CN112280685B - 一种可提高微藻缩醛磷脂含量的方法及rna干扰片段 - Google Patents

一种可提高微藻缩醛磷脂含量的方法及rna干扰片段 Download PDF

Info

Publication number
CN112280685B
CN112280685B CN202011172720.8A CN202011172720A CN112280685B CN 112280685 B CN112280685 B CN 112280685B CN 202011172720 A CN202011172720 A CN 202011172720A CN 112280685 B CN112280685 B CN 112280685B
Authority
CN
China
Prior art keywords
gly
ala
ser
thr
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011172720.8A
Other languages
English (en)
Other versions
CN112280685A (zh
Inventor
胡晗华
潘玉芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hydrobiology of CAS
Original Assignee
Institute of Hydrobiology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hydrobiology of CAS filed Critical Institute of Hydrobiology of CAS
Priority to CN202011172720.8A priority Critical patent/CN112280685B/zh
Publication of CN112280685A publication Critical patent/CN112280685A/zh
Application granted granted Critical
Publication of CN112280685B publication Critical patent/CN112280685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01148Glycerophospholipid acyltransferase (CoA-dependent) (2.3.1.148)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种提高微藻中的缩醛磷脂含量的方法,包括使所述微藻中的磷脂:甘油二酯脂酰基转移酶下调表达的步骤;还涉及可提高微拟球藻中的缩醛磷脂含量的RNA干扰片段,包括一对反向重复区,所述反向重复区的序列与nPDAT基因的mRNA序列同源;还涉及上述RNA干扰片段的表达载体。本发明通过对微拟球藻进行遗传改造,下调了微拟球藻中nPDAT基因的表达,使微拟球藻中的缩醛磷脂含量从约50nmol/g干重大幅提高到约150nmol/g,并在培养过程中,优化了培养条件,进一步将缩醛磷脂含量提高约360nmol/g,为实现使用微藻商业化生产缩醛磷脂提供一种可能的途径。

Description

一种可提高微藻缩醛磷脂含量的方法及RNA干扰片段
技术领域
本发明涉及生物合成领域,更特别地,涉及一种提高微藻中缩醛磷脂含量的方法、RNA干扰片段及表达载体。
背景技术
缩醛磷脂具有两条脂肪酸链,与普通的磷脂不同之处在于,其sn-1位存在特殊的烯醚键结构。现有研究表明,缩醛磷脂在代谢过程中表现出了多种生理功能,包括质膜流动调节功能、抗氧化功能、多不饱和脂肪酸储存功能和信息传导功能等。有研究发现,缩醛磷脂的水平降低可能导致例如老年痴呆多种疾病。还有研究发现,有研究发现缩醛磷脂对肿瘤细胞具有选择毒性。由此可见,缩醛磷脂可用于一些疾病的预防和治疗,还可以用作保健品提高人体机能。
缩醛磷脂主要存在于哺乳动物和鸟类中,在海参、扇贝等低等海洋生物中也有发现。从动物组织中提取缩醛磷脂操作繁琐,成本高。然而,目前的研究显示,细菌、微藻等单细胞生物中的缩醛磷脂含量极低,无法用于商业生产。
因此,需要一种提高例如微藻等单细胞生物中的缩醛磷脂含量的方法。
发明内容
为解决以上问题,本发明提供了一种提高微藻中的缩醛磷脂含量的方法,包括使所述微藻中的磷脂:甘油二酯脂酰基转移酶下调表达的步骤。
在一个具体实施方案中,通过敲降的方法下调所述磷脂:甘油二酯脂酰基转移酶的表达。
在一个具体实施方案中,所述微藻为微拟球藻。
在一个优选实施方案中,所述方法还包括在所述微拟球藻培养过程中向培养物中通入C02的步骤。
本发明通过对微拟球藻进行遗传改造,下调了微拟球藻中nPDAT基因的表达,大幅提高微藻尤其是微拟球藻中的缩醛磷脂含量,并在培养过程中,优化了培养条件,为实现使用微藻商业化生产缩醛磷脂提供一种可能的途径。
本发明还提供了一种可提高微拟球藻中的缩醛磷脂含量的RNA干扰片段,包括一对反向互补区,所述反向互补区的序列与nPDAT基因的mRNA序列同源。
在一个优选实施方案中,所述反向互补区的序列分别为SEQ ID NO:5所示序列及其反向互补序列。
在一个具体实施方案中,所述RNA干扰片段为shRNA。
在一个优选实施方案中,所述RNA干扰片段的序列如SEQ ID NO:5所示。
本发明还提供了一种可提高微拟球藻中的缩醛磷脂含量的表达载体,其特征在于,包括权利要求4-7中任一项所述的RNA干扰片段的表达框。
在一个具体实施方案中,所述表达框包括编码所述RNA干扰片段的基因,以及驱动所述基因表达的启动子。
在一个优选实施方案中,所述启动子的序列如SEQ ID NO:4所示。
本发明设计的RNA干扰片段通过表达载体导入到微拟球藻细胞中后,可大幅下调微拟球藻中nPDAT基因的表达,由此产生的转化子在生长上不受影响,但是缩醛磷脂含量大幅提高。
附图说明
图1微拟球藻野生型(WT)和突变株(PDAT-KD2和PDAT-KD4)中nPDAT基因的mRNA水平统计图;
图2为微拟球藻野生型(WT)和突变株(PDAT-KD2和PDAT-KD4)的生长曲线;
图3为微拟球藻野生型(WT)和突变株(PDAT-KD4)培养不同时间后缩醛磷脂含量的统计图;
图4为微拟球藻突变株(PDAT-KD4)在不同培养条件下培养5天后缩醛磷脂含量的统计图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
我们以模式生物海洋微拟球藻Nannochloropsis oceanica MBIC10090为基础进行研究,显示野生型海洋微拟球藻中的缩醛磷脂含量极低(低于50nmol/g干重)。在研究过程中,出人意料的是,当下调nPDAT基因(nPDAT基因编码的氨基酸序列如SEQ ID NO:1所示,cDNA序列如SEQ ID NO:2所示)表达时,海洋微拟球藻中的缩醛磷脂含量大幅提高。为此,我们进一步做了以下研究。
1、nPDAT基因敲降突变株的构建
用RNA干扰的方法对微拟球藻nPDAT基因进行敲降。以β-tubulin为启动子(序列如SEQ ID NO:3所示),驱动抗性基因(sh ble)和nPDAT基因长短片段表达。转录后nPDAT基因长短片段形成dsRNA,在细胞内被切割成21~25nt大小的siRNA,这些siRNA将作用于nPDAT的mRNA,引导RNA酶切割nPDAT的mRNA,从而下调细胞中nPDAT的表达。方法如下:
(1)以海洋微拟球藻cDNA为模板分别扩增nPDAT基因440bp和226bp片段。
(2)以海洋微拟球藻基因组DNA为模板,扩增β-tubulin(TUB)启动子片段,过柱回收备用。
(3)连接TUB启动子片段和载体骨架片段,转化,挑取单菌落,菌落PCR鉴定后送测序,提取质粒得到pKS-TUBp。
(4)在TUB启动子后连接两个nPDAT基因片段(440bp和226bp),测序正确后得到干扰质粒。两个片段连接后可表达得到shRNA,序列如SEQ ID NO:4所示,包括一对反向重复序列(SEQ ID NO:5及其反向重复序列)。
(5)将上述干扰质粒通过电转化的方法转入到微拟球藻中,得到nPDAT基因敲降突变株转化子。
选用两个突变株(PDAT-KD2和PDAT-KD4)进行nPDAT基因mRNA水平检测,结果如图1所示,PDAT-KD4的nPDAT基因mRNA水平从第二天开始就显著低于野生型(WT),PDAT-KD2的nPDAT基因mRNA水平在第2天和第5天与野生型差异不显著,但是到第8天,PDAT-KD2的nPDAT基因mRNA水平仅为野生型的约1/10。可见,两个敲降突变株均构建成功。
将两个突变株进行培养。将藻种接种于含有120mL人工海水的三角瓶中,于22℃恒温光照培养,光强约为120μmol photons m-2s-1,通空气培养。每两天取样测OD730,绘制生长曲线。结果如图2所示,两个突变株的生长曲线与野生型相差不大,由此可见,突变株的生长不受影响。
2、nPDAT基因敲降突变株的缩醛磷脂含量
由于PDAT-KD4的敲降效果更好,后续实验选用该突变株进行。将培养3天、5天和7天的微藻培养物分别收集藻细胞,提取总脂,用于质谱检测。
实验所用仪器为岛津LC-20AD串联A B sciex Qtrap 4000质谱仪。极性脂测定采用shotgun-MS方法,该方法在电喷雾电离(electrospray ionization,ESI)技术的基础上改进,无需连接色谱仪,直接使用纳流泵连续进样。参数为:ESI电离源,进样流速20μl/min,反吹气27psi,离子源电压5400V,加热温度(TEM)350℃,辅助气49psi,扫描所有谱图均在正离子模式下采集,扫描范围:400~1000m/z。根据脂质种类采用相应的离子形式、去簇电压(Declustering Potential,DP)、碰撞电压(Collision Energy,CE)和标样。
结果如图3所示,藻株PDAT-KD2的缩醛磷脂(PME)含量远高于野生型。并且,该结果还显示,藻株PDAT-KD2培养7天后的藻细胞中缩醛磷脂含量显著低于培养3天和5天的缩醛磷脂含量(约150nmol/g干重),培养培养3天和5天的缩醛磷脂含量之间没有显著性差异。鉴于生物量更高,我们选择5天作为培养时间进行进一步的培养条件优化。
3、培养条件优化
设置三个培养条件,条件2(Air组)与上文相同,条件1(Static组)的其他参数均与上文相同,但是不通入空气。条件3(CO2组)的其他条件均与上文相同,但是把通入纯空气换成掺有2%CO2的空气。
结果如图4所示,出人意料地,CO2组藻细胞中的缩醛磷脂含量(约370nmol/g干重)远高于Air组。由此可见,使用通入C02的方法可大大提高突变株中的缩醛磷脂含量。
我们除了在人工海水中培养发现上述现象,在其他可用于培养微拟球藻的培养基(例如,天然海水培养基,商业海盐培养基等)中进行培养也发现类似的现象。
以上实验证明,对微拟球藻敲降nPDAT基因可大大提高藻细胞中的缩醛磷脂含量,在敲降突变株的培养过程中通入CO2可大大提高突变株藻细胞中的缩醛磷脂含量。需要说明的是,以上实验中仅描述了通过RNAi的方法敲降nPDAT基因,但是该描述是举例说明的目的,本领域技术人员可通过任何方式敲降甚至敲除该基因,以下调或消除该基因的表达,从而获得具有更高缩醛磷脂含量的突变株。另外,上文中虽然列举具体的nPDAT基因序列,但是本发明不该被限制在该范围内,微拟球藻nPDAT基因及其同功能的突变体均应包含在本发明的保护范围内。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 中国科学院水生生物研究所
<120> 一种可提高微藻缩醛磷脂含量的方法及RNA干扰片段
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 943
<212> PRT
<213> Nannochloropsis oceanica MBIC10090
<400> 1
Met Ser Pro Gln Gly Glu Asp Gly Gly Pro Ala Asp Ser Thr Thr Thr
1 5 10 15
Arg Thr Thr Thr Ser Glu Ala Met Ala Met Pro Ala Gly Ala Ala Gly
20 25 30
Thr Ala Ala Thr Ser Ala Ser Asp Ser Pro Ser Ser His Gln Asp Glu
35 40 45
Gly Gly Gly Pro Thr Gln Thr Val His Arg Gly Pro His Pro Asp Ile
50 55 60
His Asp Gln Gly Asp Lys Thr Lys Lys Lys Lys Lys Lys Arg Lys Asp
65 70 75 80
Arg Lys Leu Gln Asn Glu Ser Glu Asp Gln Gln Gln Gln Asp Thr Asp
85 90 95
Ser His Ala Ser Ser Arg Pro Thr Thr Pro Ile Asn Met Thr Pro Pro
100 105 110
Arg Ser Ser His Ala Arg Ser Pro Phe Gly Ala Gly Ser Pro Tyr Glu
115 120 125
His Thr Leu Thr Pro Ser Asn Ile Asp Ile Thr Val Leu Glu Gly Leu
130 135 140
Ala Ser Gly Val Gly Ser Asn Asn Gly Gly Pro Ser Arg Asp Asn Thr
145 150 155 160
Pro Ser Arg Ser Pro Ser Arg Arg Ser Arg His Ala Arg Arg Ala Lys
165 170 175
Ile Ala Ala Thr Thr Lys Lys Arg Lys Ile Leu Gly Ser Phe Ile Leu
180 185 190
Gly Ala Ile Phe Gly Met Ser Ile Leu Gly Trp Val Leu Arg His Lys
195 200 205
Tyr Pro Gln Tyr Val Pro Ser Leu Ser Pro Asn Leu Asn Leu Asn Ile
210 215 220
Ser Ala Val Leu Pro Ala Gly Phe Gly Leu Gly Leu Ser Ala Gly Glu
225 230 235 240
Leu Asn Ser Thr Ile Leu Thr Asp Ile Tyr Gly Tyr Met Ser Trp Ala
245 250 255
Ser Thr Pro Glu Thr Tyr Pro Gly Leu Gln Ala Ala Glu Lys Asn Tyr
260 265 270
Ser Ala Lys Tyr Ser Ile Val Leu Ile Pro Gly Phe Val Thr Thr Gly
275 280 285
Leu Glu Val Trp Gln Gly Glu Glu Cys Ala Ser Ser Leu Phe Arg Ser
290 295 300
Arg Leu Trp Gly Ala Val Ser Met Leu Gln Thr Met Leu Met Lys Pro
305 310 315 320
Glu Cys Trp Thr Lys His Met Ala Leu Asp Met Glu Thr Gly Leu Asp
325 330 335
Pro Pro Asn Ile Arg Ile Arg Ala Ala Gln Gly Leu Glu Ala Ala Asp
340 345 350
Phe Phe Met Pro Gly Phe Trp Val Trp Ala Arg Leu Ile Arg Asp Phe
355 360 365
Ala Ala Ile Gly Tyr Asp His Ser Asn Leu Ala Leu Gln Ser Tyr Asp
370 375 380
Trp Arg Leu Ser Leu His Asp Leu Glu Arg Arg Asp His Tyr Phe Thr
385 390 395 400
Gln Leu Met Trp Lys Ile Glu Gly Leu Val Lys Ile Asn Lys Glu Lys
405 410 415
Val Val Leu Val Ala His Ser Tyr Gly Ser Asn Val Ile Val Tyr Phe
420 425 430
Phe Ala Trp Val Glu Ser Pro Lys Gly Gly Asn Arg Gly Lys Lys Trp
435 440 445
Cys Glu Thr His Ile Lys Thr Phe Val Asn Ile Ala Gly Pro Leu Leu
450 455 460
Gly Val Val Lys Ser Ala Ser Ala Tyr Val Ser Gly Glu Met His Asp
465 470 475 480
Thr Ala Glu Leu Gly Pro Leu Glu Gly Ile Leu Phe Gly Lys Ser Asn
485 490 495
Asn Ala Phe His Arg Thr Asn Arg Arg Arg Leu Phe Arg Ser Trp Gly
500 505 510
Ser Leu Thr Ala Met Leu Pro Lys Gly Gly Asn Gln Leu Trp Gly Asn
515 520 525
Leu Thr His Ala Pro Glu Asp Leu Glu Trp Asp Val Val Val Ser Gly
530 535 540
Val Gly Gly Met Glu Gly Gly Met Glu Glu Thr Cys Leu Pro His Leu
545 550 555 560
Glu Lys Glu Thr Gly Thr Phe Ser Ser Glu Glu Met Glu Gly Lys Lys
565 570 575
Arg Glu Gly Thr Arg Asp Gly Glu Pro Ala Ala Ala Ala Ala Ala Thr
580 585 590
Glu Ala Ala Thr Gly Ala Asp Gly Ile Thr Arg Glu Glu Gly Ala Arg
595 600 605
Gly Glu Gly Gly Glu Glu Ala Cys Ile Thr His Gly Glu Ala Arg Arg
610 615 620
His Pro Leu His His Gly Gln Ile Leu Glu Phe Thr Pro Leu Thr Pro
625 630 635 640
Leu Val Ala Asp Ala Asp Ala Ala His Ala Ala Ala Ala Pro Pro Asp
645 650 655
Arg Pro Pro Pro Arg Leu Ser Asp Thr Thr Ser Arg Pro Ser Lys Ser
660 665 670
Thr Asn Arg Ser Val Glu Gly Asp His Gln Thr Ala Lys Ser Ala Glu
675 680 685
Glu Ala Ala Ala Ala Thr Gln Pro Ala Ala Gln Val Glu Lys Asp Asp
690 695 700
Ala Ala Ser Ala Gly Ile Thr Ala Ser Leu Pro Pro Ser Asn Arg Thr
705 710 715 720
Cys Lys Glu Gly Lys Gly Gly Gly Pro Gly Gln Ala Arg Val Asn Trp
725 730 735
Thr Met Asp Asp Val Ile Arg Tyr Leu Ser Thr Asp Pro Glu Asp Pro
740 745 750
Tyr Leu Arg Arg Arg Met Thr Glu Asp Tyr Tyr Phe Gly Pro Pro Val
755 760 765
Arg Asp Phe Arg Arg Glu Lys His Val Lys Asp Asp Arg Lys Tyr Trp
770 775 780
Thr Asn Pro Leu Thr Val Gln Leu Pro Met Ala Pro Ser Met Gln Ile
785 790 795 800
Val Cys Phe Tyr Gly Val Gly Lys Ala Thr Glu Arg Ala Tyr Ile Tyr
805 810 815
Lys Gly Asp Thr Glu Gly Arg Pro Asp Val Met Asp Ile Ser Val Ser
820 825 830
Asp Ala Leu Arg Asn Ile Ser Gly Gly Val Val Lys Ala Glu Gly Asp
835 840 845
Gly Thr Val Thr Leu Met Ser Leu Gly Phe His Cys Ala Arg Leu Trp
850 855 860
Arg Glu Arg Val His Asn Pro Ala Gly Ile Gly Val Thr Thr Lys Glu
865 870 875 880
Leu Trp His Thr Thr Gly Gly Leu Leu Ser Met Arg Gly Asp Gly Gly
885 890 895
Ser Ala Asp His Val Asp Ile Met Gly Asn Thr Lys Met Ala Ala Asp
900 905 910
Leu Leu Lys Ile Val Ser Gly Gln Asp Glu Glu Glu Val Tyr Gly Gln
915 920 925
Asp Val Tyr Phe Ser Arg Ile Arg Glu Ile Ser Asp Lys Val Ser
930 935 940
<210> 2
<211> 2835
<212> DNA
<213> Nannochloropsis oceanica MBIC10090
<400> 2
atgagcccgc aaggagagga cggcggcccc gccgactcga cgacgacgag gacgacgacg 60
tctgaggcga tggccatgcc ggcaggagca gcagggacag cagccacatc tgcatcagac 120
agtcctagca gtcaccaaga tgaagggggt ggtcctaccc aaacggtcca ccgcgggcca 180
cacccggaca ttcacgacca gggggacaag acgaaaaaga agaaaaagaa gaggaaggat 240
agaaaactcc agaatgagag cgaggaccag cagcaacaag acaccgacag ccacgcatca 300
agtcgcccca ccactccgat caacatgacc cctccccgct catcccacgc ccgcagccct 360
ttcggcgctg gctctccata tgaacatacc ctcacacctt ccaacatcga cattaccgtc 420
ctggaaggac ttgccagcgg cgtgggcagc aataatggcg ggccttcccg tgacaacacc 480
cccagccgca gcccctcccg ccgctcacgt cacgctcgtc gggccaaaat cgccgctact 540
accaagaaac gtaaaatatt gggtagtttc atccttggtg ctatcttcgg aatgagcatt 600
ttggggtggg tacttcgtca caagtaccca cagtacgtcc cctccctctc ccccaacctg 660
aacctcaaca tctccgctgt cctccccgcg gggtttggcc tcggcctaag tgcgggggag 720
ttaaacagca ctatcctcac cgatatatat ggatacatgt cctgggcttc tactccggag 780
acgtacccgg gcctacaagc ggcagaaaag aattatagtg ccaagtattc aattgtctta 840
atcccggggt ttgtgacgac gggcttggag gtctggcagg gggaggagtg cgcgagcagc 900
ttgtttcgga gtcgcttgtg gggggcagtg agcatgttgc agaccatgct aatgaagccc 960
gagtgttgga cgaagcacat ggcgctcgac atggagacag ggctggaccc gcccaacata 1020
cggataagag cggcacaagg actggaggcc gcggacttct tcatgccagg gttttgggtt 1080
tgggcgcgtc ttattcgaga tttcgctgcg atcgggtacg atcattccaa tctcgccctt 1140
cagtcttacg actggcggct ctccctccac gacctcgagc gacgcgacca ctatttcacc 1200
cagctcatgt ggaagatcga gggcttggtg aagatcaata aggagaaggt ggtgctcgtt 1260
gcgcatagct acggctctaa cgtcatcgtc tatttctttg cctgggtcga atcccccaag 1320
ggcgggaacc ggggaaagaa gtggtgtgaa acgcacatta agacgtttgt caacattgcc 1380
gggccgttac tcggagtggt gaagagtgcc tcagcgtatg tgagtgggga gatgcatgat 1440
acagccgagc taggacctct ggaaggcatt ttgttcggca agagcaacaa cgcgttccat 1500
cggaccaacc gtcggcgttt gtttcgaagc tgggggagcc tgactgccat gctacccaag 1560
ggaggcaacc aattatgggg taatttgaca cacgctccgg aggatttgga atgggacgtg 1620
gtggtttcag gggtgggagg gatggaagga gggatggagg agacgtgttt gccgcatttg 1680
gagaaggaga cgggaacctt cagctcggag gagatggagg ggaagaagag ggaggggact 1740
cgggacgggg aacctgcagc agcagcagca gcaacagagg ctgcaacagg ggcagatggg 1800
atcacaagag aagaaggagc cagaggggaa ggaggagaag aggcctgtat cacgcatggt 1860
gaagcgcgtc ggcatcctct gcaccatgga cagatattgg agttcacccc gctcaccccc 1920
cttgtcgctg atgctgatgc tgcccatgct gctgctgctc ctcctgacag gccccctccg 1980
cggctttctg atactacgtc acgtccttcc aaaagcacga atcggagcgt ggaaggagac 2040
caccagacgg ctaaaagcgc cgaggaggca gcagccgcaa cccagccagc agctcaggtg 2100
gaaaaggacg atgcggcctc tgcgggtatc actgcctctc tgcctccttc gaacagaaca 2160
tgtaaggagg ggaagggggg cgggccgggc caggcaaggg tgaattggac gatggatgac 2220
gttattcgtt acttgagcac cgacccagag gacccttatt tgaggcgaag aatgacagag 2280
gattattact tcggcccgcc ggtgagggac tttcggaggg agaagcacgt gaaggatgat 2340
aggaagtact ggacgaaccc cttgactgtg caattaccca tggcaccctc catgcagatt 2400
gtgtgtttct atggtgtggg caaggcgacg gaacgggcgt atatttacaa gggagatacg 2460
gagggacggc cagacgtgat ggacataagc gtgagtgacg ctttgagaaa tatctcgggg 2520
ggggtcgtca aggcagaagg cgacgggacc gttacgctga tgtccctagg gtttcattgc 2580
gcacggctgt ggagggagag ggtgcacaat cccgctggca ttggcgtgac cacgaaagag 2640
ctgtggcata ccacgggtgg tttgctgtcg atgcgcgggg atggagggag tgcagatcat 2700
gttgatatca tggggaatac caagatggct gcggatttgt tgaaaattgt gagtgggcag 2760
gatgaggagg aggtgtatgg gcaagatgtg tatttttcga ggattcggga gatcagcgat 2820
aaagtgtctt tgtag 2835
<210> 3
<211> 564
<212> DNA
<213> Nannochloropsis oceanica MBIC10090
<400> 3
atcatatcgt gccacagcag attgggcccg cgtatcggca gatcgagcat ctatacagca 60
gccgcatcca gaaagccaac ttttggcttc tttgcttttg ccgcttttca gcccttgccc 120
tgcaggctgt gaggatcatg gcgcatggct ggtactcctt ttatacgcct tgacacacaa 180
agcacctagt atgttgtgcg ggaccggcgt atgcgtgggc agagaggcgc ggtcatggcg 240
tttgtgtgag cgagccgcgc cctccagctt tgtgaatttt tcgtgaaggc gaaaacgtgc 300
ctatcacact atcccacacg cttacaaaca agccacatag caacaacgcg agtacactta 360
tgtttcctac gttcgtgccc gcacgaaggg gcgtctgtga aggcgcaggg ctactctggg 420
ccctccaaat gatgtgcacg cttcccgtct cactttacac acttcctctt cactccttcc 480
gttcacatca acacacgcac aacttaagca cacatcagtc agcacccctt caacacactc 540
ctccctccaa ctagtctcaa ccat 564
<210> 4
<211> 668
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 4
cugccuccuu cgaacagaac auguaaggag gggaaggggg gcgggccggg ccaggcaagg 60
gugaauugga cgauggauga cguuauucgu uacuugagca ccgacccaga ggacccuuau 120
uugaggcgaa gaaugacaga ggauuauuac uucggcccgc cggugaggga cuuucggagg 180
gagaagcacg ugaaggauga uaggaaguac uggacgaacc ccuugacugu gcaauuaccc 240
auggcacccu ccaugcagau uguguguuuc uauggugugg gcaaggcgac ggaacgggcg 300
uauauuuaca agggagauac ggagggacgg ccagacguga uggacauaag cgugagugac 360
gcuuugagaa auaucucggg gggggucguc aaggcagaag gcgacgggac cguuacgcug 420
augucccuag gguuucauug cgucaagggg uucguccagu acuuccuauc auccuucacg 480
ugcuucuccc uccgaaaguc ccucaccggc gggccgaagu aauaauccuc ugucauucuu 540
cgccucaaau aaggguccuc ugggucggug cucaaguaac gaauaacguc auccaucguc 600
caauucaccc uugccuggcc cggcccgccc cccuuccccu ccuuacaugu ucuguucgaa 660
ggaggcag 668
<210> 5
<211> 227
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 5
cugccuccuu cgaacagaac auguaaggag gggaaggggg gcgggccggg ccaggcaagg 60
gugaauugga cgauggauga cguuauucgu uacuugagca ccgacccaga ggacccuuau 120
uugaggcgaa gaaugacaga ggauuauuac uucggcccgc cggugaggga cuuucggagg 180
gagaagcacg ugaaggauga uaggaaguac uggacgaacc ccuugac 227

Claims (6)

1.一种提高微藻中的缩醛磷脂含量的方法,其特征在于,包括使所述微藻中的磷脂:甘油二酯脂酰基转移酶下调表达的步骤,所述微藻为海洋微拟球藻。
2.根据权利要求1所述的方法,其特征在于,通过敲降的方法下调所述磷脂:甘油二酯脂酰基转移酶的表达。
3.根据权利要求2所述的方法,其特征在于,还包括在所述微拟球藻培养过程中向培养物中通入C02的步骤。
4.一种RNA干扰片段在提高海洋微拟球藻的缩醛磷脂含量中的应用,其特征在于,所述RNA干扰片段包括一对反向重复区,所述反向重复区的序列与nPDAT基因的mRNA序列同源。
5.根据权利要求4所述的应用,其特征在于,所述反向重复区的序列分别为SEQ ID NO:5所示序列和SEQ ID NO:5所示序列的反向互补序列。
6.根据权利要求4所述的应用,其特征在于,所述RNA干扰片段为shRNA,序列如SEQ IDNO:4所示。
CN202011172720.8A 2020-10-28 2020-10-28 一种可提高微藻缩醛磷脂含量的方法及rna干扰片段 Active CN112280685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011172720.8A CN112280685B (zh) 2020-10-28 2020-10-28 一种可提高微藻缩醛磷脂含量的方法及rna干扰片段

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011172720.8A CN112280685B (zh) 2020-10-28 2020-10-28 一种可提高微藻缩醛磷脂含量的方法及rna干扰片段

Publications (2)

Publication Number Publication Date
CN112280685A CN112280685A (zh) 2021-01-29
CN112280685B true CN112280685B (zh) 2022-05-13

Family

ID=74372442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011172720.8A Active CN112280685B (zh) 2020-10-28 2020-10-28 一种可提高微藻缩醛磷脂含量的方法及rna干扰片段

Country Status (1)

Country Link
CN (1) CN112280685B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951755A (zh) * 2007-12-21 2011-01-19 加拿大国家研究委员会 来自藻类的二酰基甘油酰基转移酶2基因及其编码的蛋白质
US9328335B2 (en) * 2009-12-30 2016-05-03 Board Of Trustees Of Michigan State University Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)
US8722359B2 (en) * 2011-01-21 2014-05-13 Aurora Algae, Inc. Genes for enhanced lipid metabolism for accumulation of lipids
JP6055469B2 (ja) * 2011-07-13 2016-12-27 オールテック,インク. 藻類脂質組成物ならびにその調製方法および利用方法
US11214818B2 (en) * 2016-06-06 2022-01-04 Provivi, Inc. Semi-biosynthetic production of fatty alcohols and fatty aldehydes

Also Published As

Publication number Publication date
CN112280685A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
Ando et al. Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding
EP2468860B1 (en) Transformant and process for production thereof, and process for production of lactic acid
CN104837995A (zh) 具有不易变化的高光适应表型的藻类突变体
MXPA06014165A (es) Cepas de saccharomyces no recombinantes que se desarrolan sobre xilosa.
Run et al. Stable nuclear transformation of the industrial alga Chlorella pyrenoidosa
US11332764B2 (en) Microorganisms having increased lipid productivity
US11345937B2 (en) Construction of Mucor circinelloides cell factory for producing stearidonic acid and fermentation technology thereof
Li et al. Construction of an efficient mutant strain of Trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol
US10889841B2 (en) Oleaginous yeast variant, method for obtaining thereof and use thereof for lipid production
JP2018157814A (ja) シュードザイマ・アンタクティカの新規菌株
CN112608936B (zh) 调控酵母外源基因表达的启动子,调控方法及其应用
CN112280685B (zh) 一种可提高微藻缩醛磷脂含量的方法及rna干扰片段
CN110016519B (zh) 一种香蕉枯萎菌4号生理小种dcl基因缺失突变体及其小rna
US11124798B2 (en) Algal lipid productivity via genetic modification of a TPR domain containing protein
US9290782B2 (en) Modified algae for improved biofuel productivity
JP4221476B2 (ja) イコサペンタエン酸生合成遺伝子群をクローニングしたプラスミド及びイコサペンタエン酸を産生するラン藻
CN115104559A (zh) 一种artp诱变黑公子小丑鱼体色变红的方法
AU2020100222A4 (en) Method of introducing double-stranded dna into the body of kerria chinensis
AU2020408687A1 (en) Recombinant algae having high lipid productivity
JP6723002B2 (ja) 油脂の製造方法
CN111433219A (zh) 通过基因修饰信号传导蛋白提高藻类脂质生产力
Guo et al. Boosting lipid production in the diatom Phaeodactylum tricornutum by knockdown of the Enoyl CoA hydratase using CRISPR interference
JP5963260B2 (ja) 新規高温性酢酸生産菌
EP4166658A1 (en) Diatom-based genetic engineering system methodology for the eco-sustainable production of ovothiols
WO2015076393A1 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant