CN112266420A - 一种植物高效胞嘧啶单碱基编辑器及其构建与应用 - Google Patents

一种植物高效胞嘧啶单碱基编辑器及其构建与应用 Download PDF

Info

Publication number
CN112266420A
CN112266420A CN202011189809.5A CN202011189809A CN112266420A CN 112266420 A CN112266420 A CN 112266420A CN 202011189809 A CN202011189809 A CN 202011189809A CN 112266420 A CN112266420 A CN 112266420A
Authority
CN
China
Prior art keywords
lys
leu
glu
asp
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011189809.5A
Other languages
English (en)
Other versions
CN112266420B (zh
Inventor
刘耀光
祝钦泷
曾栋昌
刘涛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202011189809.5A priority Critical patent/CN112266420B/zh
Publication of CN112266420A publication Critical patent/CN112266420A/zh
Application granted granted Critical
Publication of CN112266420B publication Critical patent/CN112266420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2497Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/02Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
    • C12Y302/02027Uracil-DNA glycosylase (3.2.2.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04001Cytosine deaminase (3.5.4.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提供了一种植物高效胞嘧啶单碱基编辑器及其构建与应用。该编辑器包含SpCas9变体融合蛋白PeCBE‑NG,从N端到C端,依次包含1个核定位bpNLS功能元件,1个脱氨酶eCBE功能元件,1个SpCas9变体Cas9n‑NG编码序列,2个串联的尿嘧啶糖基化酶抑制蛋白UGI功能元件,以及1个核定位bpNLS功能元件。相比现有植物胞嘧啶单碱基编辑器,本发明构建的胞嘧啶单碱基编辑器具有高效、无靶序列偏好性、编辑窗口适中、自靶向sgRNA效率低、脱靶效率低、以及广靶向识别NG‑PAM的特点,将有利于植物基因功能研究和作物遗传改良的发展,在植物单碱基替换与饱和突变筛选等方面具有广泛的应用前景。

Description

一种植物高效胞嘧啶单碱基编辑器及其构建与应用
技术领域
本发明属于植物生物技术领域,具体涉及一种植物高效胞嘧啶单碱基编辑器及其构建与应用。
背景技术
作物的重要农艺性状往往由关键基因的点突变或单核苷酸多态性(SNP)决定。虽然CRISPR/Cas9介导的基因组编辑可以通过非同源末端修复(NHEJ)的方式在目标位点造成双链断裂(DSB)高效地敲除目标基因,但由于植物中同源直接修复(HDR)途径的低效性,并且DNA供体模板传递到细胞也低效,因此想通过HDR的途径在特定位点精准插入和替换片段仍然有较大难度(Chen et al.,2019,Annual Review of Plant Biology,70:667–697)。然而,基于CRISPR/Cas系统开发的胞嘧啶碱基编辑器(CBEs)和腺嘌呤碱基编辑器(ABEs)(Komor et al.,2016,Nature,533:420-424;Rees and Liu.,2018,Nature ReviewsGenetics,19:770-788)不需要供体模板及不造成双链DNA断裂的条件下分别实现C-T(G-A)或A-G(T-C)的碱基替换。因此,单碱基编辑技术是植物基因功能研究和作物遗传改良的有效策略。
目前,不同科研团队通过来自不同来源的胞嘧啶脱氨酶(如rAPOBEC1、PmCDA1和hA3A)与Cas9缺刻酶变体(Cas9n,含D10A氨基酸变异)融合,开发出多个不同的CBEs系统。早期版本的CBE系统,例如:BE1、BE2、BE3和BE4在植物细胞中的编辑效率较低(平均大约0~30%)(Ren et al.,2017,Science China Life Sciences,60:516-519;Hua et al.,2019,Molecular Plant,12:1003-1014;Zeng et al.,2020,Plant Biotechnology Journal,18:1348-1350)。新版本CBE如BE4max使用APOBEC家族中祖先节点Anc689胞嘧啶脱氨酶、bpNLS和GenScript公司优化的密码子,虽然在植物中的编辑效率得到进一步的提升(平均大约50%)(Wang et al.,2019,Plant Biotechnology Journal,17:1697-1699),但是由于rAPOBEC1本身对靶点序列环境的偏好性,更易于编辑TC、CC位点(下划线为被编辑碱基),而几乎不编辑GC,因此编辑效果极不稳定。将激活诱导胞嘧啶脱氨酶(AID)家族的PmCDA1脱氨酶与Cas9n相融合,所得的Target-AID编辑系统一定程度上比BE3和BE4高效(平均大约40%),并扩大了编辑窗口(C2-C12)(Wu et al.,2019,Frontiers in Genetics,10:379;Zhong et al.,2019,Molecular Plant,12:1027-1036)。此外,通过将人的APOBEC3A脱氨酶(hA3A)和Cas9n融合,所得的hA3A-PBE也一定程度提高了植物基因组的编辑效率(平均大约40%),特别是GC目标位置的替换效率(Zong et al.,2018,Nature Biotechnology,36:950-953)。虽然在改良植物的碱基编辑系统中已经做了很大的努力,但目前CBE编辑系统在植物中的编辑仍存在活力较低,对靶点序列环境有较强的偏好性等问题。此外,由于大多数CBE系统都是融合识别NGG-PAM的Cas9n,降低了基因组靶向的选择性,这些因素大大限制了CBE在植物系统中的广泛应用。
综上所述,开发适用于植物的高效、无序列偏好性以及广靶向的新的植物胞嘧啶单碱基编辑器是基因编辑技术优化的一个重要方向。
发明内容
植物胞嘧啶单碱基编辑效率低,常用CBEs靶序列偏好性较强、靶点选择受限于NGG-PAM,往往导致目标碱基C不能被成功编辑为T,从而限制了CBEs在植物中的广泛应用。
本发明的首要目的是提供一种植物高效胞嘧啶单碱基编辑器。
本发明的首要目的是提供上述植物高效胞嘧啶单碱基编辑器的构建方法。
本发明的首要目的是提供上述植物高效胞嘧啶单碱基编辑器的应用。
本发明的目的通过以下技术方案实现:
一种SpCas9变体融合蛋白,命名为PeCBE-NG,包含胞嘧啶脱氨酶eCBE、SpCas9变体Cas9n-NG和尿嘧啶糖基化酶抑制蛋白(UGI)。
所述胞嘧啶脱氨酶eCBE的氨基酸序列如SEQ ID NO.1所示;所述SpCas9变体Cas9n-NG的氨基酸序列如SEQ ID NO.2所示;所述尿嘧啶糖基化酶抑制蛋白的氨基酸序列如SEQ ID NO.3所示。
优选的,所述SpCas9变体融合蛋白还包含以下序列中的一种或多种:接头(Linker),核定位信号(NLS),以及为了构建融合蛋白、促进重组蛋白的表达、获得自动分泌到宿主细胞核的重组蛋白、或利于重组蛋白的纯化而引入的氨基酸残基或氨基酸序列。
所述接头可包括不干扰融合蛋白的功能的任何序列,优选为柔性接头。
所述核定位信号的氨基酸序列如SEQ ID NO.4所示。
所述核定位信号的个数优选为两个,且分别融合在所述SpCas9变体融合蛋白的N端和C端。
优选的,所述尿嘧啶糖基化酶抑制蛋白的个数为两个,且两个尿嘧啶糖基化酶抑制蛋白通过接头串联。
更优选的,所述SpCas9变体融合蛋白,从N端到C端,依次含1个核定位信号,1个胞嘧啶脱氨酶eCBE,1个SpCas9变体Cas9n-NG,2个串联的尿嘧啶糖基化酶抑制蛋白,以及1个核定位信号。
最优选的,所述SpCas9变体融合蛋白的氨基酸全序列如SEQ ID NO.5所示。其可直接通过化学合成方法得到,也可通过基因工程方法表达得到。
一种多核苷酸序列,为编码上述SpCas9变体融合蛋白的多核苷酸序列。
优选的,所述多核苷酸序列如SEQ ID NO.6所示。所述序列是按照水稻的密码子进行优化得到。
一种植物高效胞嘧啶单碱基编辑器,含有编码所述SpCas9变体融合蛋白的多核苷酸序列,是将编码所述SpCas9变体融合蛋白的多核苷酸序列整合至植物转化载体上得到。
优选的,所述植物转化载体为双元表达载体,包括但不限于pCAMBIA1300和在其基础上进行改造得到的载体,比如pYLCRISPR/Cas9Pubi-H,所述多核苷酸序列可插入至载体的Pst I和BamH I酶切位点之间。
上述植物高效胞嘧啶单碱基编辑器的构建方法,包括如下步骤:
S1、分别合成编码NLS-eCBE-linker 1的基因片段1,编码linker 2-UGI-linker3-UGI-NLS的基因片段2,并通过PCR反应在基因片段1的5’端添加一酶切位点,在基因片段2的3’添加另一酶切位点;克隆得到编码Cas9n-NG的基因片段3;
S2、通过重叠PCR技术,将带酶切位点的基因片段1的C端与基因片段3的N端连接,得到融合蛋白NLS-eCBE-linker 1-Cas9n-NG的基因片段4;再将基因片段4的C端与将带酶切位点的基因片段2的N端连接,得到融合蛋白NLS-eCBE-linker1-Cas9n-NG-linker2-UGI-linker3-UGI-linker-NLS的基因片段5;
S3、将基因片段5插入至载体pYLCRISPR/Cas9Pubi-H两个相应的酶切位点之间,转化宿主菌,提取阳性质粒,测序,获得稳定的植物高效胞嘧啶单碱基编辑系统。
优选的,步骤S3中将基因片段5插入载体通过Gibson组装技术实现。
优选的,步骤S3中所述的宿主菌为大肠杆菌Top10F’。
上述SpCas9变体融合蛋白、或上述多核苷酸序列、或上述植物高效胞嘧啶单碱基编辑器在植物基因工程中的应用。尤指是在植物基因组单碱基编辑中的应用。所述植物包括但不限于单子叶植物,尤其是水稻。
优选的,所述的应用具体操作如下:
(1)确定待编辑基因的靶位点,根据靶位点设计并合成sgRNA表达盒元件;
(2)将所述sgRNA表达盒元件整合至所述植物高效胞嘧啶单碱基编辑器上,得到靶基因胞嘧啶碱基替换载体;
(3)将所述靶基因胞嘧啶碱基替换载体转化宿主细胞,筛选,获得相应的胞嘧啶碱基替换细胞。
本发明适用于植物的高效、无序列偏好性、编辑窗口适合、脱靶效率低和广靶向的胞嘧啶碱基编辑器pYL-PeCBE-NG,其SpCas9变体融合蛋白PeCBE-NG的表达盒从5’至3’端,依次是植物高表达组成型启动子Ubi,SpCas9变体融合蛋白PeCBE-NG(核定位信号bpNLS,eCBE胞嘧啶脱氨酶,柔性连接序列linker1(编码32aa),Cas9n-NG突变体,柔性连接序列linker 2(编码9aa),尿嘧啶糖基化酶抑制蛋白UGI,柔性连接序列linker 3(编码9aa),尿嘧啶糖基化酶抑制蛋白UGI,核定位信号bpNLS)和终止子Tnos序列。编码SpCas9变体融合蛋白PeCBE-NG的碱基序列,全部由金斯瑞(中国武汉)公司按水稻密码子偏好性优化合成。
本发明上述构建的pYL-PeCBE-NG胞嘧啶单碱基编辑系统具有高的C-T的替换效率,且无靶点序列偏好性,主要编辑活性窗口在C3-C8之间,自靶向T-DNA的编辑效率低,脱靶效率也较低。克服了使用脱氨酶rAPOBEC1的传统的BE3和BE4编辑器编辑效率低、强靶点偏好性等缺点,更有利于植物基因功能的研究和作物的遗传改良。
含有所述的SpCas9变体融合蛋白PeCBE-NG的胞嘧啶单碱基编辑系统的质粒载体等材料,以及所述的PeCBE-NG胞嘧啶单碱基编辑器在基因工程中的应用,均应在本发明的保护范围之内。
更具体地,所述的pYL-PeCBE-NG胞嘧啶单碱基编辑器系统能实现高效的C-T的单碱基替换,尤其是适用于基因功能筛选、大规模饱和突变、编辑调控元件、引入提前终止密码子或进行可变剪接等基因功能研究,与农作物遗传改良。
本发明具有以下有益的效果:
本发明提供了一种高效、无靶点序列偏好性、编辑窗口广、自靶向自身sgRNA效率低、非C-T副产物少、脱靶效率低、靶向范围广、且可以多靶点编辑的植物CBE单碱基编辑系统。相比于其他目前已有的编辑系统,pYL-PeCBE-NG的编辑更有优势。
附图说明
图1为本发明植物胞嘧啶单碱基编辑器pYL-PeCBE-NG载体结构示意图。
图2为pYL-PeCBE-NG和BE4编辑器pYL-rAC1-NG编辑效率对比结果图;其中,A为具有不同靶位点的pYL-PeCBE-NG与pYL-rAC1-NG的图谱,B为pYL-PeCBE-NG和pYL-rAC1-NG在9个靶点中的编辑效率对比结果(括号内为突变的植株数比总植株数,靶点中的PAM用下划线和加粗凸显)。
图3为pYL-PeCBE-NG和pYL-rAC1-NG的靶点偏好性和突变类型对比分析结果图;其中,A为从测试的9个靶点中统计NGG和NG靶点的平均编辑效率结果,B为从稳定编辑的C3-C8窗口区间发生所有突变中分析GC,AC,TC,CC(C为被编辑的碱基)的偏好性结果,C为突变类型分析结果(Ho表示homozygous mutation(纯合突变);He表示heterozygous mutation(杂合突变);Trans表示Transversions mutation(颠换),Indels表示insertions ordeletions(插入或删除)。
图4为pYL-PeCBE-NG和pYL-rAC1-NG活性窗口比较结果图。
图5为pYL-PeCBE-NG自靶向编辑效率分析结果图。
图6为pYL-PeCBE-NG脱靶效率分析结果图(On-target靶序列差异的碱基用下划线和加粗凸显,靶点的PAM加粗凸显)。
具体实施方式
以下结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下述实施例中所使用的试验方法如无特殊说明,均为常规分子生物学方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。
实施例1植物胞嘧啶单碱基编辑器pYL-PeCBE-NG的构建
脱氨酶eCBE、2×UGI和bpNLS的蛋白序列根据Thuronyi等公布的序列(Thuronyiet al.,2019,Nature Biotechnology,37:1070-1079),按bpNLS-eCBE-linker 1和linker2-UGI-linker 3-UGI-bpNLS两个片段组合,由武汉Genecreate公司按照水稻密码子偏好优化核酸序列直接合成(bpNLS-eCBE-linker 1的核苷酸如SEQ ID NO.6的第4~636位碱基所示,linker 2-UGI-linker 3-UGI-bpNLS的核苷酸如SEQ ID NO.6的第4738~5361位碱基所示)。直接使用申请人已有的优化合成的Cas9n-NG变体(Zeng et al.,2020,PlantBiotechnology Journal,18:1348-1350)(如SEQ ID NO.6的第637~4737位碱基所示)用于融合。将优化合成的bpNLS-eCBE-linker 1和linker 2-UGI-linker 3-UGI-bpNLS通过Overlaping PCR分别连接到Cas9n-NG的两侧,形成完整融合的PeCBE-NG,再用Gibson组装的方法将其克隆到双元载体pYLCRISPR/Cas9Pubi-H(Ma et al.,2015,Molecular Plant,8:1274-1284)的Pst I和BamH I之间,最终获得高效、广靶向编辑器,命名为pYL-PeCBE-NG。以申请人以前开发的BE4编辑器pYL-Cas9n-NG-CBE(简称pYL-rAC1-NG)(Zeng et al.,2020,Plant Biotechnology Journal,18:1348-1350)作为编辑效率比较的对照。
表1用于pYL-PeCBE-NG的基础载体改造用引物
引物名 引物序列(5’—3’)
F-PeCBE-NG-1 CTCACCCTGTTGTTTGGTGTTACTTctgcagATGAAGAGGACAGCCG(SEQ ID NO.7)
R-PeCBE-NG-1 GCCGATGGAGTACTTCTTGTCGGAGCCGCCGGAGCTGCCACCAG(SEQ ID NO.8)
F-PeCBE-NG-2 CTCCGGCGGCTCCGACAAGAAGTACTCCATC(SEQ ID NO.9)
R-PeCBE-NG-2 CCAGATCCACCAGAATCACCACCAAGCTGGGA(SEQ ID NO.10)
F-PeCBE-NG-3 CAGCTTGGTGGTGATTCTGGTGGATCTGGCGGAAG(SEQ ID NO.11)
R-PeCBE-NG-3 CAAATGTTTGAACGATCGGGAggatccTAGACCTTGCGCTTCTTC(SEQ ID NO.12)
具体程序如下:
1.植物高效胞嘧啶碱基编辑器pYL-PeCBE-NG的构建
使用F-PeCBE-NG-1/R-PeCBE-NG-1(SEQ ID NO.7和SEQ ID NO.8)引物,以公司合成的bpNLS-eCBE-linker 1作为模板,扩增得到带Ps tI酶切位点的bpNLS-eCBE-linker1片段,命名为片段M。
PCR体系(15μl):2×Phanta Max Buffer 7.5μl,10mmol/L dNTPs Mix 0.35μl,Phanta Max Polymerase0.35μl,bpNLS-eCBE-linker 1 10ng,10μmol/L F-PeCBE-NG-10.35μl,10μmol/L R-PeCBE-NG-1 0.35μl,ddH2O补足到15μl。
PCR程序:预变性95℃2min,28个PCR循环(95℃10s,56℃15s,72℃30s),延伸72℃2min。
使用F-PeCBE-NG-2/R-PeCBE-NG-2(SEQ ID NO.9和SEQ ID NO.10)引物,以pYL-Cas9n-NG-CBE质粒作为模板,扩增得到Cas9n-NG片段。
PCR体系(15μl):2×Phanta Max Buffer 7.5μl,10mmol/L dNTPs Mix 0.35μl,Phanta Max Polymerase0.35μl,pYL-Cas9n-NG-CBE 10ng,10μmol/L F-PeCBE-NG-2 0.35μl,10μmol/L R-PeCBE-NG-2 0.35μl,ddH2O补足到15μl。
PCR程序:预变性95℃2min,28个PCR循环(95℃10s,56℃15s,72℃4min),延伸72℃5min。
使用F-PeCBE-NG-3/R-PeCBE-NG-3(SEQ ID NO.11和SEQ ID NO.12)引物,以公司合成的linker2-UGI-linker 3-UGI-bpNLS作为模板,扩增得到带BamHI酶切位点的linker2-UGI-linker 3-UGI-bpNLS的DNA片段,命名为片段N。
PCR体系(15μl):2×Phanta Max Buffer 7.5μl,10mmol/L dNTPs Mix 0.35μl,Phanta Max Polymerase0.35μl,linker 2-UGI-linker 3-UGI-bpNLS 10ng,10μmol/L F-PeCBE-NG-3 0.35μl,10μmol/L R-PeCBE-NG-3 0.35μl,ddH2O补足到15μl。
使用F-PeCBE-NG-1/R-PeCBE-NG-2(SEQ ID NO.7和SEQ ID NO.10)引物,以第一轮扩增的eCBE片段M和Cas9n-NG片段作为模板,扩增bpNLS-eCBE-linker 1-Cas9n-NG融合DNA片段。
PCR体系(15μl):2×Phanta Max Buffer 7.5μl,10mmol/L dNTPs Mix 0.35μl,Phanta Max Polymerase0.35μl,第一轮扩增的eCBE片段M和Cas9n-NG各取0.1μl,10μmol/LF-PeCBE-NG-1 0.35μl,10μmol/L R-PeCBE-NG-4 0.35μl,ddH2O补足到15μl。
PCR程序:预变性95℃2min,28个PCR循环(95℃10s,56℃15s,72℃4min),延伸72℃2min。
使用F-PeCBE-NG-1/R-PeCBE-NG-3(SEQ ID NO.7和SEQ ID NO.12)引物,以第二轮扩增的eCB E-Cas9n-NG融合DNA片段和第一轮扩增片段N作为模板,扩增bpNLS-eCBE-linker1-Cas9n-NG-linker2-UGI-linker3-UGI-linker-bpNLS融合片段(简称eCBE-Cas9n-NG-2×UGI融合片段)。
PCR体系(50μl):2×Phanta Max Buffer 25μl,10mmol/L dNTPs Mix 1.0μl,Phanta Max Polymerase 1.0μl,第一轮扩增的linker 2-UGI-linker 3-UGI-bpNLS片段N和第二轮扩增的eCBE-Cas9n-NG融合DNA片段各取1.0μl,10μmol/L F-PeCBE-NG-1 1.0μl,10μmol/L R-PeCBE-NG-4 1.0μl,ddH2O补足到50μl。
PCR程序:预变性95℃2min,28个PCR循环(95℃10s,56℃15s,72℃4.5min),延伸72℃2min。
用Genstar纯化试剂盒,纯化扩增的bpNLS-eCBE-linker1-Cas9n-NG-Linker2-UGI-linker3-UGI-bpNLS融合DNA片段的PCR产物。用Pst I和BamH I酶切pYLCRISPR/Cas9Pubi-H(Ma et al.,2015,Molecular Plant,8:1274-1284):10×Faster digestbuffer,Pst I 0.5μl,BamH I 0.5μl,pYLCRISPR/Cas9Pubi-H 300ng,ddH2O补足到10μl,37℃反应1h,胶回收载体骨架,用于Gibson组装反应(NEB#E5510S):2×Mix 5μl,eCBE-Cas9n-NG-2×UGI融合片段60ng,胶回收载体骨架90ng,ddH2O补足到10μl,50℃反应50min。取1.5μl Gibson的连接产物,电激转化大肠杆菌Top10F’,在卡那霉素抗性(Kana)LB平板上,筛选转化单克隆。并将阳性克隆送测序,从而获得pYL-PeCBE-NG基础载体质粒。
实施例2 pYL-PeCBE-NG具有更高的胞嘧啶碱基编辑效率
参考本发明人团队前期发表的文献(Ma et al.,2015,Molecular Plant,8:1274-1284;Ma and Liu,2016,Current Protocols in Molecular Biology,115:31.6.1-31.6.21;曾栋昌等,2018,中国科学:生命科学,48:783-794),分别构建小核RNA基因启动子(OsU6a、OsU6b、OsU6c和OsU3)驱动不同靶点的sgRNA表达盒,用“金门组装,Golden Gate”方式插入pYL-PeCBE-NG双元载体(Ma et al.,2015,Molecular Plant,8:1274-1284),转化水稻,并对转化体靶点测序,分析pYL-PeCBE-NG编辑效率。具体操作如下:
1.T1~T9的靶点引物设计
利用我们开发的网上程序CRISPR-GE网页(http://skl.scau.edu.cn/)(Xie etal.,2018,Molecular plant,11:720-735),进入引物设计(PrimerDesign)子程序,primerDesign-V分支程序,选择对应启动子,勾上复选框,并选择method2,点击design,自动生成9个靶点引物gR-T#与U#-T#(表2)。
2.T1~T9的sgRNA表达盒的Overlapping PCR拼接
按照我们前期发表的文献(Ma et al.,2015,Molecular Plant,8:1274-1284;Maand Liu,2016,Current Protocols in Molecular Biology,115:31.6.1-31.6.21;曾栋昌等,2018,中国科学:生命科学,48:783-794)操作,通过两轮PCR,获得两侧具有Bsa I酶切位点的小RNA启动子驱动的sgRNA表达盒。
表2第一轮PCR靶点引物gR-T#与U#-T#序列
引物名 序列(5’---3’)
gRT1 ACCCCCCCACAGGCTCGCGAgttttagagctagaaat(SEQ ID NO.13)
OsU6aT1 TCGCGAGCCTGTGGGGGGGTCggcagccaagccagca(SEQ ID NO.14)
gRT2 TCGTCGGCGGCGATGGTGAgttttagagctagaaat(SEQ ID NO.15)
OsU6aT2 TCACCATCGCCGCCGACGACggcagccaagccagca(SEQ ID NO.16)
gRT3 ACCGCCACCGTCGTCGCCAAgttttagagctagaaat(SEQ ID NO.17)
OsU6bT3 TTGGCGACGACGGTGGCGGTCaacacaagcggcagc(SEQ ID NO.18)
gRT4 TGCATGCATGCACCCATGCgttttagagctagaaat(SEQ ID NO.19)
OsU3T4 GCATGGGTGCATGCATGCATgccacggatcatctgc(SEQ ID NO.20)
gRT5 ATCTCTGCACTGAATTGAATgttttagagctagaaat(SEQ ID NO.21)
OsU6aT5 ATTCAATTCAGTGCAGAGATCggcagccaagccagca(SEQ ID NO.22)
gRT6 TCCACCATGCACCACGACGTgttttagagctagaaat(SEQ ID NO.23)
OsU6aT6 ACGTCGTGGTGCATGGTGGACggcagccaagccagca(SEQ ID NO.24)
gRT7 AGCTCAAGCTCCGCGCCGCgttttagagctagaaat(SEQ ID NO.25)
OsU6bT7 GCGGCGCGGAGCTTGAGCTCaacacaagcggcagc(SEQ ID NO.26)
gRT8 ATCAGCGACCGGATCTCCCCgttttagagctagaaat(SEQ ID NO.27)
OsU6bT8 GGGGAGATCCGGTCGCTGATCaacacaagcggcagc(SEQ ID NO.28)
gRT9 CATTCTCCCAGTTCTTCGCgttttagagctagaaat(SEQ ID NO.29)
OsU3T9 GCGAAGAACTGGGAGAATGTgccacggatcatctgc(SEQ ID NO.30)
U-F CTCCGTTTTACCTGTGGAATCG(SEQ ID NO.31)
gR-R CGGAGGAAAATTCCATCCAC(SEQ ID NO.32)
第一轮PCR,利用设计的U#-T#/gR-T#引物(SEQ ID NO.13~SEQ ID NO.30,表2)将靶点序列引入到OsU6/OsU3启动子下游和sgRNA序列的上游。在一个PCR体系中,利用U-F引物(SEQ ID NO.31,表2)与gR-T#引物配对,PCR扩增获得含靶点的启动子序列;利用gR-R引物(SEQ ID NO.32,表2)与U#-T#引物配对,PCR扩增获得含靶点的sgRNA序列。PCR体系(20μl):2×Phanta Max Buffer 10.0μl,10mmol/L dNTPs Mix 0.4μl,Phanta Max Polymerase0.3μl,pYLgRNA-OsU6/3(含启动子和sgRNA质粒)(Ma et al.,2015,Molecular Plant,8:1274-1284)3ng,10μmol/L U-F 0.4μl,10μmol/L gR-T#0.2μl,10μmol/L gRNA-R0.4μl,10μmol/L U#-T#0.2μl,ddH2O补足到20μl。PCR程序:预变性95℃1min,28个PCR循环(95℃10s,58℃15s,72℃20s),延伸72℃1min。
表3构建多个sgRNA表达盒的通用引物
Figure BDA0002752460210000061
注1:Bsa I酶切末端设计成非回文序列,可产生高效的连接(Golden Gateligation)。
注2:如果连接多于8个sgRNA表达盒,需要自行设计更多组Pgs和Pps引物,每组含有互补的非回文Bsa I酶切末端。
表4组装不同数量sgRNA表达盒的第二轮PCR引物组合
Figure BDA0002752460210000062
第二轮PCR,使用第二轮PCR引物Pps和Pgs(SEQ ID NO.33~SEQ ID NO.48,表3和表4)拼接小RNA启动子驱动的sgRNA表达盒,并在PCR产物两侧加上Bsa I酶切位点。T1~T4作为一组,T5~T9作为一组,分别构建1个4靶点和5靶点的sgRNA表达盒载体。PCR体系(50μl):2×Phanta Max Buffer25.0μl,10mmol/L dNTPs Mix 1.0μl,Phanta Max Polymerase1.0μl,10×稀释上一轮PCR产物1.0μl,4靶点分别使用的引物,10μmol/L的Pps-L/Pgs-2(T1),Pps-2/Pgs-3(T2),Pps-3/Pgs-4(T3),Pps-4/Pgs-R(T4)各1.0μl;5靶点分别使用的引物,10μmol/L Pps-L/Pgs-2(T1),Pps-2/Pgs-3(T2),Pps-3/Pgs-4(T3),Pps-4/Pgs-5(T4),Pps-5/Pgs-R(T5)各1.0μl,ddH2O补足到50μl,PCR程序同上述第一轮PCR。使用Genstar纯化试剂盒纯化第二轮PCR产物。
3.含不同靶点的sgRNA表达盒敲除载体的构建
使用基于Bsa I酶切和连接的“金门”克隆方法,以“边切边连接”方式(Ma andLiu,2016,Current Protocols in Molecular Biology,115:31.6.1-31.6.21;曾栋昌等,2018,中国科学:生命科学,48:783-794),分别组装T1~T4,T5~T9;两组小核RNA启动子驱动的sgRNA表达盒分别克隆到双元载体pYL-PeCBE-NG上(图2A)。15μl反应体系:10×CutSmart Buffer 1.5μl,10mmol/L ATP 1.5μl,pYL-PeCBE-NG质粒80~100ng,纯化后的sgRNA表达盒10~15ng,Bsa I-HF 10U,T4 DNA ligase 35U,ddH2O补足到15μl。用PCR仪变温循环进行酶切连接反应:37℃10min,接着10-12循环(37℃5min,10℃3min,20℃5min);最后37℃3min。透析连接产物后,电激转化进入DH10B细胞,在卡拉抗性(Kan)LB板上筛选,用引物对SP-L1/SP-R(SEQ ID NO.49和SEQ ID NO.50,表3),根据文献(Ma and Liu,2016,Current Protocols in Molecular Biology,115:31.6.1-31.6.21;曾栋昌等,2018,中国科学:生命科学,48:783-794),做菌落PCR,筛选阳性克隆,最终用引物SP-L1(SEQ IDNO.49)测序确定。
4.pYL-PeCBE-NG具有较高的编辑效率。
利用农杆菌介导的水稻(粳稻中花11)愈伤转化,把上述含有T1-T4和T5-T9两组不同小RNA启动子驱动的sgRNA的4靶点和5靶点载体转化水稻愈伤(图2A),提取T0代转化植株的叶片DNA作为模板,使用amp和seq(SEQ ID NO.51~SEQ ID NO.77,表5)扩增单碱基编辑靶位点的DNA片段,直接Sanger测序,通过将测序结果和参考序列比对,统计、比较pYL-rAC1-NG和pYL-PeCBE-NG的编辑效率。结果表明pYL-PeCBE-NG的平均编辑效率最高(62.6%),其中在T7靶点的编辑效率高达86.3%(图2B)。
5.pYL-PeCBE-NG在NG靶点中同样具有较高编辑效率,且无靶点序列偏好性,同时副产物较少。
Cas9-NG虽然扩大了基因组的编辑范围,但是和传统的SpCas9相比,其切割编辑效率发生了一定幅度下降(Zeng et al.,2020,Plant Biotechnology Journal,18:1348-1350),为了探究pYL-PeCBE-NG单碱基编辑器是否在NG靶点可以实现高效编辑,我们从9个靶点中统计了pYL-PeCBE-NG在NGG靶点和NG靶点的平均编辑效率,结果显示,pYL-PeCBE-NG在NGG的平均编辑效率虽然稍低于NG靶位点,但是在NG靶位点同样保持着较高的编辑效率(图3A)。根据T0代的测序结果,我们统计了所有测试的载体在C3-C8活性窗口上GC、AC、TC和CC基序的平均编辑效率,并分析了它们的碱基偏好。统计结果显示,以BE4为载体结构的rAC1脱氨酶rAC1-NG出现严重序列环境的偏好性,在TC(8.8%)和CC(5.2%)具有低编辑效率,而对GC和AC位点在9个靶点中都未发生编辑(图3B)。而pYL-PeCBE-NG消除了靶点序列环境的偏好性,且具有较高的编辑效率。此外,pYL-PeCBE-NG的编辑产物主要以纯合和杂合突变为主,而非C-T编辑的副产物只有2.9%(图3C)。
表5 T0代转化植株靶点扩增及测序引物
Figure BDA0002752460210000071
6.pYL-PeCBE-NG有适中的编辑窗口
根据T0代的测序结果,我们统计了T1~T9中9个靶点在C-2~C15每个位点中C-T的平均编辑效率,绘制成编辑活性窗口图。结果显示,pYL-PeCBE-NG有比较适中的编辑窗口(C3-C8)(图4)。适中编辑窗口的脱氨酶搭配广靶向的Cas蛋白更有助于单碱基编辑技术在动植物基因组编辑中的运用。
7.pYL-PeCBE-NG自靶向sgRNA靶点的效率低
在以往的报道中,Cas9-NG除了可以识别靶向NGG-PAM外,还可以识别GTT-PAM,因此Cas9-NG除了靶向基因组靶点,同时还可能靶向T-DNA自身的sgRNA的靶点(Qin et al.,2020,Nat Plants 6:197-201)。为了探究本研究的pYL-PeCBE-NG自靶向T-DNA自身sgRNA靶位点的效率,直接扩增T0代转化苗的sgRNA靶点送Sanger测序,结果显示PeCBE-NG只在T6靶点展现微弱的sgRNA自编辑效率(6.9%),而在其他靶点均未检测到编辑(图5),9个靶点的平均自编辑效率远低于已知SpCas9-NG大于50%的自靶向编辑效率。
8.pYL-PeCBE-NG的脱靶效率也较低
利用我们课题组开发的网上程序CRISPR-GE网页(http://skl.scau.edu.cn/)(Xie et al.,2018,Molecular plant,11:720-735),进入引物设计(off-target)子程序,输入T2,T3,T4的靶点序列,从这三个靶点中选择具有≤3个碱基不匹配的脱靶位点用于脱靶效率分析。用抗性愈伤基因组DNA为模板PCR扩增潜在的脱靶位点做高通量测序分析。结果显示,PeCBE-NG除了在1个碱基不匹配的潜在脱靶位点检测到有脱靶的发生外,在2和3个碱基不匹配的候选脱靶位点未发现脱靶(图6)。说明了pYL-PeCBE-NG的由sgRNA引起的脱靶效率低。
综上所述,本发明开发的新型高效植物胞嘧啶碱基编辑器pYL-PeCBE-NG比以前的CBE编辑系统(如申请人以前的BE4编辑器pYL-rAC1-NG),具有更与脱靶效率低等优点,能够广泛的用于作物基因功能筛选、大规模饱和突变、编辑调控元件、引入提前终止密码子或进行可变剪接等操作。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110>华南农业大学
<120>一种植物高效胞嘧啶单碱基编辑器及其构建与应用
<160> 50
<170> SIPOSequenceListing 1.0
<210> 1
Phe Glu Arg Asn Tyr Asp Pro Arg Glu Leu Arg Lys Glu Thr Tyr Leu
1 5 10 15
Leu Tyr Glu Ile Lys Trp Gly Lys Ser Gly Lys Leu Trp Arg His Trp
20 25 30
Cys Gln Asn Asn Arg Thr Gln His Ala Glu Val Tyr Phe Leu Glu Asn
35 40 45
Ile Phe Asn Ala Arg Arg Phe Asn Pro Ser Thr His Cys Ser Ile Thr
50 55 60
Trp Tyr Leu Ser Trp Ser Pro Cys Ala Glu Cys Ser Gln Lys Ile Val
65 70 75 80
Asp Phe Leu Lys Glu His Pro Asn Val Asn Leu Glu Ile Tyr Val Ala
85 90 95
Arg Leu Tyr Tyr Pro Glu Asn Glu Arg Asn Arg Gln Gly Leu Arg Asp
100 105 110
Leu Val Asn Ser Gly Val Thr Ile Arg Ile Met Asp Leu Pro Asp Tyr
115 120 125
Asn Tyr Cys Trp Lys Thr Phe Val Ser Asp Gln Gly Gly Asp Glu Asp
130 135 140
Tyr Trp Pro Gly His Phe Ala Pro Trp Ile Lys Gln Tyr Ser Leu Lys
145 150 155 160
Leu
<210> 2
Asp Lys Lys Tyr Ser Ile Gly Leu Ala Ile Gly Thr Asn Ser Val Gly
1 5 10 15
Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe Lys
20 25 30
Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile Gly
35 40 45
Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu Lys
50 55 60
Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys Tyr
65 70 75 80
Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser Phe
85 90 95
Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys His
100 105 110
Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr His
115 120 125
Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp Ser
130 135 140
Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His Met
145 150 155 160
Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro Asp
165 170 175
Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr Asn
180 185 190
Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala Lys
195 200 205
Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn Leu
210 215 220
Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn Leu
225 230 235 240
Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe Asp
245 250 255
Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp Asp
260 265 270
Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp Leu
275 280 285
Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp Ile
290 295 300
Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser Met
305 310 315 320
Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys Ala
325 330 335
Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe Asp
340 345 350
Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser Gln
355 360 365
Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp Gly
370 375 380
Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg Lys
385 390 395 400
Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu Gly
405 410 415
Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe Leu
420 425 430
Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile Pro
435 440 445
Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp Met
450 455 460
Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu Val
465 470 475 480
Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr Asn
485 490 495
Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser Leu
500 505 510
Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys Tyr
515 520 525
Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln Lys
530 535 540
Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr Val
545 550 555 560
Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp Ser
565 570 575
Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly Thr
580 585 590
Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp Asn
595 600 605
Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr Leu
610 615 620
Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala His
625 630 635 640
Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr Thr
645 650 655
Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp Lys
660 665 670
Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe Ala
675 680 685
Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe Lys
690 695 700
Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu His
705 710 715 720
Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly Ile
725 730 735
Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly Arg
740 745 750
His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln Thr
755 760 765
Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile Glu
770 775 780
Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro Val
785 790 795 800
Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln
805 810 815
Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg Leu
820 825 830
Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys Asp
835 840 845
Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg Gly
850 855 860
Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys Asn
865 870 875 880
Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys Phe
885 890 895
Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp Lys
900 905 910
Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr Lys
915 920 925
His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp Glu
930 935 940
Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser Lys
945 950 955 960
Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg Glu
965 970 975
Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val Val
980 985 990
Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe Val
995 1000 1005
Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys Ser
1010 1015 1020
Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser Asn
1025 1030 1035 1040
Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu Ile
1045 1050 1055
Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile Val
1060 1065 1070
Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser Met
1075 1080 1085
Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly Phe
1090 1095 1100
Ser Lys Glu Ser Ile Arg Pro Lys Arg Asn Ser Asp Lys Leu Ile Ala
1105 1110 1115 1120
Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Val Ser Pro
1125 1130 1135
Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly Lys
1140 1145 1150
Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile Met
1155 1160 1165
Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys
1170 1175 1180
Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys Tyr
1185 1190 1195 1200
Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala
1205 1210 1215
Arg Phe Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val
1220 1225 1230
Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser Pro
1235 1240 1245
Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His Tyr
1250 1255 1260
Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val Ile
1265 1270 1275 1280
Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys His
1285 1290 1295
Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu Phe
1300 1305 1310
Thr Leu Thr Asn Leu Gly Ala Pro Arg Ala Phe Lys Tyr Phe Asp Thr
1315 1320 1325
Thr Ile Asp Arg Lys Val Tyr Arg Ser Thr Lys Glu Val Leu Asp Ala
1330 1335 1340
Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile Asp
1345 1350 1355 1360
Leu Ser Gln Leu Gly Gly Asp
1365
<210> 3
Thr Asn Leu Ser Asp Ile Ile Glu Lys Glu Thr Gly Lys Gln Leu Val
1 5 10 15
Ile Gln Glu Ser Ile Leu Met Leu Pro Glu Glu Val Glu Glu Val Ile
20 25 30
Gly Asn Lys Pro Glu Ser Asp Ile Leu Val His Thr Ala Tyr Asp Glu
35 40 45
Ser Thr Asp Glu Asn Val Met Leu Leu Thr Ser Asp Ala Pro Glu Tyr
50 55 60
Lys Pro Trp Ala Leu Val Ile Gln Asp Ser Asn Gly Glu Asn Lys Ile
65 70 75 80
Lys Met Leu
<210> 4
Lys Arg Thr Ala Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys Arg
1 5 10 15
Lys Val
<210> 5
Met Lys Arg Thr Ala Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys
1 5 10 15
Arg Lys Val Phe Glu Arg Asn Tyr Asp Pro Arg Glu Leu Arg Lys Glu
20 25 30
Thr Tyr Leu Leu Tyr Glu Ile Lys Trp Gly Lys Ser Gly Lys Leu Trp
35 40 45
Arg His Trp Cys Gln Asn Asn Arg Thr Gln His Ala Glu Val Tyr Phe
50 55 60
Leu Glu Asn Ile Phe Asn Ala Arg Arg Phe Asn Pro Ser Thr His Cys
65 70 75 80
Ser Ile Thr Trp Tyr Leu Ser Trp Ser Pro Cys Ala Glu Cys Ser Gln
85 90 95
Lys Ile Val Asp Phe Leu Lys Glu His Pro Asn Val Asn Leu Glu Ile
100 105 110
Tyr Val Ala Arg Leu Tyr Tyr Pro Glu Asn Glu Arg Asn Arg Gln Gly
115 120 125
Leu Arg Asp Leu Val Asn Ser Gly Val Thr Ile Arg Ile Met Asp Leu
130 135 140
Pro Asp Tyr Asn Tyr Cys Trp Lys Thr Phe Val Ser Asp Gln Gly Gly
145 150 155 160
Asp Glu Asp Tyr Trp Pro Gly His Phe Ala Pro Trp Ile Lys Gln Tyr
165 170 175
Ser Leu Lys Leu Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Ser Glu
180 185 190
Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser Gly Gly Ser
195 200 205
Ser Gly Gly Ser Asp Lys Lys Tyr Ser Ile Gly Leu Ala Ile Gly Thr
210 215 220
Asn Ser Val Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser
225 230 235 240
Lys Lys Phe Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys
245 250 255
Asn Leu Ile Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala
260 265 270
Thr Arg Leu Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn
275 280 285
Arg Ile Cys Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val
290 295 300
Asp Asp Ser Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu
305 310 315 320
Asp Lys Lys His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu
325 330 335
Val Ala Tyr His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys
340 345 350
Leu Val Asp Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala
355 360 365
Leu Ala His Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp
370 375 380
Leu Asn Pro Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val
385 390 395 400
Gln Thr Tyr Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly
405 410 415
Val Asp Ala Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg
420 425 430
Leu Glu Asn Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu
435 440 445
Phe Gly Asn Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys
450 455 460
Ser Asn Phe Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp
465 470 475 480
Thr Tyr Asp Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln
485 490 495
Tyr Ala Asp Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu
500 505 510
Leu Ser Asp Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu
515 520 525
Ser Ala Ser Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr
530 535 540
Leu Leu Lys Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu
545 550 555 560
Ile Phe Phe Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly
565 570 575
Gly Ala Ser Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu
580 585 590
Lys Met Asp Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp
595 600 605
Leu Leu Arg Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln
610 615 620
Ile His Leu Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe
625 630 635 640
Tyr Pro Phe Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr
645 650 655
Phe Arg Ile Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg
660 665 670
Phe Ala Trp Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn
675 680 685
Phe Glu Glu Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu
690 695 700
Arg Met Thr Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro
705 710 715 720
Lys His Ser Leu Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr
725 730 735
Lys Val Lys Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser
740 745 750
Gly Glu Gln Lys Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg
755 760 765
Lys Val Thr Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu
770 775 780
Cys Phe Asp Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala
785 790 795 800
Ser Leu Gly Thr Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp
805 810 815
Phe Leu Asp Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu
820 825 830
Thr Leu Thr Leu Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys
835 840 845
Thr Tyr Ala His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg
850 855 860
Arg Arg Tyr Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly
865 870 875 880
Ile Arg Asp Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser
885 890 895
Asp Gly Phe Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser
900 905 910
Leu Thr Phe Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly
915 920 925
Asp Ser Leu His Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile
930 935 940
Lys Lys Gly Ile Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys
945 950 955 960
Val Met Gly Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg
965 970 975
Glu Asn Gln Thr Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met
980 985 990
Lys Arg Ile Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys
995 1000 1005
Glu His Pro Val Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu
1010 1015 1020
Tyr Tyr Leu Gln Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp
1025 1030 1035 1040
Ile Asn Arg Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser
1045 1050 1055
Phe Leu Lys Asp Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp
1060 1065 1070
Lys Asn Arg Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys
1075 1080 1085
Lys Met Lys Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr
1090 1095 1100
Gln Arg Lys Phe Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser
1105 1110 1115 1120
Glu Leu Asp Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg
1125 1130 1135
Gln Ile Thr Lys His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr
1140 1145 1150
Lys Tyr Asp Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr
1155 1160 1165
Leu Lys Ser Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr
1170 1175 1180
Lys Val Arg Glu Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu
1185 1190 1195 1200
Asn Ala Val Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu
1205 1210 1215
Ser Glu Phe Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met
1220 1225 1230
Ile Ala Lys Ser Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe
1235 1240 1245
Phe Tyr Ser Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala
1250 1255 1260
Asn Gly Glu Ile Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr
1265 1270 1275 1280
Gly Glu Ile Val Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys
1285 1290 1295
Val Leu Ser Met Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln
1300 1305 1310
Thr Gly Gly Phe Ser Lys Glu Ser Ile Arg Pro Lys Arg Asn Ser Asp
1315 1320 1325
Lys Leu Ile Ala Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly
1330 1335 1340
Phe Val Ser Pro Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val
1345 1350 1355 1360
Glu Lys Gly Lys Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly
1365 1370 1375
Ile Thr Ile Met Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe
1380 1385 1390
Leu Glu Ala Lys Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys
1395 1400 1405
Leu Pro Lys Tyr Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met
1410 1415 1420
Leu Ala Ser Ala Arg Phe Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro
1425 1430 1435 1440
Ser Lys Tyr Val Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu
1445 1450 1455
Lys Gly Ser Pro Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln
1460 1465 1470
His Lys His Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser
1475 1480 1485
Lys Arg Val Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala
1490 1495 1500
Tyr Asn Lys His Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile
1505 1510 1515 1520
Ile His Leu Phe Thr Leu Thr Asn Leu Gly Ala Pro Arg Ala Phe Lys
1525 1530 1535
Tyr Phe Asp Thr Thr Ile Asp Arg Lys Val Tyr Arg Ser Thr Lys Glu
1540 1545 1550
Val Leu Asp Ala Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu
1555 1560 1565
Thr Arg Ile Asp Leu Ser Gln Leu Gly Gly Asp Ser Gly Gly Ser Gly
1570 1575 1580
Gly Ser Gly Gly Ser Thr Asn Leu Ser Asp Ile Ile Glu Lys Glu Thr
1585 1590 1595 1600
Gly Lys Gln Leu Val Ile Gln Glu Ser Ile Leu Met Leu Pro Glu Glu
1605 1610 1615
Val Glu Glu Val Ile Gly Asn Lys Pro Glu Ser Asp Ile Leu Val His
1620 1625 1630
Thr Ala Tyr Asp Glu Ser Thr Asp Glu Asn Val Met Leu Leu Thr Ser
1635 1640 1645
Asp Ala Pro Glu Tyr Lys Pro Trp Ala Leu Val Ile Gln Asp Ser Asn
1650 1655 1660
Gly Glu Asn Lys Ile Lys Met Leu Ser Gly Gly Ser Gly Gly Ser Gly
1665 1670 1675 1680
Gly Ser Thr Asn Leu Ser Asp Ile Ile Glu Lys Glu Thr Gly Lys Gln
1685 1690 1695
Leu Val Ile Gln Glu Ser Ile Leu Met Leu Pro Glu Glu Val Glu Glu
1700 1705 1710
Val Ile Gly Asn Lys Pro Glu Ser Asp Ile Leu Val His Thr Ala Tyr
1715 1720 1725
Asp Glu Ser Thr Asp Glu Asn Val Met Leu Leu Thr Ser Asp Ala Pro
1730 1735 1740
Glu Tyr Lys Pro Trp Ala Leu Val Ile Gln Asp Ser Asn Gly Glu Asn
1745 1750 1755 1760
Lys Ile Lys Met Leu Ser Gly Gly Ser Lys Arg Thr Ala Asp Gly Ser
1765 1770 1775
Glu Phe Glu Ser Pro Lys Lys Lys Arg Lys Val
1780 1785
<210> 6
atgaagagga cagccgacgg ctctgagttc gagtccccga agaagaagcg caaggtcttc 60
gagcgcaact acgacccacg cgagctgcgc aaagagacat acctcctcta cgagatcaag 120
tggggcaagt ccggaaagct ctggcgccat tggtgccaga acaacaggac acagcacgcc 180
gaggtgtact ttcttgagaa catcttcaac gcccgcaggt tcaacccgtc cacgcattgc 240
tcgatcacct ggtatctcag ctggtcccca tgcgccgagt gctcccaaaa gatcgtggac 300
ttcctcaaag agcacccgaa cgtcaacctc gagatctacg tggcccgcct ctactaccca 360
gagaacgaga gaaataggca gggcctccgc gacctcgtga attctggcgt gaccatccgc 420
atcatggacc tgccggacta caactactgc tggaaaacct tcgtgtccga ccaaggcggc 480
gacgaggatt attggccagg ccatttcgcc ccgtggatca agcagtactc cctcaaactt 540
tctggtggct ctagcggcgg ctcatctggc tctgagacac caggcacaag cgagtccgct 600
acgccagagt catctggtgg cagctccggc ggctccgaca agaagtactc catcggcctc 660
gctatcggca ccaacagcgt cggctgggcg gtgatcaccg acgagtacaa ggtcccgtcc 720
aagaagttca aggtcctggg caacaccgac cgccactcca tcaagaagaa cctcatcggc 780
gccctcctct tcgactccgg cgagacggcg gaggcgaccc gcctcaagcg caccgcccgc 840
cgccgctaca cccgccgcaa gaaccgcatc tgctacctcc aggagatctt ctccaacgag 900
atggcgaagg tcgacgactc cttcttccac cgcctcgagg agtccttcct cgtggaggag 960
gacaagaagc acgagcgcca ccccatcttc ggcaacatcg tcgacgaggt cgcctaccac 1020
gagaagtacc ccactatcta ccaccttcgt aagaagcttg ttgactctac tgataaggct 1080
gatcttcgtc tcatctacct tgctctcgct cacatgatca agttccgtgg tcacttcctt 1140
atcgagggtg accttaaccc tgataactcc gacgtggaca agctcttcat ccagctcgtc 1200
cagacctaca accagctctt cgaggagaac cctatcaacg cttccggtgt cgacgctaag 1260
gcgatccttt ccgctaggct ctccaagtcc aggcgtctcg agaacctcat cgcccagctc 1320
cctggtgaga agaagaacgg tcttttcggt aacctcatcg ctctctccct cggtctgacc 1380
cctaacttca agtccaactt cgacctcgct gaggacgcta agcttcagct ctccaaggat 1440
acctacgacg atgatctcga caacctcctc gctcagattg gagatcagta cgctgatctc 1500
ttccttgctg ctaagaacct ctccgatgct atcctccttt cggatatcct tagggttaac 1560
actgagatca ctaaggctcc tctttctgct tccatgatca agcgctacga cgagcaccac 1620
caggacctca ccctcctcaa ggctcttgtt cgtcagcagc tccccgagaa gtacaaggag 1680
atcttcttcg accagtccaa gaacggctac gccggttaca ttgacggtgg agctagccag 1740
gaggagttct acaagttcat caagccaatc cttgagaaga tggatggtac tgaggagctt 1800
ctcgttaagc ttaaccgtga ggacctcctt aggaagcaga ggactttcga taacggctct 1860
atccctcacc agatccacct tggtgagctt cacgccatcc ttcgtaggca ggaggacttc 1920
taccctttcc tcaaggacaa ccgtgagaag atcgagaaga tccttacttt ccgtattcct 1980
tactacgttg gtcctcttgc tcgtggtaac tcccgtttcg cttggatgac taggaagtcc 2040
gaggagacta tcaccccttg gaacttcgag gaggttgttg acaagggtgc ttccgcccag 2100
tccttcatcg agcgcatgac caacttcgac aagaacctcc ccaacgagaa ggtcctcccc 2160
aagcactccc tcctctacga gtacttcacg gtctacaacg agctcaccaa ggtcaagtac 2220
gtcaccgagg gtatgcgcaa gcctgccttc ctctccggcg agcagaagaa ggctatcgtt 2280
gacctcctct tcaagaccaa ccgcaaggtc accgtcaagc agctcaagga ggactacttc 2340
aagaagatcg agtgcttcga ctccgtcgag atcagcggcg ttgaggaccg tttcaacgct 2400
tctctcggta cctaccacga tctcctcaag atcatcaagg acaaggactt cctcgacaac 2460
gaggagaacg aggacatcct cgaggacatc gtcctcactc ttactctctt cgaggatagg 2520
gagatgatcg aggagaggct caagacttac gctcatctct tcgatgacaa ggttatgaag 2580
cagctcaagc gtcgccgtta caccggttgg ggtaggctct cccgcaagct catcaacggt 2640
atcagggata agcagagcgg caagactatc ctcgacttcc tcaagtctga tggtttcgct 2700
aacaggaact tcatgcagct catccacgat gactctctta ccttcaagga ggatattcag 2760
aaggctcagg tgtccggtca gggcgactct ctccacgagc acattgctaa ccttgctggt 2820
tcccctgcta tcaagaaggg catccttcag actgttaagg ttgtcgatga gcttgtcaag 2880
gttatgggtc gtcacaagcc tgagaacatc gtcatcgaga tggctcgtga gaaccagact 2940
acccagaagg gtcagaagaa ctcgagggag cgcatgaaga ggattgagga gggtatcaag 3000
gagcttggtt ctcagatcct taaggagcac cctgtcgaga acacccagct ccagaacgag 3060
aagctctacc tctactacct ccagaacggt agggatatgt acgttgacca ggagctcgac 3120
atcaacaggc tttctgacta cgacgtcgac cacattgttc ctcagtcttt ccttaaggat 3180
gactccatcg acaacaaggt cctcacgagg tccgacaaga acaggggtaa gtcggacaac 3240
gtcccttccg aggaggttgt caagaagatg aagaactact ggaggcagct tctcaacgct 3300
aagctcatta cccagaggaa gttcgacaac ctcacgaagg ctgagagggg tggcctttcc 3360
gagcttgaca aggctggttt catcaagagg cagcttgttg agacgaggca gattaccaag 3420
cacgttgctc agatcctcga ttctaggatg aacaccaagt acgacgagaa cgacaagctc 3480
atccgcgagg tcaaggtgat caccctcaag tccaagctcg tctccgactt ccgcaaggac 3540
ttccagttct acaaggtccg cgagatcaac aactaccacc acgctcacga tgcttacctt 3600
aacgctgtcg ttggtaccgc tcttatcaag aagtacccta agcttgagtc cgagttcgtc 3660
tacggtgact acaaggtcta cgacgttcgt aagatgatcg ccaagtccga gcaggagatc 3720
ggcaaggcca ccgccaagta cttcttctac tccaacatca tgaacttctt caagaccgag 3780
atcaccctcg ccaacggcga gatccgcaag cgccctctta tcgagacgaa cggtgagact 3840
ggtgagatcg tttgggacaa gggtcgcgac ttcgctactg ttcgcaaggt cctttctatg 3900
cctcaggtta acatcgtcaa gaagaccgag gtccagaccg gtggcttctc caaggagtct 3960
atccgtccaa agagaaactc ggacaagctc atcgctagga agaaggattg ggaccctaag 4020
aagtacggtg gtttcgtctc ccctactgtc gcctactccg tcctcgtggt cgccaaggtg 4080
gagaagggta agtcgaagaa gctcaagtcc gtcaaggagc tcctcggcat caccatcatg 4140
gagcgctcct ccttcgagaa gaacccgatc gacttcctcg aggccaaggg ctacaaggag 4200
gtcaagaagg acctcatcat caagctcccc aagtactctc ttttcgagct cgagaacggt 4260
cgtaagagga tgctggcttc cgctcgtttc ctccagaagg gtaacgagct tgctcttcct 4320
tccaagtacg tgaacttcct ctacctcgcc tcccactacg agaagctcaa gggttcccct 4380
gaggataacg agcagaagca gctcttcgtg gagcagcaca agcactacct cgacgagatc 4440
atcgagcaga tctccgagtt ctccaagcgc gtcatcctcg ctgacgctaa cctcgacaag 4500
gtcctctccg cctacaacaa gcaccgcgac aagcccatcc gcgagcaggc cgagaacatc 4560
atccacctct tcacgctcac gaacctcggc gcccctcgtg ctttcaagta cttcgacacc 4620
accatcgaca ggaaggttta caggtccacc aaggaggttc tcgacgctac tctcatccac 4680
cagtccatca ccggtcttta cgagactcgt atcgaccttt cccagcttgg tggtgattct 4740
ggtggatctg gcggaagcgg cggctctacc aatctctccg acatcatcga gaaagagaca 4800
ggcaagcagc tcgtgatcca agagtccatc ctcatgctcc cggaagaggt cgaggaagtg 4860
atcggcaaca agccagagtc cgacatcctc gtgcacaccg cctacgatga gtccaccgac 4920
gagaacgtga tgctcctcac ctctgacgcc ccagagtaca agccatgggc gctcgtgatt 4980
caggactcca acggcgagaa caagatcaag atgctctcag gcggcagcgg aggttcaggc 5040
ggctcaacaa acctcagcga tattattgag aaagaaaccg ggaagcaatt ggtcattcaa 5100
gagtcgattc tgatgttgcc cgaagaggtg gaagaggtta tcgggaacaa acccgagagc 5160
gacatcctgg tccatacggc gtatgacgag agcacggatg agaatgtcat gctcctgacc 5220
agcgacgcgc ccgagtataa gccttgggct cttgtcatcc aggacagcaa tggggaaaac 5280
aaaatcaaaa tgctgagcgg cggcagcaag aggacagctg atggctctga gttcgagtcc 5340
ccgaagaaga agcgcaaggt ctag 5364
<210> 7
ctcaccctgt tgtttggtgt tacttctgca gatgaagagg acagccg 47
<210> 8
gccgatggag tacttcttgt cggagccgcc ggagctgcca ccag 44
<210> 9
ctccggcggc tccgacaaga agtactccat c 31
<210> 10
ccagatccac cagaatcacc accaagctgg ga 32
<210> 11
cagcttggtg gtgattctgg tggatctggc ggaag 35
<210> 12
caaatgtttg aacgatcggg aggatcctag accttgcgct tcttc 45
<210> 13
acccccccac aggctcgcga gttttagagc tagaaat 37
<210> 14
tcgcgagcct gtgggggggt cggcagccaa gccagca 37
<210> 15
tcgtcggcgg cgatggtgag ttttagagct agaaat 36
<210> 16
tcaccatcgc cgccgacgac ggcagccaag ccagca 36
<210> 17
accgccaccg tcgtcgccaa gttttagagc tagaaat 37
<210> 18
ttggcgacga cggtggcggt caacacaagc ggcagc 36
<210> 19
tgcatgcatg cacccatgcg ttttagagct agaaat 36
<210> 20
gcatgggtgc atgcatgcat gccacggatc atctgc 36
<210> 21
atctctgcac tgaattgaat gttttagagc tagaaat 37
<210> 22
attcaattca gtgcagagat cggcagccaa gccagca 37
<210> 23
tccaccatgc accacgacgt gttttagagc tagaaat 37
<210> 24
acgtcgtggt gcatggtgga cggcagccaa gccagca 37
<210> 25
agctcaagct ccgcgccgcg ttttagagct agaaat 36
<210> 26
gcggcgcgga gcttgagctc aacacaagcg gcagc 35
<210> 27
atcagcgacc ggatctcccc gttttagagc tagaaat 37
<210> 28
ggggagatcc ggtcgctgat caacacaagc ggcagc 36
<210> 29
cattctccca gttcttcgcg ttttagagct agaaat 36
<210> 30
gcgaagaact gggagaatgt gccacggatc atctgc 36
<210> 31
ctccgtttta cctgtggaat cg 22
<210> 32
cggaggaaaa ttccatccac 20
<210> 33
ttcagaggtc tctaccgact agtcacgcgt atggaatcgg cagcaaa 47
<210> 34
agcgtgggtc tcgtcagggt ccatccactc caagctc 37
<210> 35
ttcagaggtc tctctgacac tggaatcggc agcaaagg 38
<210> 36
agcgtgggtc tcgtcttcac tccatccact ccaagctc 38
<210> 37
ttcagaggtc tctaagactt tggaatcggc agcaaagg 38
<210> 38
agcgtgggtc tcgagtcctt tccatccact ccaagctc 38
<210> 39
ttcagaggtc tctgactaca tggaatcggc agcaaagg 38
<210> 40
agcgtgggtc tcggtccaca tccatccact ccaagctc 38
<210> 41
ttcagaggtc tctggactag tggaatcggc agcaaagg 38
<210> 42
agcgtgggtc tcgcagatag tccatccact ccaagctc 38
<210> 43
ttcagaggtc tcttctgcaa tggaatcggc agcaaagg 38
<210> 44
agcgtgggtc tcgacctcaa tccatccact ccaagctc 38
<210> 45
ttcagaggtc tctaggtttc tggaatcggc agcaaagg 38
<210> 46
agcgtgggtc tcgagcgttc tccatccact ccaagctc 38
<210> 47
ttcagaggtc tctcgctgat tggaatcggc agcaaagg 38
<210> 48
agcgtgggtc tcgctcgacg cgtatccatc cactccaagc 40
<210> 49
gcggtgtcat ctatgttact ag 22
<210> 50
tgcaataact tcgtataggc t 21

Claims (10)

1.一种SpCas9变体融合蛋白,其特征在于:
命名为PeCBE-NG,包含胞嘧啶脱氨酶eCBE、SpCas9变体Cas9n-NG和尿嘧啶糖基化酶抑制蛋白;
所述胞嘧啶脱氨酶eCBE的氨基酸序列如SEQ ID NO.1所示;所述SpCas9变体Cas9n-NG的氨基酸序列如SEQ ID NO.2所示;所述尿嘧啶糖基化酶抑制蛋白的氨基酸序列如SEQ IDNO.3所示。
2.根据权利要求1所述的SpCas9变体融合蛋白,其特征在于:
所述SpCas9变体融合蛋白还包含以下序列中的一种或多种:接头,核定位信号,以及为了构建融合蛋白、促进重组蛋白的表达、获得自动分泌到宿主细胞核的重组蛋白、或利于重组蛋白的纯化而引入的氨基酸残基或氨基酸序列;
所述接头为柔性接头;
所述核定位信号的氨基酸序列如SEQ ID NO.4所示;
所述核定位信号的个数为两个,且分别融合在所述SpCas9变体融合蛋白的N端和C端;
所述尿嘧啶糖基化酶抑制蛋白的个数为两个,且两个尿嘧啶糖基化酶抑制蛋白通过接头串联。
3.根据权利要求1所述的SpCas9变体融合蛋白,其特征在于:从N端到C端,依次含1个核定位信号,1个胞嘧啶脱氨酶eCBE,1个SpCas9变体Cas9n-NG,2个串联的尿嘧啶糖基化酶抑制蛋白,以及1个核定位信号。
4.根据权利要求1所述的SpCas9变体融合蛋白,其特征在于:
所述SpCas9变体融合蛋白的氨基酸全序列如SEQ ID NO.5所示。
5.一种多核苷酸序列,其特征在于:为编码权利要求1~4任一项所述SpCas9变体融合蛋白的多核苷酸序列。
6.根据权利要求5所述的多核苷酸序列,其特征在于:所述多核苷酸序列如SEQ IDNO.6所示。
7.一种植物高效胞嘧啶单碱基编辑器,其特征在于:是将编码权利要求1~4任一项所述SpCas9变体融合蛋白的多核苷酸序列整合至植物转化载体上得到。
8.根据权利要求7所述的植物高效胞嘧啶单碱基编辑器,其特征在于:
所述植物转化载体为双元表达载体,进一步为pCAMBIA1300和在其基础上进行改造得到的载体,更进一步为pYLCRISPR/Cas9Pubi-H,所述多核苷酸序列插入至载体的Pst I和BamHI酶切位点之间。
9.权利要求7或8所述的植物高效胞嘧啶单碱基编辑器的构建方法,包括如下步骤:
S1、分别合成编码NLS-eCBE-linker 1的基因片段1,编码linker 2-UGI-linker 3-UGI-NLS的基因片段2,并通过PCR反应在基因片段1的5’端添加一酶切位点,在基因片段2的3’添加另一酶切位点;克隆得到编码Cas9n-NG的基因片段3;
S2、通过重叠PCR技术,将带酶切位点的基因片段1的C端与基因片段3的N端连接,得到融合蛋白NLS-eCBE-linker 1-Cas9n-NG的基因片段4;再将基因片段4的C端与将带酶切位点的基因片段2的N端连接,得到融合蛋白NLS-eCBE-linker1-Cas9n-NG-linker2-UGI-linker3-UGI-linker-NLS的基因片段5;
S3、将基因片段5插入至载体pYLCRISPR/Cas9Pubi-H两个相应的酶切位点之间,转化宿主菌,提取阳性质粒,测序,获得稳定的植物高效胞嘧啶单碱基编辑系统。
10.权利要求1~4任一项所述的SpCas9变体融合蛋白、或权利要求5~6任一项所述的多核苷酸序列、或权利要求7~8任一项所述的植物高效胞嘧啶单碱基编辑器在植物基因组单碱基编辑中的应用。
CN202011189809.5A 2020-10-30 2020-10-30 一种植物高效胞嘧啶单碱基编辑器及其构建与应用 Active CN112266420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011189809.5A CN112266420B (zh) 2020-10-30 2020-10-30 一种植物高效胞嘧啶单碱基编辑器及其构建与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011189809.5A CN112266420B (zh) 2020-10-30 2020-10-30 一种植物高效胞嘧啶单碱基编辑器及其构建与应用

Publications (2)

Publication Number Publication Date
CN112266420A true CN112266420A (zh) 2021-01-26
CN112266420B CN112266420B (zh) 2022-08-09

Family

ID=74345250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011189809.5A Active CN112266420B (zh) 2020-10-30 2020-10-30 一种植物高效胞嘧啶单碱基编辑器及其构建与应用

Country Status (1)

Country Link
CN (1) CN112266420B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201517A (zh) * 2021-05-12 2021-08-03 广州大学 一种胞嘧啶单碱基编辑器工具及其应用
CN114058639A (zh) * 2021-10-29 2022-02-18 中国种子集团有限公司 利用单碱基基因编辑技术突变OsWaxy基因改良水稻直链淀粉含量的方法
CN114686456A (zh) * 2022-05-10 2022-07-01 中山大学 基于双分子脱氨酶互补的碱基编辑系统及其应用
CN115161305A (zh) * 2021-04-02 2022-10-11 上海科技大学 一种包括双碱基编辑器的融合蛋白及其制备方法和应用
CN117659210A (zh) * 2023-11-30 2024-03-08 华南农业大学 一种用作植物双碱基编辑器的重组融合蛋白及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152197A1 (en) * 2017-02-15 2018-08-23 Massachusetts Institute Of Technology Dna writers, molecular recorders and uses thereof
CN108715861A (zh) * 2018-04-26 2018-10-30 上海科技大学 一种碱基编辑工具及其应用
CN109652422A (zh) * 2019-01-31 2019-04-19 安徽省农业科学院水稻研究所 高效的单碱基编辑系统OsSpCas9-eCDA及其应用
CN110029096A (zh) * 2019-05-09 2019-07-19 上海科技大学 一种腺嘌呤碱基编辑工具及其用途
CN110300802A (zh) * 2016-12-23 2019-10-01 基础科学研究院 用于动物胚胎碱基编辑的组合物和碱基编辑方法
WO2019241649A1 (en) * 2018-06-14 2019-12-19 President And Fellows Of Harvard College Evolution of cytidine deaminases
CN111019946A (zh) * 2019-12-23 2020-04-17 华南农业大学 一种短小型小核rna启动子及其构建方法和在基因组编辑中的应用
CN111065647A (zh) * 2017-09-01 2020-04-24 上海科技大学 用于提高碱基编辑精度的融合蛋白
CN111118060A (zh) * 2020-01-16 2020-05-08 扬州大学 基于基因编辑的BnALS1突变型基因、蛋白及其应用
CN111801345A (zh) * 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300802A (zh) * 2016-12-23 2019-10-01 基础科学研究院 用于动物胚胎碱基编辑的组合物和碱基编辑方法
WO2018152197A1 (en) * 2017-02-15 2018-08-23 Massachusetts Institute Of Technology Dna writers, molecular recorders and uses thereof
CN111801345A (zh) * 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物
CN111065647A (zh) * 2017-09-01 2020-04-24 上海科技大学 用于提高碱基编辑精度的融合蛋白
CN108715861A (zh) * 2018-04-26 2018-10-30 上海科技大学 一种碱基编辑工具及其应用
WO2019241649A1 (en) * 2018-06-14 2019-12-19 President And Fellows Of Harvard College Evolution of cytidine deaminases
CN109652422A (zh) * 2019-01-31 2019-04-19 安徽省农业科学院水稻研究所 高效的单碱基编辑系统OsSpCas9-eCDA及其应用
CN110029096A (zh) * 2019-05-09 2019-07-19 上海科技大学 一种腺嘌呤碱基编辑工具及其用途
CN111019946A (zh) * 2019-12-23 2020-04-17 华南农业大学 一种短小型小核rna启动子及其构建方法和在基因组编辑中的应用
CN111118060A (zh) * 2020-01-16 2020-05-08 扬州大学 基于基因编辑的BnALS1突变型基因、蛋白及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZONG Y等: "Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion", 《NATURE BIOTECHNOLOGY》 *
刘耀光等: "CRISPR/Cas植物基因组编辑技术研究进展", 《华南农业大学学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161305A (zh) * 2021-04-02 2022-10-11 上海科技大学 一种包括双碱基编辑器的融合蛋白及其制备方法和应用
CN115161305B (zh) * 2021-04-02 2023-05-12 上海科技大学 一种包括双碱基编辑器的融合蛋白及其制备方法和应用
CN113201517A (zh) * 2021-05-12 2021-08-03 广州大学 一种胞嘧啶单碱基编辑器工具及其应用
CN113201517B (zh) * 2021-05-12 2022-11-01 广州大学 一种胞嘧啶单碱基编辑器工具及其应用
CN114058639A (zh) * 2021-10-29 2022-02-18 中国种子集团有限公司 利用单碱基基因编辑技术突变OsWaxy基因改良水稻直链淀粉含量的方法
CN114058639B (zh) * 2021-10-29 2023-11-07 中国种子集团有限公司 利用单碱基基因编辑技术突变OsWaxy基因改良水稻直链淀粉含量的方法
CN114686456A (zh) * 2022-05-10 2022-07-01 中山大学 基于双分子脱氨酶互补的碱基编辑系统及其应用
WO2023216415A1 (zh) * 2022-05-10 2023-11-16 中山大学 基于双分子脱氨酶互补的碱基编辑系统及其应用
CN117659210A (zh) * 2023-11-30 2024-03-08 华南农业大学 一种用作植物双碱基编辑器的重组融合蛋白及其应用

Also Published As

Publication number Publication date
CN112266420B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN112266420B (zh) 一种植物高效胞嘧啶单碱基编辑器及其构建与应用
CN110526993B (zh) 一种用于基因编辑的核酸构建物
CN110157726B (zh) 植物基因组定点替换的方法
CN112852791B (zh) 腺嘌呤碱基编辑器及其相关生物材料与应用
CN107012164A (zh) CRISPR/Cpf1植物基因组定向修饰功能单元、包含该功能单元的载体及其应用
CN110527695B (zh) 一种用于基因定点突变的核酸构建物
WO2018098935A1 (zh) 一种用于植物基因组定点碱基替换的载体
CN113717960B (zh) 一种新Cas9蛋白、CRISPR-Cas9基因组定向编辑载体及基因组编辑方法
EP4116426A1 (en) Multiplex genome editing method and system
CN114524879B (zh) 一种高效的植物广靶向腺嘌呤单碱基编辑器及其构建与应用
CN113151229A (zh) 胞嘧啶脱氨酶及包含该酶的胞嘧啶编辑器
Wang et al. Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide
CN110527708A (zh) 一种区分dna中5-甲基化胞嘧啶和5-羟甲基化胞嘧啶的方法
EP1539945B1 (en) Recombinant type ii restriction endonucleases, mmei and related endonucleases and methods for producing the same
CN114686456B (zh) 基于双分子脱氨酶互补的碱基编辑系统及其应用
CN115925969A (zh) 一种可实现dna小片段精准删除的腺嘌呤碱基编辑器及其构建与应用
CN115703842A (zh) 高效率高精度的胞嘧啶c到鸟嘌呤g转变的碱基编辑器
CN111019946B (zh) 一种短小型小核rna启动子及其构建方法和在基因组编辑中的应用
WO2020177751A1 (zh) 一种用于基因编辑的核酸构建物
WO2021056302A1 (en) Methods and compositions for dna base editing
CN115851784B (zh) 一种利用Lbcpf1变体构建的植物胞嘧啶碱基编辑系统及其应用
CN115261363B (zh) Apobec3a的rna脱氨酶活性测定方法及rna高活性的apobec3a变体
WO2022188816A1 (zh) 改进的cg碱基编辑系统
CN117659210A (zh) 一种用作植物双碱基编辑器的重组融合蛋白及其应用
CN116064512A (zh) 一种改进的引导编辑系统及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant