CN112271729A - 有源电力滤波器的长短时记忆模糊神经网络滑模控制方法 - Google Patents

有源电力滤波器的长短时记忆模糊神经网络滑模控制方法 Download PDF

Info

Publication number
CN112271729A
CN112271729A CN202011103582.8A CN202011103582A CN112271729A CN 112271729 A CN112271729 A CN 112271729A CN 202011103582 A CN202011103582 A CN 202011103582A CN 112271729 A CN112271729 A CN 112271729A
Authority
CN
China
Prior art keywords
layer
neural network
long
active power
power filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011103582.8A
Other languages
English (en)
Other versions
CN112271729B (zh
Inventor
刘伦豪杰
费峻涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN202011103582.8A priority Critical patent/CN112271729B/zh
Publication of CN112271729A publication Critical patent/CN112271729A/zh
Application granted granted Critical
Publication of CN112271729B publication Critical patent/CN112271729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0285Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks and fuzzy logic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Geometry (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuzzy Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,包括以下步骤:S1,定义开关函数,建立单相并联型有源电力滤波器数学模型;S2,利用有源电力滤波器的数学模型,设计滑模控制器;S3,设计长短时记忆模糊神经网络,利用神经网络逼近S2中滑模控制器中的未知非线性函数;S4,设计长短时记忆模糊神经网络滑模控制器,并基于Lyapunov稳定性理论证明系统稳定性。本发明能够实现快速、高精度的谐波电流补偿,抗干扰能力强,鲁棒性好,具有较好的稳态和动态性能。

Description

有源电力滤波器的长短时记忆模糊神经网络滑模控制方法
技术领域
本发明涉及一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,属于有源电力滤波器控制技术领域。
背景技术
随电能是现代社会不可或缺的重要能源之一,是人类社会现代化发展的基石和催发剂。随着社会经济的不断进步,人们对电能的需求量不断增加,电力可持续发展已成为了社会经济可持续发展的基础,并在社会经济、能源环境等方面起着至关重要的平衡作用。另外对于电能质量的要求也越来越高,为了满足日益增长的高质量电能需求,电力电子技术得到了快速的发展和应用,大大地提高了电能效率、电能质量和供电可靠性。
但是随着作为非线性和时变性负载的电力电子变换器的大规模应用,电力系统中产生了严重的谐波污染。电力电子装置的开关动作向电网中注入了大量的谐波分量和次谐波分量,导致了交流电网中电压和电流波形的严重失真。而随着各种电能质量敏感的设备和计算机等信息设备的大量应用,利用各种无源和有源滤波技术克服谐波污染带来的危害已成为不得不面对的现实。传统的滤波方法通常采用无源滤波器和并联电容器组来滤除谐波和补偿无功,但是存在补偿效果不太理想、产生谐波谐振等问题。因此,有源滤波器技术得到了日益广泛的重视和长足的发展。
目前,传统的控制方法应用于有源电力滤波器已经无法满足日益苛刻的应用需求,越来越多的先进控制方法应用于有源滤波器的电流跟踪控制,但是依然存在着补偿精度不高、抗干扰能力弱、依赖精确模型等问题。
发明内容
为了现有的技术缺陷,本发明提供一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,能够实现快速、高精度的谐波电流补偿,抗干扰能力强,鲁棒性好,具有较好的稳态和动态性能。
本发明中主要采用的技术方案为:
一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,包括以下步骤:
S1,定义开关函数,基于电路理论和基尔霍夫定理建立单相并联型有源电力滤波器数学模型;
S2,利用有源电力滤波器的数学模型,设计滑模控制器;
S3,设计长短时记忆模糊神经网络,利用神经网络逼近S2中滑模控制器中的未知非线性函数;
S4,根据步骤S2的滑模控制器和步骤S3获得的未知非线性函数设计长短时记忆模糊神经网络滑模控制器,并基于Lyapunov稳定性理论证明系统稳定性。
优选地,所述步骤S1的具体步骤如下:
S1-1:定义单相并联型有源电力滤波器中晶体管的开关函数u如下:
Figure BDA0002726213190000021
S1-2:根据电路理论和基尔霍夫定理,考虑不确定性的外界扰动和系统内部参数摄动,建立单相有源电力滤波器一阶数学模型如下:
Figure BDA0002726213190000022
其中,x为补偿电流ic,即x=ic,f(x)代表
Figure BDA0002726213190000023
Figure BDA0002726213190000024
B代表
Figure BDA0002726213190000025
h代表一阶数学模型下的集总不确定性,Us为电网电压,ic为补偿电流,Udc为直流侧电容电压,L,R分别为有源滤波器主电路的电感和电阻;
S1-3:对单相有源电力滤波器一阶数学模型进行求导化简得到二阶数学模型如式(3)所示:
Figure BDA0002726213190000026
其中,x为补偿电流ic,即x=ic,f(x)代表
Figure BDA0002726213190000027
B代表
Figure BDA0002726213190000028
hk代表二阶数学模型的集总不确定性
Figure BDA0002726213190000029
优选地,所述步骤S2的具体步骤如下:
S2-1:定义理想轨迹为yd,跟踪误差为e=x-yd,其中,x为补偿电流,yd为参考电流,设计滑模面为
Figure BDA0002726213190000031
其中C是常数,定义Lyapunov函数
Figure BDA0002726213190000032
S2-2:对滑模面求导,并令其导数等于0,得到等效控制力:
Figure BDA0002726213190000033
S2-3:增加切换项,得到鲁棒控制力,即滑模控制器:
Figure BDA0002726213190000034
其中,K为切换项系数。
优选地,所述步骤S3中的长短时记忆模糊神经网络结构如下:
第一层:输入层
所述输入层内输入电流补偿误差,完成对输入信号的传递;
第二层:模糊化层
所述模糊化层中,输入层的每个输出与模糊化层的三个神经元连接,通过高斯函数对输入信号进行模糊化操作,其中高斯函数为
Figure BDA0002726213190000035
第三层:长短时记忆层
所述长短时记忆层有三个节点,每个节点都是一个具有内部反馈回路的完整LSTM结构,每个LSTM结构拥有输入门、遗忘门和输出门三个门,输入门、遗忘门和输出门构成一个门控单元,门控单元选择性地对历史数据进行遗忘和记忆;
第四层:去模糊化层,
所述去模糊化层采用加权平均法对长短时记忆层的输出数据实现解模糊化操作;
第五层:输出层
所述输出层的输出为去模糊化层的输出的加权求和,其用于逼近有源电力滤波器系统的未知非线性函数f(x)。
优选地,所述步骤S4的具体步骤如下:
S4-1:设计控制力为:
Figure BDA0002726213190000036
其中,
Figure BDA0002726213190000037
为所述的长短时记忆模糊神经网络的输出;
S4-2:设计Lyapunov函数为:
Figure BDA0002726213190000041
其中,W,r,wf,uf,bf,wa,ua,ba,wu,uu,bu,wo,uo,bo,c,b为神经网络各层的参数向量,η1,η2,η3,η4,η5,η6,η7,η8,η9,η10,η11,η12,η13,η14,η15,η16分别为各参数的学习率;
S4-3:根据Lyapunov稳定性理论、梯度下降法和自适应设计方法,取如下自适应率:
Figure BDA0002726213190000042
Figure BDA0002726213190000043
Figure BDA0002726213190000044
Figure BDA0002726213190000045
Figure BDA0002726213190000046
Figure BDA0002726213190000047
Figure BDA0002726213190000048
Figure BDA0002726213190000049
Figure BDA00027262131900000410
Figure BDA00027262131900000411
Figure BDA00027262131900000412
Figure BDA00027262131900000413
Figure BDA0002726213190000051
Figure BDA0002726213190000052
Figure BDA0002726213190000053
Figure BDA0002726213190000054
S4-4:为证明系统的稳定性,对Lyapunov函数求导,并将所取自适应率代入可得:
Figure BDA0002726213190000055
其中,
Figure BDA0002726213190000056
假设ε0,Oho分别存在上界εE,OE,即|ε0|≤εE,|Oho|≤OE,因此只要使得:
Figure BDA0002726213190000057
即能保证:
Figure BDA0002726213190000058
根据Lyapunov稳定性理论可知,系统在Lyapunov意义下稳定。
有益效果:本发明提供一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,所设计的长短时记忆模糊神经网络用于逼近有源电力滤波器系统的未知非线性部分,其相比于传统神经网络,具有如下优点:
1)本发明采用特殊的门控结构使其具有选择性记忆、遗忘功能,解决了梯度消失问题,能够对长时间依赖的非线性函数实现更好的逼近;
2)本发明中神经网络所有的参数通过梯度下降法和自适应率学习得到最优值,且通过李亚普洛夫方法严格证明了系统的稳定性。
3)本发明综合了滑模控制、模糊系统、自适应控制以及新型神经网络的优点,能够对谐波电流进行快速、高精度的补偿,抗干扰能力强,鲁棒性好,具有较好的稳态和动态性能。
附图说明
图1为本发明的长短时记忆模糊神经网络滑模控制器的原理图;
图2为本发明的单相并联型有源电力滤波器的拓扑结构图;
图3为本发明的长短时记忆模糊神经网络的结构图;
图4为本发明的长短时记忆结构的细节图;
图5为本发明的电源电流曲线图;
图6为本发明的电流补偿跟踪曲线图;
图7为本发明的在稳态下的电流频谱图;
图8为本发明的在动态下的电源电流曲线图;
图9为本发明的在动态下的电流频谱图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
图1为本发明的控制器原理图,由图1可知,控制器的输入为谐波补偿误差,长短时记忆模糊神经网络的输出用于逼近系统的未知函数,神经网络的参数通过16个自适应率在线学习得到,控制器根据有源电力滤波器二阶模型通过滑模控制设计得到,滑模的切换项提高了系统的鲁棒性。
一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,包括以下步骤:
S1,定义开关函数,基于电路理论和基尔霍夫定理建立单相并联型有源电力滤波器数学模型,具体步骤如下:
S1-1:定义单相并联型有源电力滤波器中晶体管的开关函数u如下:
Figure BDA0002726213190000061
S1-2:如图2所示为单相并联型有源电力滤波器拓扑结构图,根据电路理论和基尔霍夫定理,考虑不确定性的外界扰动和系统内部参数摄动,建立单相有源电力滤波器一阶数学模型如下:
Figure BDA0002726213190000062
其中,x为补偿电流ic,即x=ic,f(x)代表
Figure BDA0002726213190000071
Figure BDA0002726213190000072
B代表
Figure BDA0002726213190000073
h代表一阶数学模型下的集总不确定性,Us为电网电压,ic为补偿电流,Udc为直流侧电容电压,L,R分别为有源滤波器主电路的电感和电阻;
S1-3:为设计二阶滑模控制器,对单相有源电力滤波器一阶数学模型进行求导化简得到二阶数学模型如式(3)所示:
Figure BDA0002726213190000074
其中,x为补偿电流ic,即x=ic,f(x)代表
Figure BDA0002726213190000075
B代表
Figure BDA0002726213190000076
hk代表集总不确定性
Figure BDA0002726213190000077
S2,设计滑模控制器,具体步骤如下:
S2-1:定义理想轨迹为yd,跟踪误差为e=x-yd,设计滑模面为
Figure BDA0002726213190000078
其中C是常数,定义Lyapunov函数
Figure BDA0002726213190000079
S2-2:对滑模面求导,并令其导数等于0,得到等效控制力:
Figure BDA00027262131900000710
S2-3:增加切换项,得到鲁棒控制力:
Figure BDA00027262131900000711
其中,K为切换项系数。
S3,图3是设计的长短时记忆模糊神经网络结构图,该网络是一个五层的新型递归模糊神经网络,设计长短时记忆模糊神经网络,利用神经网络逼近系统的未知非线性函数,其具体结构如下:
第一层:输入层
所述输入层完成对输入信号的传递,对于该层的每个节点i,输入和输出关系表达关系如下:
Figure BDA0002726213190000081
Figure BDA0002726213190000082
其中,
Figure BDA0002726213190000083
是输入层的第i个节点的输入;
Figure BDA0002726213190000084
是第i个节点的网络的输入,上标和下标分别表示层数和节点数;
Figure BDA0002726213190000085
是第i个节点的输出值;N是采样迭代的次数;并且
Figure BDA0002726213190000086
是第i个节点的统一函数。
第二层:模糊化层
所述模糊化层中,输入层的每个输出与模糊化层的三个神经元连接,通过高斯函数对输入信号进行模糊化操作,其中高斯函数为
Figure BDA0002726213190000087
每个节点的输入和输出关系表达如下:
Figure BDA0002726213190000088
Figure BDA0002726213190000089
Figure BDA00027262131900000810
其中,
Figure BDA00027262131900000811
是该层的输入;
Figure BDA00027262131900000812
是该层第j个节点的中心向量;
Figure BDA00027262131900000813
是该层第j个节点的基宽;
Figure BDA00027262131900000814
是第j个节点的网络输入;
Figure BDA00027262131900000815
是第j个节点的负指数函数;
Figure BDA00027262131900000816
是第j个节点的输出;
第三层:长短时记忆层
所述长短时记忆层有三个节点,每个节点都是一个具有内部反馈回路的完整LSTM结构,图4为LSTM结构的细节图。由图可知,每个LSTM结构拥有输入门、遗忘门和输出门三个门,门控单元可以选择性地对历史数据进行遗忘和记忆。每个节点的神经元间的输入输出关系表达如下:
Figure BDA00027262131900000817
Figure BDA00027262131900000818
Figure BDA00027262131900000819
Figure BDA00027262131900000820
Figure BDA0002726213190000091
Figure BDA0002726213190000092
Figure BDA0002726213190000093
Figure BDA0002726213190000094
Figure BDA0002726213190000095
Figure BDA0002726213190000096
Figure BDA0002726213190000097
Figure BDA0002726213190000098
其中,
Figure BDA0002726213190000099
分别是LSTM结构中不同部分的权重向量和偏置项;符号
Figure BDA00027262131900000919
代表点乘操作;tanh(z)和σ(z)是非线性函数,其中σ(z)和tanh(z)分别表示sigmod和双曲正切两种激活函数;
Figure BDA00027262131900000910
表示第k个节点在第N次迭代时遗忘门的输出,
Figure BDA00027262131900000911
表示输入门的输出,
Figure BDA00027262131900000912
表示第k个节点在第N次迭代时LSTM的状态值,
Figure BDA00027262131900000913
表示输出门的输出,
Figure BDA00027262131900000914
表示该层第k个节点的网络输入,
Figure BDA00027262131900000915
表示该层第k个节点的输出;
第四层:去模糊化层,
所述去模糊化层采用加权平均法对LSTM层的输出数据实现解模糊化操作。输入输出表达如下:
Figure BDA00027262131900000916
Figure BDA00027262131900000917
Figure BDA00027262131900000918
其中,
Figure BDA0002726213190000101
表示该层第l个节点与第k个输入之间的权重,
Figure BDA0002726213190000102
表示该层第l个节点的网络输入,
Figure BDA0002726213190000103
表示第l个节点的输出;
第五层:输出层
所述输出层的输出为前一层的输出的加权求和,其用于逼近有源电力滤波器系统的未知非线性函数f(x)。该层的输入输出表达如下:
Figure BDA0002726213190000104
Figure BDA0002726213190000105
Figure BDA0002726213190000106
其中,
Figure BDA0002726213190000107
表示第五层输出节点与第l个输入的权重,
Figure BDA0002726213190000108
表示该层的网络输入,
Figure BDA0002726213190000109
表示神经网络网络的最终输出。
S4,设计自适应长短时记忆模糊神经网络滑模控制器,并基于Lyapunov稳定性理论证明系统稳定性,具体步骤如下:
S4-1:设计控制力为:
Figure BDA00027262131900001010
其中,
Figure BDA00027262131900001011
为所述的长短时记忆模糊神经网络的输出;
S4-2:设计Lyapunov函数为:
Figure BDA00027262131900001012
其中,W,r,wf,uf,bf,wa,ua,ba,wu,uu,bu,wo,uo,bo,c,b为神经网络各层的参数向量;
S4-3:根据Lyapunov稳定性理论、梯度下降法和自适应设计方法,取如下自适应率:
Figure BDA0002726213190000111
Figure BDA0002726213190000112
Figure BDA0002726213190000113
Figure BDA0002726213190000114
Figure BDA0002726213190000115
Figure BDA0002726213190000116
Figure BDA0002726213190000117
Figure BDA0002726213190000118
Figure BDA0002726213190000119
Figure BDA00027262131900001110
Figure BDA00027262131900001111
Figure BDA00027262131900001112
Figure BDA00027262131900001113
Figure BDA00027262131900001114
Figure BDA00027262131900001115
Figure BDA00027262131900001116
S4-4:为证明系统的稳定性,对Lyapunov函数求导,并将所取自适应率代入可得:
Figure BDA00027262131900001117
其中,
Figure BDA00027262131900001118
假设ε0,Oho分别存在上界εE,OE,即|ε0|≤εE,|Oho|≤OE,因此只要使得:
Figure BDA0002726213190000121
即能保证:
Figure BDA0002726213190000122
根据Lyapunov稳定性理论可知,系统在Lyapunov意义下稳定。
进行仿真实验验证,实施例取一组参数如下:
系统参数:电网电压为Us=24V,电网频率为f=50Hz;非线性负载的电阻R1=5Ω,R2=15Ω,电容C=1000uF,动态时并联增加的非线性负载的电阻为R1=15Ω,R2=15Ω,电容C=1000uF,主电路电感为L=18mH,电阻为R=1Ω。
直流侧电压控制器参数:直流侧电压采用传统的PI控制方法,Kp=0.15。参考电压设定为50V。
电流控制器参数:滑模面参数为C=17200,切换项参数为K=2592。
实验结果图如图5、图6、图7、图8、图9所示。
控制效果分析:
图5为电源电流曲线图,由图可知,在0.05s时开始控制,系统在0.07s左右即完成了谐波补偿,电源电流变为平滑的正弦波。
图6展示了谐波电流的跟踪补偿曲线,可知在0.07秒左右补偿电流实现了对参考电流的跟踪,跟踪速度快,补偿效果好。
图7给出了电源电流的频谱图,分析可知在所设计的控制器作用下,系统稳态时的电流总谐波畸变率为2.3%,满足国际标准低于5%的要求。此外,对系统的动态响应进行验证,在接入控制器且系统进入稳态以后,于0.3s时突然增加负载,观察系统的动态响应。
如图8所示,增加负载后电源电流在短暂的调节后完全稳定,动态效应好。
图9给出了负载增加后的电流谐波频谱图,畸变率仅为1.61%。可见,系统具有的较好的稳态和动态性能。
本发明所讲述的具体实施例所保护的内容是控制算法的设计,该算法并没有特别指要求适用的有源电力滤波器结构,本具体实施例仅仅为了方便讲述采用单相并联型有源电力滤波器结构进行说明。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,其特征在于,包括以下步骤:
S1,定义开关函数,基于电路理论和基尔霍夫定理建立单相并联型有源电力滤波器数学模型;
S2,利用有源电力滤波器的数学模型,设计滑模控制器;
S3,设计长短时记忆模糊神经网络,利用神经网络逼近S2中滑模控制器中的未知非线性函数;
S4,根据步骤S2的滑模控制器和步骤S3获得的未知非线性函数设计长短时记忆模糊神经网络滑模控制器,并基于Lyapunov稳定性理论证明系统稳定性。
2.根据权利要求1所述的一种有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,其特征在于,所述步骤S1的具体步骤如下:
S1-1:定义单相并联型有源电力滤波器中晶体管的开关函数u如下:
Figure FDA0002726213180000011
S1-2:根据电路理论和基尔霍夫定理,考虑不确定性的外界扰动和系统内部参数摄动,建立单相有源电力滤波器一阶数学模型如下:
Figure FDA0002726213180000012
其中,x为补偿电流ic,即x=ic,f(x)代表
Figure FDA0002726213180000013
Figure FDA0002726213180000014
B代表
Figure FDA0002726213180000015
h代表一阶数学模型下的集总不确定性,Us为电网电压,ic为补偿电流,Udc为直流侧电容电压,L,R分别为有源滤波器主电路的电感和电阻;
S1-3:对单相有源电力滤波器一阶数学模型进行求导化简得到二阶数学模型如式(3)所示:
Figure FDA0002726213180000016
其中,x为补偿电流ic,即x=ic,f(x)代表
Figure FDA0002726213180000017
B代表
Figure FDA0002726213180000018
hk代表二阶数学模型的集总不确定性
Figure FDA0002726213180000019
3.根据权利要求1中所述的有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,其特征在于,所述步骤S2的具体步骤如下:
S2-1:定义理想轨迹为yd,跟踪误差为e=x-yd,其中,x为补偿电流,yd为参考电流,设计滑模面为
Figure FDA0002726213180000021
其中C是常数,定义Lyapunov函数
Figure FDA0002726213180000022
S2-2:对滑模面求导,并令其导数等于0,得到等效控制力:
Figure FDA0002726213180000023
S2-3:增加切换项,得到鲁棒控制力,即滑模控制器:
Figure FDA0002726213180000024
其中,K为切换项系数。
4.根据权利要求1中所述的有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,其特征在于,所述步骤S3中的长短时记忆模糊神经网络结构如下:
第一层:输入层
所述输入层内输入电流补偿误差,完成对输入信号的传递;
第二层:模糊化层
所述模糊化层中,输入层的每个输出与模糊化层的三个神经元连接,通过高斯函数对输入信号进行模糊化操作,其中高斯函数为
Figure FDA0002726213180000025
第三层:长短时记忆层
所述长短时记忆层有三个节点,每个节点都是一个具有内部反馈回路的完整LSTM结构,每个LSTM结构拥有输入门、遗忘门和输出门三个门,输入门、遗忘门和输出门构成一个门控单元,门控单元选择性地对历史数据进行遗忘和记忆;
第四层:去模糊化层,
所述去模糊化层采用加权平均法对长短时记忆层的输出数据实现解模糊化操作;
第五层:输出层
所述输出层的输出为去模糊化层的输出的加权求和,其用于逼近有源电力滤波器系统的未知非线性函数f(x)。
5.根据权利要求1中所述的有源电力滤波器的长短时记忆模糊神经网络滑模控制方法,其特征在于,所述步骤S4的具体步骤如下:
S4-1:设计控制力为:
Figure FDA0002726213180000031
其中,
Figure FDA0002726213180000032
为所述的长短时记忆模糊神经网络的输出;
S4-2:设计Lyapunov函数为:
Figure FDA0002726213180000033
其中,W,r,wf,uf,bf,wa,ua,ba,wu,uu,bu,wo,uo,bo,c,b为神经网络各层的参数向量,η1,η2,η3,η4,η5,η6,η7,η8,η9,η10,η11,η12,η13,η14,η15,η16分别为各参数的学习率;
S4-3:根据Lyapunov稳定性理论、梯度下降法和自适应设计方法,取如下自适应率:
Figure FDA0002726213180000034
Figure FDA0002726213180000035
Figure FDA0002726213180000036
Figure FDA0002726213180000037
Figure FDA0002726213180000038
Figure FDA0002726213180000039
Figure FDA00027262131800000310
Figure FDA00027262131800000311
Figure FDA00027262131800000312
Figure FDA00027262131800000313
Figure FDA0002726213180000041
Figure FDA0002726213180000042
Figure FDA0002726213180000043
Figure FDA0002726213180000044
Figure FDA0002726213180000045
Figure FDA0002726213180000046
S4-4:为证明系统的稳定性,对Lyapunov函数求导,并将所取自适应率代入可得:
Figure FDA0002726213180000047
其中,
Figure FDA0002726213180000048
假设ε0,Oho分别存在上界εE,OE,即|ε0|≤εE,|Oho|≤OE,因此只要使得:
Figure FDA0002726213180000049
即能保证:
Figure FDA00027262131800000410
根据Lyapunov稳定性理论可知,系统在Lyapunov意义下稳定。
CN202011103582.8A 2020-10-15 2020-10-15 有源电力滤波器的长短时记忆模糊神经网络滑模控制方法 Active CN112271729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011103582.8A CN112271729B (zh) 2020-10-15 2020-10-15 有源电力滤波器的长短时记忆模糊神经网络滑模控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011103582.8A CN112271729B (zh) 2020-10-15 2020-10-15 有源电力滤波器的长短时记忆模糊神经网络滑模控制方法

Publications (2)

Publication Number Publication Date
CN112271729A true CN112271729A (zh) 2021-01-26
CN112271729B CN112271729B (zh) 2022-08-19

Family

ID=74338613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011103582.8A Active CN112271729B (zh) 2020-10-15 2020-10-15 有源电力滤波器的长短时记忆模糊神经网络滑模控制方法

Country Status (1)

Country Link
CN (1) CN112271729B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147120A (zh) * 2017-06-29 2017-09-08 河海大学常州校区 有源电力滤波器rbf双神经网络自适应滑模控制方法
CN107453362A (zh) * 2017-09-19 2017-12-08 河海大学常州校区 基于神经网络的有源电力滤波器反演全局滑模模糊控制法
CN108334679A (zh) * 2018-01-22 2018-07-27 河海大学常州校区 基于双反馈模糊神经网络的有源电力滤波器全局滑模控制方法
CN108828961A (zh) * 2018-09-18 2018-11-16 河海大学常州校区 基于元认知模糊神经网络的有源电力滤波器滑模控制方法
CN109100937A (zh) * 2018-08-13 2018-12-28 河海大学常州校区 基于双隐层回归神经网络的有源电力滤波器全局滑模控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147120A (zh) * 2017-06-29 2017-09-08 河海大学常州校区 有源电力滤波器rbf双神经网络自适应滑模控制方法
CN107453362A (zh) * 2017-09-19 2017-12-08 河海大学常州校区 基于神经网络的有源电力滤波器反演全局滑模模糊控制法
CN108334679A (zh) * 2018-01-22 2018-07-27 河海大学常州校区 基于双反馈模糊神经网络的有源电力滤波器全局滑模控制方法
CN109100937A (zh) * 2018-08-13 2018-12-28 河海大学常州校区 基于双隐层回归神经网络的有源电力滤波器全局滑模控制方法
CN108828961A (zh) * 2018-09-18 2018-11-16 河海大学常州校区 基于元认知模糊神经网络的有源电力滤波器滑模控制方法

Also Published As

Publication number Publication date
CN112271729B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
Fei et al. Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller
Zainuri et al. DC‐link capacitor voltage control for single‐phase shunt active power filter with step size error cancellation in self‐charging algorithm
Hou et al. Adaptive type-2 fuzzy neural network inherited terminal sliding mode control for power quality improvement
CN108334679B (zh) 有源电力滤波器全局滑模控制方法
Li et al. Identification method of neuro‐fuzzy‐based Hammerstein model with coloured noise
CN109100937B (zh) 基于双隐层回归神经网络的有源电力滤波器全局滑模控制方法
Mangaraj et al. NBP‐based control strategy for DSTATCOM
Sun et al. Analogue implementation of a neural network controller for UPS inverter applications
CN107453362A (zh) 基于神经网络的有源电力滤波器反演全局滑模模糊控制法
Liu et al. Adaptive sliding mode long short-term memory fuzzy neural control for harmonic suppression
CN105610162A (zh) 一种有源电力滤波器自适应模糊滑模rbf神经网络控制方法
CN106169754A (zh) 有源电力滤波器神经网络动态pid全局滑模控制方法
Fei et al. A backstepping neural global sliding mode control using fuzzy approximator for three-phase active power filter
Rashad et al. On the analysis of current-controlled fractional-order memristor emulator
Ahmad et al. Fast multilayer perceptron neural network‐based control algorithm for shunt compensator in distribution systems
Acikgoz et al. Experimental evaluation of dynamic performance of three‐phase AC–DC PWM rectifier with PD‐type‐2 fuzzy neural network controller
Arora et al. Design and implementation of Legendre‐based neural network controller in grid‐connected PV systems
Salim et al. Intelligent controllers for shunt active filter to compensate current harmonics based on SRF and SCR control strategies
Chen et al. Variable coefficient fractional‐order PID controller and its application to a SEPIC device
Ranjan Das et al. Advanced wavelet transform based shunt hybrid active filter in PV integrated power distribution system for power quality enhancement
Fei et al. Wavelet fuzzy neural supertwisting sliding mode control of an active power filter
CN112257338B (zh) 有源滤波器的自反馈递归模糊神经网络预测控制方法
CN108828961A (zh) 基于元认知模糊神经网络的有源电力滤波器滑模控制方法
Deng et al. Neural controller for UPS inverters based on B-spline network
CN112271729B (zh) 有源电力滤波器的长短时记忆模糊神经网络滑模控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant