggcacgcc gcgccgcagg caaggcagaa gccagatggt 19680
tgttcaagac gatctacgaa cgcagtggca gcgccggaga gttcaagaag ttctgtttca 19740
ccgtgcgcaa gctgatcggg tcaaatgacc tgccggagta cgatttgaag gaggaggcgg 19800
ggcaggctgg cccgatccta gtcatgcgct accgcaacct gatcgagggc gaagcatccg 19860
ccggttccta atgtacggag cagatgctag ggcaaattgc cctagcaggg gaaaaaggtc 19920
gaaaaagctt ctttcctgtg gatagcacgt acattgggaa cccaaagccg tacattggga 19980
accggaaccc gtacattggg aacccaaagc cgtacattgg gaaccggtca cacatgtaag 20040
tgactgatat aaaagagaaa aaaggcgatt tttccgccta aaactcttta aaacttatta 20100
aaactcttaa aacccgcctg gcctgtgcat aactgtctgg ccagcgcaca gccgaacagc 20160
tgcaaaaagc gcccacatca aggctccgag tgcgcggaac ccctatttgt ttatttttct 20220
aaatacattc aaatatgtat ccgctcatga gacaataacc ctgataaatg cttcaataat 20280
attgaaaaag gaagagtatg gctaaaatga gaatatcacc ggaattgaaa aaactgatcg 20340
aaaaataccg ctgcgtaaaa gatacggaag gaatgtctcc tgctaaggta tataagctgg 20400
tgggagaaaa tgaaaaccta tatttaaaaa tgacggacag ccggtataaa gggaccacct 20460
atgatgtgga acgggaaaag gacatgatgc tatggctgga aggaaagctg cctgttccaa 20520
aggtcctgca ctttgaacgg catgatggct ggagcaatct gctcatgagt gaggccgatg 20580
gcgtcctttg ctcggaagag tatgaagatg aacaaagccc tgaaaagatt atcgagctgt 20640
atgcggagtg catcaggctc tttcactcca tcgacatatc ggattgtccc tatacgaata 20700
gcttagacag ccgcttagcc gaattggatt acttactgaa taacgatctg gccgatgtgg 20760
attgcgaaaa ctgggaagag gacactccat ttaaagatcc gcgcgagctg tatgattttt 20820
taaagacgga aaagcccgaa gaggaacttg tcttttccca cggcgacctg ggagacagca 20880
acatctttgt gaaagatggc aaagtaagtg gctttattga tcttgggaga agcggcaggg 20940
cggacaagtg gtatgacatt gccttctgcg tccggtcgct cagggaggat atcggggaag 21000
aacagtatgt cgagctattt tttgacttac tggggatcaa gcctgattgg gagaaaataa 21060
aatattatat tttactggat gaattgtttt agctgtcaga ccaagtttac tcatatatac 21120
tttagattga tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg 21180
ataatctcat gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg 21240
tagaaaagat caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc 21300
aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 21360
tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtt cttctagtgt 21420
agccgtagtt aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc 21480
taatcctgtt accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact 21540
caagacgata gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac 21600
agcccagctt ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag 21660
aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg 21720
gaacaggaga gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg 21780
tcgggtttcg ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga 21840
gcctatggaa aaacgccagc aacgcggcct ttttacggtt cctgctcgga tctgttggac 21900
cggacagtag tcatggttga tgggctgcct gtatcgagtg gtgattttgt gccgagctgc 21960
cggtcgggga gctgttggct ggctggtggc aggatatatt gtggtgtaaa caaattgacg 22020
cttagacaac ttaataacac attgcggacg tttttaatgt actggggttg aacactctgt 22080
ggaagacaat gccgaattcg gatcc 22105
<210> 6
<211> 44
<212> DNA
<213> Artificial Sequence
<400> 6
ccgaagacgg ctcaggagca tccctaatga tattgttcac gtaa 44
<210> 7
<211> 44
<212> DNA
<213> Artificial Sequence
<400> 7
ccgaagacgg ctcgaatggc actgtgaatg attagaataa tttc 44
<210> 8
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 8
ccgaagacgg ctcaaatgct atttgcaagg ggtttg 36
<210> 9
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 9
ccgaagacgg ctcgaagcct attttgttct tgtgatgact 40
<210> 10
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 10
ccgaagacgg ctcagcttat atgaagatga agatgaaata 40
<210> 11
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 11
ccgaagacgg ctcgagcgct tatctttaat catattccat 40

Claims (9)

1. Coenzyme Q in tomato can be improved 10 The method for constructing the combined vector is characterized by comprising the following steps:
s1, extracting tomato genome DNA, and obtaining an E8 promoter sequence through PCR amplification; obtaining a tobacco Coq2 gene coding sequence through total synthesis, as shown in SEQ ID NO. 1; extracting tobacco genome RNA, obtaining cDNA through reverse transcription, and obtaining a DPS gene coding sequence through PCR amplification, wherein the DPS gene coding sequence is shown as SEQ ID NO. 2; obtaining an arabidopsis HMGR2 gene coding sequence through total synthesis, wherein the coding sequence is shown as SEQ ID NO. 3; obtaining an escherichia coli UbicC gene coding sequence with the N end fused with a tomato chloroplast signal peptide through total synthesis, wherein the sequence is shown as SEQ ID NO. 4; extracting arabidopsis genome DNA, and obtaining an hsp terminator sequence through PCR amplification;
s2, connecting the E8 promoter sequence into a vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the E8 promoter; the Coq2 gene coding sequence was ligated into another vector pUAP1 by the Golden Gate cloning method to obtain a level 0 vector for Coq2 gene; connecting the DPS gene coding sequence into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the DPS gene; the HMGR2 gene coding sequence is connected into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the HMGR2 gene; connecting the coding sequence of the Ubic gene into another vector pUAP1 by a Golden Gate cloning method to obtain a level 0 vector of the Ubic gene; ligating the hsp terminator sequence into another vector pUAP1 by the Golden Gate cloning method to obtain a level 0 vector for the hsp terminator;
s3, sequentially connecting the E8 promoter sequence, the Coq2 gene coding sequence and the hsp terminator sequence into a vector pICH47742 through a Golden Gate cloning method to obtain a level 1 vector of Coq2 genes; sequentially connecting the E8 promoter sequence, the DPS gene coding sequence and the hsp terminator sequence into a vector pICH47751 by a Golden Gate cloning method to obtain a level 1 vector of the DPS gene; sequentially connecting the E8 promoter sequence, the HMGR2 gene coding sequence and the hsp terminator sequence into a vector pICH47761 by a Golden Gate cloning method to obtain a level 1 vector of the HMGR2 gene; sequentially connecting the E8 promoter sequence, the ubiC gene coding sequence and the hsp terminator sequence into a vector pICH47772 by a Golden Gate cloning method to obtain a level 1 vector of the ubiC gene;
s4, connecting a 35S promoter sequence, a hygromycin resistance gene coding sequence and a 35S terminator sequence, the E8 promoter sequence, the Coq2 gene coding sequence and the hsp terminator sequence, the E8 promoter sequence, the DPS gene coding sequence and the hsp terminator sequence, the E8 promoter sequence, the HMGR2 gene coding sequence and the hsp terminator sequence, the E8 promoter sequence, the Ubic gene coding sequence and the hsp terminator sequence into a vector pICSL4723-P1 in sequence by a Golden Gate cloning method, wherein the obtained level 2 vector is the combined vector, and the gene sequence of the combined vector is shown in SEQ ID No. 5.
2. The method for constructing a combined vector according to claim 1, wherein each of the PCR amplification systems in step S1 is: a template, i.e., 500ng of the genomic DNA or 50ng of the cDNA; 0.2. mu.M forward primer; 0.2. mu.M reverse primer; 10. mu.L Fastpfu buffer; 0.2mMdNTPs; 2.5units Fastpfu DNA polymerase; h 2 O is complemented to 50 mu L;
the PCR amplification procedures were all as follows: at 95 ℃ for 2 min; circulating for 33 times at 95 deg.C, 20s, 58 deg.C, 20s, 72 deg.C, 2 min; 72 ℃ for 5 min.
3. The method for constructing a combined vector according to claim 2, wherein the nucleotide sequence of the PCR amplification primer of tomato genomic DNA is shown as SEQ ID No.6 and SEQ ID No. 7; the nucleotide sequence of the PCR amplification primer of the tobacco cDNA is shown as SEQ ID NO.8 and SEQ ID NO. 9; the nucleotide sequence of the PCR amplification primer of the arabidopsis genomic DNA is shown as SEQ ID NO.10 and SEQ ID NO. 11.
4. The method for constructing a combined vector according to claim 1, wherein when the coding sequence of the corresponding gene is obtained by the total synthesis, the bases of a part of the coding sequence are modified to remove BsaI and BpiI cleavage sites.
5. The method for constructing a combined vector according to claim 1, wherein each of the level 0 vector constructs in step S2 is: 100ng of pUAP1 vector; the molar ratio of the corresponding sequence fragment obtained in the step S1 to the pUAP1 vector is 2: 1; 5units BpiI endonuclease; 200units T 4 A ligase; 1.5 μ L T4 ligase buffer; 1.5 μ LBSA, 1 mg/mL; h 2 O is complemented to 20 mu L;
the reaction procedures are as follows: circulating for 26 times at 37 deg.C, 3min, 16 deg.C, 4 min; 5min at 80 ℃;
after the reaction is finished, taking the reaction solution to transform the heat shock competence of escherichia coli DH10B, and growing on an LB solid culture medium containing chloramphenicol; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining the corresponding correct level 0 vector.
6. The method for constructing a combined vector according to claim 1, wherein in step S3, each level 1 vector construction system is: corresponding level 1 vector, 100 ng; e8 start-up obtained in step S2The molar ratio of the level 0 carrier of the rotor to the corresponding level 1 carrier is 2: 1; the molar ratio of the level 0 vector of the corresponding gene obtained in the step S2 to the corresponding level 1 vector is 2: 1; the molar ratio of the level 0 vector of the hsp terminator obtained in the step S2 to the corresponding level 1 vector is 2: 1; 5units BsaI endonuclease; 200units T4 ligase; 1.5 μ L T4 ligase buffer; 1.5. mu.L BSA, 1 mg/mL; h 2 O is complemented to 20 mu L;
the reaction procedures are as follows: circulating for 26 times at 37 deg.C, 3min, 16 deg.C, 4 min; 5min at 80 ℃;
after the reaction is finished, taking reaction liquid to transform escherichia coli DH10B heat shock competence, and growing on an LB solid culture medium containing ampicillin; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining the corresponding correct level 1 vector.
7. The combined vector construction method according to claim 1, wherein the level 2 vector construction system in step S4 is: 100ng pICSL4723-P1 vector; the molar ratio of the pICSL11059 vector to the pICSL4723-P1 vector is 2: 1; the molar ratio of the Coq2 gene level 1 vector obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the molar ratio of the level 1 vector of the DPS gene obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the molar ratio of the level 1 vector of the HMGR gene obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the molar ratio of the Ubic gene level 1 vector obtained in the step S3 to the pICSL4723-P1 vector is 2: 1; the PICH41800 linker vector has a molar ratio of 2:1 to the pICSL4723-P1 vector; 5units BsaI endonuclease; 5units BpiI endonuclease; 200units T4 ligase; 1.5 μ L T4 ligase buffer; 1.5. mu.L BSA, 1 mg/mL; h 2 O is complemented to 20 mu L;
the reaction procedure is as follows: circulating for 26 times at 37 deg.C, 3min, 16 deg.C, 4 min; 5min at 80 ℃;
after the reaction is finished, taking reaction liquid to transform escherichia coli DH10B heat shock competence, and growing on an LB solid culture medium containing kanamycin; selecting positive clones, culturing in LB liquid culture medium, extracting plasmid, sequencing and obtaining correct level 2 vector.
8. A combined vector obtainable by the method of constructing a combined vector according to any one of claims 1 to 7.
9. A method for producing tomato with increased coenzyme Q10 content, characterized in that the combined vector obtained by the construction method according to any one of claims 1-7 is transformed into Agrobacterium GV3101 by heat shock and transformed into wild type tomato; after obtaining the independent resistant callus, further differentiating and regenerating to obtain the tomato strain with high coenzyme Q10 content.
CN202011182841.0A 2020-10-29 2020-10-29 Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof Active CN112280797B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011182841.0A CN112280797B (en) 2020-10-29 2020-10-29 Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011182841.0A CN112280797B (en) 2020-10-29 2020-10-29 Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof

Publications (2)

Publication Number Publication Date
CN112280797A CN112280797A (en) 2021-01-29
CN112280797B true CN112280797B (en) 2022-08-05

Family

ID=74353169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011182841.0A Active CN112280797B (en) 2020-10-29 2020-10-29 Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof

Country Status (1)

Country Link
CN (1) CN112280797B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151368B (en) * 2021-03-18 2022-07-26 上海辰山植物园 Coenzyme Q synthesis pathway benzene ring 6-position hydroxylase and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1408024A (en) * 1999-04-15 2003-04-02 卡尔根尼有限公司 Nucleic acid sequences to proteins involved in tocopherol synthesis
CN109097387A (en) * 2018-08-08 2018-12-28 华南农业大学 A kind of methods and applications with CRISPR/Cas9 gene editing system initiative purple fruit Tomato mutants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010037714A1 (en) * 2008-09-30 2010-04-08 Basf Plant Science Gmbh Method for producing a transgenic plant cell, a plant or a part thereof with increased resistance biotic stress

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1408024A (en) * 1999-04-15 2003-04-02 卡尔根尼有限公司 Nucleic acid sequences to proteins involved in tocopherol synthesis
CN109097387A (en) * 2018-08-08 2018-12-28 华南农业大学 A kind of methods and applications with CRISPR/Cas9 gene editing system initiative purple fruit Tomato mutants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M Rodriguez-Concepcion等.Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation.《Plant Physiol》.1999,第119卷(第1期),第41-48页. *
张延静等.产辅酶Q10酵母的发酵条件研究.《微生物学通报》.2003,第30卷(第2期),第65-69页. *

Also Published As

Publication number Publication date
CN112280797A (en) 2021-01-29

Similar Documents

Publication Publication Date Title
KR101511639B1 (en) Recombinant microorganisms and methods of use thereof
DK2630247T3 (en) PREPARATION OF BUTANOL FROM CARBON MONOXIDE BY A RECOMBINANT MICROORGANISM
CN101835898B (en) Solubility tags for the expression and purification of bioactive peptides
CN108368491B (en) Algal mutants with improved lipid productivity
HU230509B1 (en) Methods and microorganisms for production of panto-compounds
KR102024109B1 (en) A method of production of 2,4-dihydroxybutyric acid
CN112301013B (en) Complex enzyme and application thereof in preparation of ergothioneine
KR20140092759A (en) Host cells and methods for production of isobutanol
KR20110122672A (en) Methods of producing isoprene and a co-product
KR20120047908A (en) Fuel compositions comprising isoprene derivatives
KR20110076868A (en) Compositions and methods for producing isoprene free of c5 hydrocarbons under decoupling conditions and/or safe operating ranges
KR20100118973A (en) Compositions and methods for producing isoprene
KR20110063576A (en) Increased heterologous fe-s enzyme actiivty in yeast
CN111139260B (en) Method for improving whiteness of wheat flour by using gene editing
TW201233798A (en) Recombinant microorganisms and methods of use thereof
CN109929790A (en) A kind of genetic engineering bacterium producing 4-hydroxyisoleucine and its application
KR102079274B1 (en) Enzyme-altered metabolite activity
CN114945591A (en) Method for preparing bovine myoglobin by using escherichia coli
CN112280797B (en) Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof
CN108753815A (en) A kind of method that big flux screening plant virus replicates required host&#39;s gene
CN114480474B (en) Construction and application of marine nannochloropsis transcription activation CRISPRa system
CN114934062B (en) Engineering bacterium for efficiently expressing D-psicose 3-epimerase and application
Laptev et al. New recombinant strains of the yeast Yarrowia lipolytica with overexpression of the aconitate hydratase gene for the obtainment of isocitric acid from rapeseed oil
CN114045302A (en) Single-base editing vector and construction and application thereof
CN110616220A (en) Method for improving hardness of wheat grains

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant