CN112264006A - 一种多金属氧化态共存的纳米粉末的制备方法 - Google Patents

一种多金属氧化态共存的纳米粉末的制备方法 Download PDF

Info

Publication number
CN112264006A
CN112264006A CN202011226617.7A CN202011226617A CN112264006A CN 112264006 A CN112264006 A CN 112264006A CN 202011226617 A CN202011226617 A CN 202011226617A CN 112264006 A CN112264006 A CN 112264006A
Authority
CN
China
Prior art keywords
powder
equal
preparing
oxidation state
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011226617.7A
Other languages
English (en)
Inventor
朱正旺
赵博文
张海峰
张宏伟
李宏
付华萌
王爱民
李正坤
张龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202011226617.7A priority Critical patent/CN112264006A/zh
Publication of CN112264006A publication Critical patent/CN112264006A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)

Abstract

为了克服现有工业化多金属氧化态共存纳米粉末制备方法存在的缺点和局限性,本发明提供了一种高效简洁的多金属氧化态共存的纳米粉末制备方法,具体为:以气雾化法制备的二元或三元两种Zr基非晶合金粉末通过直接燃烧过程和高能球磨工艺制备而成;按原子百分比计,Zr基非晶合金化学成分为:二元体系:ZrxM100‑x,M代表Fe或Co,55≤x≤80;三元体系:ZrxCuyM’100‑x‑y,M’代表Fe、Co、Ni或Pd中的一种,55≤x≤75,15≤y≤35。本发明可以有效地调控前驱体成分进而控制所形成的各种氧化物的相对含量,满足不同化学反应的需求。制备所得纳米粉体颗粒尺寸均一、不易团聚、稳定性强、催化活性高、选择性好、作为催化剂不易失活,可良好地应用于化学催化和新材料研发等领域。

Description

一种多金属氧化态共存的纳米粉末的制备方法
技术领域
本发明属于金属氧化物粉末的制备技术领域,特别提供了一种金属单质氧化态和金属氧化态共混的纳米粉末的制备方法。
背景技术
纳米材料是迄今为止最具有应用价值的新型材料之一。纳米材料由于表面与界面效应、小尺寸效应、量子尺寸效应和宏观隧道效应等不同寻常的物理化学特性的存在,广泛应用于化工、环保、电子、生物、医药、催化、陶瓷等众多领域。尤其是金属氧化物纳米材料通常作为催化剂的重要组成部分,对其研究和应用得到广泛关注。然而金属氧化物纳米材料研究和应用的关键在于高质量高性能高效率的纳米材料的制备方法,金属氧化物纳米材料的制备方法主要可以分固相法、气相法和液相法三大类。固相法是运用复分解原理,其工艺简单,安全可靠,成本低且污染少,但容易引入杂质,纯度低,分布不均匀,形貌不易控制,易团聚。气相法利用金属在气态情况下发生化学反应,该方法制得的粉末纯度高,团聚少,尺寸小,但成本高并且污染严重。液相法是溶液为介质合成纳米材料的方法,水热法是液相法中最为流行的有效制备金属氧化物纳米材料的方法,该方法成本低,操作简单,纳米颗粒纯度高,分散性好,尺寸可控,但是在复杂的纳米金属氧化的制备和规模化制备技术等方面仍面临着艰巨的挑战。
本发明所述非晶合金直接燃烧法为金属氧化物纳米粉末的制备提供了一条简单、绿色、有效的合成路线,能够实现多种金属氧化物混合和多元素掺杂氧化物纳米粉末催化剂的高效制备。
发明内容
为了克服现有工业化多金属氧化态共存纳米粉末制备方法存在的缺点和局限性,本发明提供了一种高效简洁的制备方法。
本发明技术方案如下:
一种多金属氧化态共存的纳米粉末的制备方法,其特征在于:以气雾化法制备的二元或三元两种Zr基非晶合金粉末,通过直接燃烧过程和高能球磨工艺制备出多金属氧化态共存的纳米粉末;
按原子百分比计,Zr基非晶合金化学成分为:
二元体系:ZrxM100-x
其中,M代表Fe或Co,55≤x≤80;
三元体系:ZrxCuyM’100-x-y
其中,M’代表Fe、Co、Ni或Pd中的一种,55≤x≤75,15≤y≤35。
本发明所述多金属氧化态共存的纳米粉末的制备方法,其特征在于:将不同成分的合金通过气雾化法制备成非晶粉末,并使其在空气气氛下发生燃烧反应,然后将燃烧所得氧化产物研磨至200目以下,并置于行星式球磨机中进行高能球磨得到最终的混合粉体;
其中,雾化制粉参数:喷粉气体流量:0.35~0.65m3/h;球磨参数:球料比:10:1~50:1,转速:200~450rpm/min,球磨时间:1~10h。
进一步优选为:雾化制粉参数:喷粉气体流量:0.4~0.6m3/h;球磨参数:球料比:15:1~25:1,转速:280~320rpm/min,球磨时间:2~5h。
本发明选取纯度大于99.5%的各合金原材料,按照设计好的化学成分原子百分比进行配制进行气雾化制备非晶粉末。
本发明的有益效果为:
(1)本发明利用非晶合金作为前驱体,采用空气气温燃烧过程和高能球磨工艺制备多种金属氧化物共存的纳米粉体,可以有效地调控前驱体成分进而控制所形成的各种氧化物的相对含量,满足不同化学反应的需求。
(2)本发明所述制备方法具有工艺流程简便,生产成本低,生产效率高,技术成熟,无需大量的资金,易于实现产业化等优点。
(3)采用本发明所述方法制备得到的纳米粉末具有颗粒尺寸均一、不易团聚、稳定性强、催化活性高、选择性好、作为催化剂不易失活等特点。可良好地应用于化学催化和新材料研发等领域,例如高效催化降解反应、光电催化二氧化碳制甲醇反应、生物质催化转化等一些反应。
附图说明
图1是分别由实施例1和实施例6实验过程中得到的OP和NP实物图;
图2是由实施例1中研磨后所制氧化物粉末OP的XRD曲线;
图3是由实施例1所制多金属氧化态纳米粉末NP的TEM曲线;
图4是由实施例1中研磨工艺后所制氧化物粉末OP的XPS分析;
图5是由实施例1所制多金属氧化态纳米粉末NP的XPS分析;
图6是由实施例2所制多金属氧化态纳米粉末NP的XPS分析;
图7是由实施例6-7中研磨工艺后所制氧化物粉末OP的XRD曲线。
具体实施方式
下面结合实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1-7
由Zr基非晶合金制备多金属氧化态纳米粉末的方法包括如下步骤:
(1)按照设计好的化学成分原子百分比进行配制合金成分(纯度大于99.5%的合金原材料),将配制好的合金成分放入到真空电弧熔炼炉内,预抽真空至3.0×10-3Pa后,迅速充入氩气保护气,然后利用电弧加热将各种原料熔炼均匀得到合金锭;
(2)将步骤(1)熔炼均匀的母合金切割成大小适中的小块合金锭放入气雾化坩埚内,控制气体流量为0.1m3/h,保护母合金融化过程中不被氧化,同时通过气压阀控制体系的气压达到气雾化压力值0.15MPa,然后利用感应加热将合金锭融化,迅速加大进入气雾化坩埚气体流量至0.4~0.6m3/h进而得到非晶粉末,所得非晶粉末通过连续加热反应器使非晶粉末发生类燃烧反应,得到氧化复合物粉末并研磨至200目以下,记为OP。
(3)将步骤(2)所得的氧化物复合粉末置于行星式球磨机中进行高能球磨操作得到纳米粉末,记为NP。球磨参数:球料比:15:1~25:1,转速:280~320rpm/min,球磨时间:2~5h。
各实施例所述Zr基非晶合金的化学成分元素配比详见表1。
各实施例由Zr基非晶合金制备的纳米粉末中氧化物的种类详见表2。
表1 Zr基非晶合金的化学成分元素比例
Figure BDA0002763808610000051
表2纳米粉末中氧化物的种类
各例 合金体系 氧化物种类
1 Zr<sub>65</sub>Co<sub>35</sub> ZrO<sub>2</sub>、CoO
2 Zr<sub>76</sub>Fe<sub>24</sub> ZrO<sub>2</sub>、Fe<sub>2</sub>O<sub>3</sub>
3 Zr<sub>70</sub>Cu<sub>20</sub>Fe<sub>10</sub> ZrO<sub>2</sub>、Cu<sub>2</sub>O、Fe<sub>2</sub>O<sub>3</sub>
4 Zr<sub>70</sub>Cu<sub>20</sub>Co<sub>10</sub> ZrO<sub>2</sub>、Cu<sub>2</sub>O、CoO
5 Zr<sub>70</sub>Cu<sub>20</sub>Ni<sub>10</sub> ZrO<sub>2</sub>、Cu<sub>2</sub>O、NiO
6 Zr<sub>65</sub>Cu<sub>25</sub>Pd<sub>10</sub> ZrO<sub>2</sub>、Cu<sub>2</sub>O、Pd<sub>2</sub>O
7 Zr<sub>70</sub>Cu<sub>23</sub>Pd<sub>7</sub> ZrO<sub>2</sub>、Cu<sub>2</sub>O、Pd<sub>2</sub>O
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种多金属氧化态共存的纳米粉末的制备方法,其特征在于:以气雾化法制备的二元或三元两种Zr基非晶合金粉末通过直接燃烧过程和高能球磨工艺制备出多金属氧化态共存的纳米粉末;
按原子百分比计,Zr基非晶合金化学成分为:
二元体系:ZrxM100-x
其中,M代表Fe或Co,55≤x≤80;
三元体系:ZrxCuyM’100-x-y
其中,M’代表Fe、Co、Ni或Pd中的一种,55≤x≤75,15≤y≤35。
2.按照权利要求1所述多金属氧化态共存的纳米粉末的制备方法,其特征在于:将不同成分的合金通过气雾化法制备成非晶粉末,并使其在空气气氛下发生燃烧反应,然后将燃烧所得氧化产物研磨至200目以下,并置于行星式球磨机中进行高能球磨得到最终的混合粉体;
雾化制粉参数:喷粉气体流量:0.35~0.65m3/h;球磨参数:球料比:10:1~50:1,转速:200~450rpm/min,球磨时间:1~10h。
3.按照权利要求1或2所述多金属氧化态共存的纳米粉末的制备方法,其特征在于:雾化制粉参数:喷粉气体流量:0.4~0.6m3/h;球磨参数:球料比:15:1~25:1,转速:280~320rpm/min,球磨时间:2~5h。
4.按照权利要求1所述多金属氧化态共存的纳米粉末的制备方法,其特征在于:选取纯度大于99.5%的各合金原材料,按照设计好的化学成分原子百分比进行配制进行气雾化制备非晶粉末。
5.一种采用权利要求1所述方法制备得到的多金属氧化态共存的纳米粉末的应用,其特征在于:应用于化学催化和新材料研发领域。
6.按照权利要求5所述应用,其特征在于:所述化学催化为高效催化降解反应、光电催化二氧化碳制甲醇反应、生物质催化转化反应。
CN202011226617.7A 2020-11-06 2020-11-06 一种多金属氧化态共存的纳米粉末的制备方法 Pending CN112264006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011226617.7A CN112264006A (zh) 2020-11-06 2020-11-06 一种多金属氧化态共存的纳米粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011226617.7A CN112264006A (zh) 2020-11-06 2020-11-06 一种多金属氧化态共存的纳米粉末的制备方法

Publications (1)

Publication Number Publication Date
CN112264006A true CN112264006A (zh) 2021-01-26

Family

ID=74345112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011226617.7A Pending CN112264006A (zh) 2020-11-06 2020-11-06 一种多金属氧化态共存的纳米粉末的制备方法

Country Status (1)

Country Link
CN (1) CN112264006A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177198A2 (en) * 1984-09-07 1986-04-09 THE STATE OF JAPAN, as Represented by the DIRECTOR GENERAL of the AGENCY of INDUSTRIAL SCIENCE and TECHNOLOGY A method for the preparation of an amorphous metal oxide composite, and amorphous metal oxide composites, including catalysts, prepared thereby
CN102925824A (zh) * 2012-11-23 2013-02-13 北京科技大学 一种锆基非晶合金及其粉体和大尺寸块体的制备方法
CN104445356A (zh) * 2014-10-30 2015-03-25 东南大学 含铜金属复合氧化物光催化材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177198A2 (en) * 1984-09-07 1986-04-09 THE STATE OF JAPAN, as Represented by the DIRECTOR GENERAL of the AGENCY of INDUSTRIAL SCIENCE and TECHNOLOGY A method for the preparation of an amorphous metal oxide composite, and amorphous metal oxide composites, including catalysts, prepared thereby
CN102925824A (zh) * 2012-11-23 2013-02-13 北京科技大学 一种锆基非晶合金及其粉体和大尺寸块体的制备方法
CN104445356A (zh) * 2014-10-30 2015-03-25 东南大学 含铜金属复合氧化物光催化材料的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
东北工学院金相教研室: "《有色合金及其热处理》", 30 September 1961, 中国工业出版社 *
刘海顺等: "《非晶纳米晶合金及其软磁性能研究》", 30 November 2009, 中国矿业大学出版社 *
张而耕: "《机械工程材料》", 31 October 2017, 上海科学技术出版社 *
扎依莫夫斯基等: "《核动力用锆合金》", 3 September 1988, 原子能出版社 *
杜卫民: "《纳米材料化学的理论与工程应用研究》", 31 May 2018, 电子科技大学出版社 *
柳云骐等: "《材料化学》", 28 February 2013, 中国石油大学出版社 *
黄伯云等: "《中国战略性新兴产业:新材料 稀土储氢材料》", 30 April 2017, 中国铁道出版社 *

Similar Documents

Publication Publication Date Title
CN110639548B (zh) 一种高效催化苯氧化的单原子钯钴双金属纳米催化剂
CN107790133B (zh) 一种钴铁基光催化剂及其制备与应用
CN104307530B (zh) 一种氧化石墨烯基稀土复合物催化材料及其制备方法
CN112170854B (zh) 一种制备纳米球形氧化物弥散强化相的方法
CN104651703A (zh) 一种制备氧化物弥散强化铁基合金的方法
CN103924111A (zh) 一种硬质合金纳米粒径粉末与高性能烧结块体材料的制备方法
CN102078965A (zh) 一种碳化钨-钴纳米粉体的制备方法
CN102127714A (zh) 一种纳米团簇强化铁基高温合金
CN114042468A (zh) 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用
CN104645991B (zh) 混合氧化物掺杂的纳米铜钴合金催化剂的制备和应用
Li et al. Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation
Guo et al. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications
Do et al. Effect of thermal annealing on the properties of Corich core–Ptrich shell/C oxygen reduction electrocatalyst
CN104815657A (zh) 用于苯酚羟基化制邻苯二酚和对苯二酚催化剂的制备方法
Zhang et al. A novel Ni-Co alloy catalyst derived from spinel
CN101786171B (zh) 八面体镍纳微材料的制备方法
CN112589090B (zh) 一种单质态和氧化态共混的金属纳米粉末的制备方法
CN112264006A (zh) 一种多金属氧化态共存的纳米粉末的制备方法
CN113634256A (zh) 一种多维度微纳非贵金属复合催化剂及其制备和应用
CN110791771B (zh) 一体化过渡金属系析氧催化材料及制备方法
CN104607190B (zh) 用于费托合成的单分散过渡金属纳米催化剂及其制备方法和应用
CN111872414A (zh) 一种微纳米预合金粉的制备方法
CN111112628A (zh) 一种采用切削废料制备细粒度低氧钛及钛合金粉末的方法
CN112387976B (zh) 一种燃料电池用易活化RE-Ti-Fe合金及其制备方法
CN115889760A (zh) 一种快速制备碳纳米管包覆超细高熵合金复合粉体的装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination