CN112263711B - 促进骨缺损修复的仿生三维支架及其制备方法 - Google Patents
促进骨缺损修复的仿生三维支架及其制备方法 Download PDFInfo
- Publication number
- CN112263711B CN112263711B CN202010987861.9A CN202010987861A CN112263711B CN 112263711 B CN112263711 B CN 112263711B CN 202010987861 A CN202010987861 A CN 202010987861A CN 112263711 B CN112263711 B CN 112263711B
- Authority
- CN
- China
- Prior art keywords
- scaffold
- dimensional
- bionic
- bone
- nanofiber membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2/2846—Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2835—Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/08—Methods for forming porous structures using a negative form which is filled and then removed by pyrolysis or dissolution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Landscapes
- Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
本发明公开了一种促进骨缺损修复的仿生三维支架及其制备方法。所述支架由两个单元复合而成,其一为内层支架,是一种反蛋白石结构的三维多孔支架,呈柱状结构,直径和高度可根据骨直径和缺损部位调整;其二为外层支架,是一种静电纺丝纳米纤维薄膜,包裹于内层支架外部,薄膜尺寸可根据需要进行裁剪。本发明的仿生三维支架模拟骨构造,外层纳米纤维多层结构仿生骨皮质,内层多孔支架可允许骨髓通过,为细胞黏附提供适宜的场所,可促进骨的修复和功能重建。本发明通过控制内层支架的尺寸和外层薄膜的大小,可以灵活调整仿生三维支架的尺寸,满足不同长度的骨缺损的需要。
Description
技术领域
本发明涉及一种促进骨缺损修复的仿生三维支架及其制备方法,属于生物组织工程技术领域。
背景技术
骨有一定的再生和修复能力,但是很多情况下仅依靠骨自身的再生能力无法完成修复,如外部因素造成的骨不连、感染或骨肿瘤切除后的骨缺损、整形外科手术等。近年来,自然灾害频发引发的骨创伤,车辆事故剧增引发的骨创伤,日益严重的老龄化引发的骨缺失等使得骨修复需求日益迫切。骨移植已经成为世界排名第二位的组织移植,每年移植治疗骨缺损的人数高达370万。
自体骨移植被视为骨缺损治疗的金标准,但是存在来源有限、二次创伤等诸多的局限;异体骨和异种骨移植存在排异反应等问题。目前市场上已经存在很多人工骨产品,如生物陶瓷骨填充物、胶原复合羟基磷灰石人工骨等,但是目前的人工骨产品结构和功能单一,大部分产品只能实现填充及骨引导功能。
组织工程化的骨替代物以块状多孔支架最为常见,制备多孔支架的方法很多,如无机物(羟基磷灰石,磷酸钙等)烧结、气体发泡、冷冻干燥、溶剂流延颗粒沥滤等。但是由于制备工艺限制,这些方法获得的多孔支架孔隙率和联通性均不可控,不同批次之间差距较大。专利号ZL201110037596.9及ZL201210400644.0的文献中提出了一种基于静电纺丝纳米纤维的三维支架制备方法,是通过螺旋状卷裹纳米纤维膜形成柱状仿生骨修复支架;WO2012/174837A1提出了一种具有片层结构的仿生骨修复支架体,也是将片层材料由内向外连续紧密卷裹,形成截面为螺旋状的柱体结构。上述三个文献提出的支架均类似骨的哈弗系统,具有高度的仿生效果。但是受卷裹工艺限制,各片层间间距很难控制,导致片层间隙不利于骨髓的贯通以及细胞的黏附增殖。
发明内容
本发明的目的在于提供一种促进骨缺损修复的仿生三维支架及其制备方法。该仿生三维支架在大片段骨缺损的修复中具有很好的效果。
实现本发明目的的技术方案如下:
促进骨缺损修复的仿生三维支架,由外层纳米纤维膜和内层反蛋白石结构的三维多孔支架复合而成,此仿生三维支架的大小可根据骨缺损部位及尺寸相应调整。此仿生三维支架内层为多孔支架,孔隙连通率为100%,有助于联通骨缺损部位的两个断端的骨髓腔,并能够吸收骨髓,有助于骨髓间充质干细胞的细胞黏附以及血管神经长入,根据需要调整多孔支架的个数;外层为纳米纤维膜,此支架可以模拟细胞外基质,有利于细胞黏附增殖,此膜状纤维的大小可以根据需要任意裁剪,包裹于多孔支架外部,防止多孔支架之间移位甚至散落。
上述构成仿生三维支架的外层纳米纤维膜由静电纺丝法获得,其材料通常为生物医用可降解材料,包括目前已经报道以及使用的聚乳酸(PLA,PLLA)、聚乳酸聚乙醇酸(PLGA)和聚羟基丁酸戊酸共聚酯(PHBV)等中的一种或两种以上的复合物。为了增强其骨诱导效果,可以掺杂或表面修饰生物陶瓷材料(具体方法可参照ACS Appl.Mater.Interfaces2013,5,319-330;J Mech.Behav.Biomed.Mater,2008,1(3),252-260),如羟基磷灰石(nHA)、磷酸三钙等含钙或硅的化合物。此纳米纤维膜的厚度为0.01-0.1mm,包裹层数为3-10层。
上述构成仿生三维支架的内层多孔支架具有反蛋白石结构,由溶剂流延颗粒沥滤法获得,其中颗粒为明胶微球,直径为300-900μm。首先由微流控法制备明胶微球,选择适宜的模具使之整齐排列,高温烘烤后形成明胶模板,然后将高分子材料溶解于有机溶剂中,灌注于明胶微球模板上,经冷冻干燥去除有机溶剂,最后水浴法去除明胶微球,从而获得多孔支架,其孔大小可控,孔间隙大小可控,孔隙率为100%,具有很好的重复性。此多孔支架的材料也应为生物医用可降解材料。
本发明所述的促进长骨缺损修复的仿生三维支架,还可以包含各种促进骨和血管再生的生长因子,促进干细胞迁移归巢的趋化因子。这些成分包括但不限于骨形态发生蛋白、转化生长因子、成纤维细胞生长因子、血小板衍生生长因子、基质细胞衍生因子-1。这些因子可以根据需要单独或者联合使用。这些成分与仿生三维支架的结合包括但不限于物理吸附、共价修饰、负载于支架内部。具体方法可参照已有报道的方法,如Biomacromolecules2011,12,551-559;Colloids and Surfaces B:Biointerfaces2018,167,550–559等文献。
根据不同情况下的使用需要,构成仿生三维支架的内层多孔支架可以做成标准的圆柱状颗粒,其直径为0.5-5cm,高度为0.5-5cm,直径和高度可根据不同的骨缺损部位以及缺损大小进行选择。
根据不同情况下的使用需要,构成仿生三维支架的外层静电纺丝纳米纤维膜长度为1-50cm,宽度为1-20cm,可根据不同的骨缺损部位以及缺损大小进行选择。
本发明所述的促进骨缺损修复的仿生三维支架,由3-5个圆柱状多孔支架竖向排列,纳米纤维膜根据需要裁剪成长方形,连续紧密的包裹于多孔支架外部,形成仿生三维支架(如附图1所示)。如果骨缺损部位直径较大,可以根据需要采用两个或者多个仿生三维支架,沿长度方向平行排列,外围用纳米纤维膜再次紧密包裹形成组合体;如果缺损部位长度较大,可以将两个或者多个仿生三维支架连续排列植入。具体使用方法可视临床需要进行调整。
具体地,在本发明的具体实施方式中,采用PLGA静电纺丝纳米纤维膜作为外层,具有反蛋白石结构的PLGA多孔支架作为内层;或PHBV静电纺丝纳米纤维膜作为外层,具有反蛋白石结构的PLGA多孔支架作为内层;或表面修饰羟基磷灰石的PLGA静电纺丝纳米纤维膜作为外层,具有反蛋白石结构的PLGA多孔支架作为内层;或PLGA静电纺丝纳米纤维膜作为外层,表面修饰有VEGF的具有反蛋白石结构的PLGA多孔支架作为内层。
与现有技术相比,本发明具有以下优点:
(1)本发明选用可降解生物医用材料,比传统的自体骨和异体/种骨更安全,材料用量不受限制。
(2)本发明由外层纳米纤维膜和内层反蛋白石结构的三维多孔支架复合而成。纳米纤维膜作为外层,可以模拟细胞外基质,有利于细胞黏附增殖,包裹于多孔支架外部,能够防止多孔支架之间移位甚至散落。具有反蛋白石结构的三维多孔支架作为内层支架,孔径均一,孔间隙均一,尺寸可控,可重复性高,孔径和孔间隙大小有利于血管长入,加速骨修复,并且孔隙联通性为100%,可以使骨髓更易贯通并充满其中,有利于自身体内干细胞的归巢、黏附、增殖以及分化。本发明通过内层多孔支架和外层纳米纤维膜的协同促进作用,显著提高了支架植入体内后骨缺损修复的速度和程度。
(3)本发明的仿生三维支架制备方法简单易行,纳米纤维膜以及多孔支架的大小尺寸可以根据需要灵活方便的进行调整。
附图说明
图1为仿生三维支架的制备方法示意图。
图2为仿生三维支架外层-静电纺丝纳米纤维膜扫描电镜图,插图为直径分布。
图3为仿生三维支架内层-多孔支架照片。
图4为本发明仿生三维支架的实物图。
图5为各时间点兔桡骨1.5cm缺损修复X-Ray图,A1-4:空白组;B1-4:纳米纤维组;C1-4:多孔支架组;D1-4:本发明PLGA仿生三维支架组。A1-D1:术后4周;A2-D2:术后8周;A3-D3:术后12周;A4-D4:术后16周。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例1
1.PLGA静电纺丝纳米纤维的获得:将3g PLGA溶解于100ml氯仿(CHCl3)与N,N-二甲基甲酰胺(DMF)的混合溶液中(体积比为3:1)获得透明溶液,将其装入注射器中,注射器针头为平口,内径为0.5mm,注射器固定在推进泵上,推进速度设为1.5ml/h,高压直流电源正极接注射器针头,负极接平板或滚筒收集器,电压为15kV,收集距离为25cm,时间为1h,30℃真空干燥24h得到PLGA静电纺丝纳米纤维膜(附图2)。(具体方法可参照Colloids andSurfaces B:Biointerfaces2018,167,550-559)
2.PLGA多孔支架的获得:用微流控装置收集明胶微球,微流控条件如下:明胶溶液浓度为10%,流速为3ml/h,有机相(甲苯+3wt%Span80)流速为18ml/h。将收集的明胶微球装入直径和高度为0.5cm的圆柱状模具中,轻微震动模具使其自组装排列,放入70℃加热1h,使微球排列粘结成型后恢复至室温取出。将PLGA溶解于1,4-二氧六环(又名二恶烷)中,浓度为10%(wt/v,g/mL),将溶液自上方滴加至明胶模板,使PLGA充满支架孔隙后迅速置于-20℃环境冷却4h,转移至冷冻干燥机中过夜去除有机溶剂1,4-二氧六环。将明胶模板/PLGA复合物,置于45℃水浴中磁力搅拌过夜,溶解去除明胶微球,获得PLGA三维多孔支架(附图3)。
3.仿生三维支架的获得:将3-4个PLGA多孔支架纵向排列成一组,获得直径为0.5cm高度为1.5cm的圆柱体;将PLGA静电纺丝纳米纤维膜裁剪成1.5cm宽,8cm长的长方形;沿短边方向螺旋状将圆柱体紧密包裹其中,从而获得仿生三维支架。(附图1为制备示意图,附图4为实物图)。
实施例2
与实施例1基本相同,不同之处在于将外层PLGA静电纺丝膜换成PHBV静电纺丝膜。将0.9g PHBV与0.1g聚氧乙烯(PEO)溶解于50ml三氟乙醇(TFE)中;将溶液加入注射器中,注射器针头为平口,内径为0.5mm,注射器固定在推进泵上,推进速度设为5ml/h,高压直流电源正极接注射器针头,负极接收集器,电压为12kV,收集距离为25cm,2h后将得到的PHBV纳米纤维膜取下,30℃真空干燥24h得到PHBV静电纺丝纤维膜。(具体方法可参照专利ZL201110037596.9)
实施例3
与实施例1基本相同,不同之处在于将外层PLGA纳米纤维掺杂纳米级羟基磷灰石(nHA)。将3g PLGA溶解于75ml CHCl3中,0.3g nHA超声分散于DMF中,然后将二者混合搅拌均匀,作为静电纺丝溶液,在与实施例1相同条件下获得PLGA/nHA纳米纤维。(具体方法可参照ACS Appl.Mater.Interfaces 2013,5,319-330)
实施例4
与实施例1基本相同,不同之处在于内层支架修饰内皮细胞生长因子(VEGF)(具体方法参照Colloids and Surfaces B:Biointerfaces2018,167,550-559)。将实施例1中获得的PLGA多孔支架进行氨等离子体处理(50mbar氨气环境,处理5min),75%酒精浸泡30min后取出晾干;将1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基硫代琥珀酰亚胺(Sulfo-NHS)和肝素(Heparin)分别以2mM、5mM和1mg/ml的浓度混合15min后,与氨等离子体处理的PLGA多孔支架室温孵育2h;用磷酸盐缓冲液(PBS)洗3遍后,浸泡于100ng/ml的VEGF溶液中4℃过夜,即获得VEGF修饰的PLGA多孔支架。
实施例5
与实施例4基本相同,不同之处在于将所修饰的VEGF换成基质细胞衍生因子-1(SDF-1)。
具体通过试验例来说明本发明的有益效果。
试验例动物实验
材料:按照实施例1制备仿生三维支架用于本试验例,单纯多孔支架和单纯纳米纤维支架作为对照。
实验:制作兔桡骨缺损模型(截取桡骨中部1.5cm长度),将仿生三维支架、多孔支架、以及纳米纤维支架分别植入缺损区域,逐层缝合伤口;空白对照组只制作缺损,不植入任何材料。术后4、8、12及16周分别用X-Ray拍照观察骨愈合情况。
结果如附图5所示,A1-4为空白对照组,B1-4为单纯纳米纤维组,C1-4为单纯多孔支架组,D1-4为仿生三维支架组;A1-D1为各组植入4周后X-Ray照片,A2-D2为8周,A3-D3为12周,A4-D4为16周。
根据结果可见,空白对照组(A组)两个断端随时间增加逐渐封闭,骨缺损没有修复;植入支架组(B、C、D组)均有不同程度的修复。相较于多孔支架组(B组)和纳米纤维组(C组),仿生三维支架组(D组)骨修复速度最快,在第八周(图D2)新生钙质已经完全连接两个断端,在第12周(图D3)已经完成骨重塑且实现了髓腔再通。
Claims (5)
1.促进骨缺损修复的仿生三维支架,其特征在于,由外层纳米纤维膜和内层反蛋白石结构的三维多孔支架复合而成,所述的外层纳米纤维膜将内层反蛋白石结构的三维多孔支架包裹在中间,形成圆柱状结构;所述的外层纳米纤维膜由静电纺丝法获得,原料为PLA、PLGA和PHBV中的一种或两种以上的生物医用可降解高分子材料复合物,所述的外层纳米纤维膜掺杂或表面修饰羟基磷灰石或磷酸三钙,所述的外层纳米纤维膜的厚度为0.01-0.1mm,包裹层数为3-10层;所述的内层反蛋白石结构的三维多孔支架由溶剂流延颗粒沥滤法获得,其中颗粒为明胶微球,直径为300-900μm,原料为PLA、PLGA和PHBV中的一种或两种以上的生物医用可降解高分子材料复合物。
2.根据权利要求1所述的仿生三维支架,其特征在于,所述的内层反蛋白石结构的三维多孔支架的具体制备方法如下:首先由微流控法制备明胶微球,使用模具使之整齐排列,加热烘烤后形成明胶模板,然后将生物医用可降解高分子材料溶解于有机溶剂中,灌注于明胶微球模板上,经冷冻干燥去除有机溶剂,最后水浴法去除明胶微球,获得多孔支架。
3.根据权利要求1所述的仿生三维支架,其特征在于,包含骨形态发生蛋白、转化生长因子、成纤维细胞生长因子、血小板衍生生长因子和基质细胞衍生因子-1中的一种或多种;所述因子与仿生三维支架的结合方式为物理吸附、共价修饰或负载于支架内部。
4.根据权利要求1所述的仿生三维支架,其特征在于,所述的内层反蛋白石结构的三维多孔支架为圆柱状,直径为0.5-5cm,高度为0.5-5cm;所述的外层纳米纤维膜长度为1-50cm,宽度为1-20cm。
5.根据权利要求1所述的仿生三维支架,其特征在于,表面修饰羟基磷灰石的PLGA静电纺丝纳米纤维膜作为外层,具有反蛋白石结构的PLGA多孔支架作为内层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010987861.9A CN112263711B (zh) | 2020-09-18 | 2020-09-18 | 促进骨缺损修复的仿生三维支架及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010987861.9A CN112263711B (zh) | 2020-09-18 | 2020-09-18 | 促进骨缺损修复的仿生三维支架及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112263711A CN112263711A (zh) | 2021-01-26 |
CN112263711B true CN112263711B (zh) | 2022-10-21 |
Family
ID=74349624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010987861.9A Active CN112263711B (zh) | 2020-09-18 | 2020-09-18 | 促进骨缺损修复的仿生三维支架及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112263711B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115006590B (zh) * | 2022-06-07 | 2023-04-14 | 武汉理工大学 | 一种用于骨肉瘤术后重建的双载药缓释骨修复支架 |
CN115068687B (zh) * | 2022-07-08 | 2023-12-12 | 重庆科技学院 | 梯度纳/微纤维支架及其制备方法与应用 |
CN115400265B (zh) * | 2022-08-05 | 2024-06-21 | 河北医科大学口腔医院 | 仿生化梯度支架及其制备方法 |
CN115845136B (zh) * | 2022-12-15 | 2024-01-26 | 南京市第一医院 | 一种近场直写静电纺丝3d仿生腱骨修复支架及其制备方法 |
CN116173310A (zh) * | 2023-02-24 | 2023-05-30 | 苏州大学 | 一种具有高度有序互连多孔结构的高分子聚合物/羟基磷灰石复合支架及其制备方法与应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007086306A1 (ja) * | 2006-01-30 | 2007-08-02 | Kinki University | 生分解性逆オパール構造体、その製造方法及び使用方法、並びに該生分解性逆オパール構造体からなる医療用インプラント |
CN102166372B (zh) * | 2011-02-14 | 2013-09-04 | 东南大学 | 促进骨缺损修复的复合纳米纤维支架的制备方法 |
CN102973981B (zh) * | 2012-10-19 | 2015-07-29 | 东南大学 | 促进骨缺损修复的可降解三维纤维支架的制备方法 |
CN106596374B (zh) * | 2016-12-19 | 2019-01-18 | 徐州医科大学 | 一种组织工程多孔支架的透气性检测装置及测定方法 |
CN108553685B (zh) * | 2018-04-09 | 2020-12-04 | 徐州医科大学 | 人工肺泡的制备方法 |
-
2020
- 2020-09-18 CN CN202010987861.9A patent/CN112263711B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112263711A (zh) | 2021-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112263711B (zh) | 促进骨缺损修复的仿生三维支架及其制备方法 | |
EP1925325B1 (en) | Implantable biodegradable devices for musculoskeletal repair or regeneration | |
Zhang et al. | Electrospun silk biomaterial scaffolds for regenerative medicine | |
Li et al. | Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo | |
Schieker et al. | Biomaterials as scaffold for bone tissue engineering | |
EP2662211A1 (en) | Silk biomaterials and methods of use thereof | |
US20020119179A1 (en) | Implantable biodegradable devices for musculoskeletal repair or regeneration | |
AU2002231017A1 (en) | Implantable biodegradable devices for musculoskeletal repair or regeneration | |
Dou et al. | A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone regeneration | |
CN103127548B (zh) | 促进神经缺损修复的人工神经导管的制备方法 | |
CN110665055B (zh) | 丝胶蛋白/纳米羟基磷灰石组织工程骨移植物及其制备方法和应用 | |
CN105688274A (zh) | 一种聚己内酯/明胶电纺复合支架的制备工艺 | |
Ortega et al. | Nanofibers and microfibers for osteochondral tissue engineering | |
Wang et al. | Polylactic acid scaffold with directional porous structure for large-segment bone repair | |
Huang et al. | Repair of bone defect in caprine tibia using a laminated scaffold with bone marrow stromal cells loaded poly (L‐lactic acid)/β‐tricalcium phosphate | |
WO2016094539A1 (en) | Three-dimensional scaffold for bone regeneration | |
Seidi¹ et al. | Protocols for biomaterial scaffold fabrication | |
US20240335586A1 (en) | Electrospun microfibrous porous stretchable membranes and the method of preparation thereof | |
US20220143271A1 (en) | Reinforced biocompatible scaffold | |
Liu et al. | Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement | |
Leena et al. | Nanofiber-integrated hydrogel as nanocomposites for tissue engineering | |
CN113577393A (zh) | 一种骨修复材料及其制备方法和应用 | |
Wu et al. | Electrospinning Techniques | |
CN110652381A (zh) | 骨软骨修复支架及其制备方法 | |
Shao et al. | Strong and tough β-TCP/PCL composite scaffolds with gradient structure for bone tissue engineering: Development and evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |