CN112257577A - 一种利用线性流形投影的微震信号重构方法和系统 - Google Patents

一种利用线性流形投影的微震信号重构方法和系统 Download PDF

Info

Publication number
CN112257577A
CN112257577A CN202011130050.3A CN202011130050A CN112257577A CN 112257577 A CN112257577 A CN 112257577A CN 202011130050 A CN202011130050 A CN 202011130050A CN 112257577 A CN112257577 A CN 112257577A
Authority
CN
China
Prior art keywords
signal sequence
sequence
signal
specifically
denoted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011130050.3A
Other languages
English (en)
Inventor
翟明岳
翁鸿彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202011130050.3A priority Critical patent/CN112257577A/zh
Publication of CN112257577A publication Critical patent/CN112257577A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

本发明的实施例公开一种利用线性流形投影的微震信号重构方法和系统,所述方法包括:步骤101,获取按时间顺序采集的信号序列S;步骤102,生成差分序列;步骤103,求取分段段数;步骤104,求取N个分段信号序列;步骤105,求取最佳逼近秩;步骤106,求取逼近矩阵;步骤107,求取重构后的信号序列。

Description

一种利用线性流形投影的微震信号重构方法和系统
技术领域
本发明涉及地学领域,尤其涉及一种微震信号重构方法和系统。
背景技术
水力压裂微震监测技术是近年来在低渗透率储层压裂、油藏驱动和水驱前缘等领域发展起来的一项重要新技术,也是页岩气开发的重要支撑技术。该项技术在邻井中布置多级三分量检波器排列,监测压裂井目的层段在水力压裂过程中所产生的微震事件,反演微震事件求取震源位置等参数,从而描述水力压裂过程中裂缝生长的几何形状及空间分布,实时提供水力压裂产生裂缝的长度、高度、宽度及方位,实现页岩气的工业化开发。水力压裂微震检测是当前页岩气开发领域科学研究的热点和难点。从社会和国家的需求角度考虑,开展微震监测系统方面的研究十分重要,具有重大的社会和经济价值。
微震监测系统中重要的一项工作是微震事件的定位。定位精度是影响微震监测系统应用效果的最为重要的因素,而微震事件定位的准确程度则主要依赖于波动初至(又可称为初至)读取的准确性等有关因素。但问题是,初至拾取并不如想象中的那般简单。受地面仪器采动以及地质构造的影响,岩石破裂形式十分复杂,继而产生各种形式和能量的微震波动,其形式可多达几十甚至上百种,不仅主频、延时和能量等方面有差异,而且在初至位置附近的波形形态差异巨大,这种波形特征的不统一为初至拾取到来了很大困难。进一步的研究还表明,微震震源机制也会影响初至点特征:硬岩剪切作用产生的微震波动大多能量大、主频较高、延时短以及最大峰值位置紧跟初始初至,这类波的初至点清晰、起跳延时短,拾取较为容易;但拉伸作用产生的微震波动大多能量小、主频低、延时长、起跳缓慢、能量分布较为均匀,这类波初至点处振幅较小,容易被干扰信号淹没,初至点的特征表现不一致,初至拾取并不容易;而软岩所产生的微震波动,能量分布集中、初始初至点模糊、分界线不明显,与硬岩有明显的不同,初至拾取也较为困难。同时,根据国外的研究发现,由于P波速度大于S波速度,很多算法想当然地认为初至波为P波,但事实可能更为复杂:初至可能是P波,也可能是S波,甚至还有可能是异常点(outliers)。根据研究,41%的初至为S波,10%的初至是outliers造成的。这些都给初至拾取带来了相当大的难度。
除了初至点特征复杂外,初至拾取还面临着另外一个更大的挑战:微震记录是海量数据。例如,2005年1月某试验区记录了近1万个微震事件。同时为了满足生产需求,微震监测系统需要一天24小时连续记录。不但如此,这些数据中有很大一部分都是人类或者机械活动所造成的噪声和干扰,与微震无关。文献更是将噪声分为三种基本类型:高频(>200Hz)噪声,由各种作业相关活动造成;低频噪声(<10Hz),通常是由远离记录地点的机器活动造成,以及工业电流(50Hz)。除此之外,微震信号本身也并不纯粹,例如我国学者窦林名教授等认为微震信号包括多种信号。
因此,如何从海量数据中识别微震事件、拾取初至,是微震数据处理的基础。与此形成对比的是,生产上多采取人工方法,费时费力且精度与可靠性差,拾取质量无法保证,也无法处理海量数据。初至自动拾取是解决方法之一,微震波动初至自动拾取是微震监测数据处理的关键技术之一,也是实现微震震源自动定位的技术难点。
发明内容
常见的微震事件检测方法中,判断阈值大小的确定较为随意,没有统一的准则,其普遍适用性存在很大的局限性,尤其是当信噪比较低时,算法的性能受到很大影响。
本发明的目的是提供一种利用线性流形投影的微震信号重构方法和系统,所提出的方法利用了微震信号与背景噪声在线性流形投影方面的差异,消除了背景噪声对事件检测性能的影响,提高了事件检测的精度。所提出的方法具有较好的鲁棒性,计算也较为简单。
为实现上述目的,本发明提供了如下方案:
一种利用线性流形投影的微震信号重构方法,包括:
步骤101获取按时间顺序采集的信号序列S;
步骤102生成差分序列,具体为:差分序列记为ΔS,所用生成公式为:
ΔS=[0,s2-s1,s3-s2,…,sN-sN-1]
s1为所述信号序列S的第1个元素,
s2为所述信号序列S的第2个元素,
s3为所述信号序列S的第3个元素,
sN-1为所述信号序列S的第N-1个元素,
sN为所述信号序列S的第N个元素,
N为所述信号序列S的长度;
步骤103求取分段段数,具体为:分段段数记为N0,所用求取公式为:
Figure BDA0002734856030000021
其中:
σ0为所述信号序列S的均方差,
||ΔS||F表示ΔS的Frobenus范数,
||S||F表示S的Frobenus范数,
σΔ为所述信号差分序列ΔS的均方差,
Figure BDA0002734856030000022
表示对
Figure BDA0002734856030000023
下取整;
步骤104求取N个分段信号序列,具体为:第n个分段信号序列记为gn,其第i个元素为
Figure BDA0002734856030000024
所用求取公式为:
Figure BDA0002734856030000025
其中:
Figure BDA0002734856030000026
为所述信号序列S的第|i+(n-1)M0|N个元素,
|i+(n-1)M0|N表示以N为模对i+(n-1)M0取余数,
Figure BDA0002734856030000031
为延迟长度,
Figure BDA0002734856030000032
表示对
Figure BDA0002734856030000033
上取整,
i=1,2,…,N为元素序号;
步骤105求取最佳逼近秩,具体为:最佳逼近秩记为Ropt,所用求取公式为:
Figure BDA0002734856030000034
其中:
Figure BDA0002734856030000035
为所述信号序列S的功率当量,
m0为所述信号序列S的均值,
si为所述信号序列S的第i个元素,
Figure BDA0002734856030000036
是矩阵
Figure BDA0002734856030000037
的第r个特征值,
r=1,2,…,N为特征值序号,
go为第k个分段信号序列,
k=1,2,…,N为求和参数;
步骤106求取逼近矩阵,具体为:逼近矩阵记为D,所用求取公式为:
Figure BDA0002734856030000038
其中:
o=1,2,…,Ropt为逼近特征值序号,
Figure BDA0002734856030000039
为矩阵
Figure BDA00027348560300000310
的第o个特征值,
go为第o个分段信号序列;
步骤107求取重构后的信号序列,具体为:
重构后的信号序列记为Snew,所用求取公式为:
Snew=DS。
一种利用线性流形投影的微震信号重构系统,包括:
模块201获取按时间顺序采集的信号序列S;
模块202生成差分序列,具体为:差分序列记为ΔS,所用生成公式为:
ΔS=[0,s2-s1,s3-s2,…,sN-sN-1]
s1为所述信号序列S的第1个元素,
s2为所述信号序列S的第2个元素,
s3为所述信号序列S的第3个元素,
sN-1为所述信号序列S的第N-1个元素,
sN为所述信号序列S的第N个元素,
N为所述信号序列S的长度;
模块203求取分段段数,具体为:分段段数记为N0,所用求取公式为:
Figure BDA0002734856030000041
其中:
σ0为所述信号序列S的均方差,
||ΔS||F表示ΔS的Frobenus范数,
||S||F表示S的Frobenus范数,
σΔ为所述信号差分序列ΔS的均方差,
Figure BDA0002734856030000042
表示对
Figure BDA0002734856030000043
下取整;
模块204求取N个分段信号序列,具体为:第n个分段信号序列记为gn,其第i个元素为
Figure BDA0002734856030000044
所用求取公式为:
Figure BDA0002734856030000045
其中:
Figure BDA00027348560300000410
为所述信号序列S的第|i+(n-1)M0|N个元素,
|i+(n-1)M0|N表示以N为模对i+(n-1)M0取余数,
Figure BDA0002734856030000046
为延迟长度,
Figure BDA0002734856030000047
表示对
Figure BDA0002734856030000048
上取整,
i=1,2,…,N为元素序号;
模块205求取最佳逼近秩,具体为:最佳逼近秩记为Ropt,所用求取公式为:
Figure BDA0002734856030000049
其中:
Figure BDA0002734856030000051
为所述信号序列S的功率当量,
m0为所述信号序列S的均值,
si为所述信号序列S的第i个元素,
Figure BDA0002734856030000052
是矩阵
Figure BDA0002734856030000053
的第r个特征值,
r=1,2,…,N为特征值序号,
go为第k个分段信号序列,
k=1,2,…,N为求和参数;
模块206求取逼近矩阵,具体为:逼近矩阵记为D,所用求取公式为:
Figure BDA0002734856030000054
其中:
o=1,2,…,Ropt为逼近特征值序号,
Figure BDA0002734856030000055
为矩阵
Figure BDA0002734856030000056
的第o个特征值,
go为第o个分段信号序列;
模块207求取重构后的信号序列,具体为:
重构后的信号序列记为Snew,所用求取公式为:
Snew=DS。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
常见的微震事件检测方法中,判断阈值大小的确定较为随意,没有统一的准则,其普遍适用性存在很大的局限性,尤其是当信噪比较低时,算法的性能受到很大影响。
本发明的目的是提供一种利用线性流形投影的微震信号重构方法和系统,所提出的方法利用了微震信号与背景噪声在线性流形投影方面的差异,消除了背景噪声对事件检测性能的影响,提高了事件检测的精度。所提出的方法具有较好的鲁棒性,计算也较为简单。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的方法流程示意图;
图2为本发明的系统流程示意图;
图3为本发明的具体实施案例流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1一种利用线性流形投影的微震信号重构方法的流程示意图
图1为本发明一种利用线性流形投影的微震信号重构方法的流程示意图。如图1所示,所述的一种利用线性流形投影的微震信号重构方法具体包括以下步骤:
步骤101获取按时间顺序采集的信号序列S;
步骤102生成差分序列,具体为:差分序列记为ΔS,所用生成公式为:
ΔS=[0,s2-s1,s3-s2,…,sN-sN-1]
s1为所述信号序列S的第1个元素,
s2为所述信号序列S的第2个元素,
s3为所述信号序列S的第3个元素,
sN-1为所述信号序列S的第N-1个元素,
sN为所述信号序列S的第N个元素,
N为所述信号序列S的长度;
步骤103求取分段段数,具体为:分段段数记为N0,所用求取公式为:
Figure BDA0002734856030000061
其中:
σ0为所述信号序列S的均方差,
||ΔS||F表示ΔS的Frobenus范数,
||S||F表示S的Frobenus范数,
σΔ为所述信号差分序列ΔS的均方差,
Figure BDA0002734856030000062
表示对
Figure BDA0002734856030000063
下取整;
步骤104求取N个分段信号序列,具体为:第n个分段信号序列记为gn,其第i个元素为
Figure BDA0002734856030000064
所用求取公式为:
Figure BDA0002734856030000065
其中:
Figure BDA00027348560300000711
为所述信号序列S的第|i+(n-1)M0|N个元素,
|i+(n-1)M0|N表示以N为模对i+(n-1)M0取余数,
Figure BDA0002734856030000071
为延迟长度,
Figure BDA0002734856030000072
表示对
Figure BDA0002734856030000073
上取整,
i=1,2,…,N为元素序号;
步骤105求取最佳逼近秩,具体为:最佳逼近秩记为Ropt,所用求取公式为:
Figure BDA0002734856030000074
其中:
Figure BDA0002734856030000075
为所述信号序列S的功率当量,
m0为所述信号序列S的均值,
si为所述信号序列S的第i个元素,
Figure BDA0002734856030000076
是矩阵
Figure BDA0002734856030000077
的第r个特征值,
r=1,2,…,N为特征值序号,
go为第k个分段信号序列,
k=1,2,…,N为求和参数;
步骤106求取逼近矩阵,具体为:逼近矩阵记为D,所用求取公式为:
Figure BDA0002734856030000078
其中:
o=1,2,…,Ropt为逼近特征值序号,
Figure BDA0002734856030000079
为矩阵
Figure BDA00027348560300000710
的第o个特征值,
go为第o个分段信号序列;
步骤107求取重构后的信号序列,具体为:
重构后的信号序列记为Snew,所用求取公式为:
Snew=DS。
图2一种利用线性流形投影的微震信号重构系统的结构意图
图2为本发明一种利用线性流形投影的微震信号重构系统的结构示意图。如图2所示,所述一种利用线性流形投影的微震信号重构系统包括以下结构:
模块201获取按时间顺序采集的信号序列S;
模块202生成差分序列,具体为:差分序列记为ΔS,所用生成公式为:
ΔS=[0,s2-s1,s3-s2,…,sN-sN-1]
s1为所述信号序列S的第1个元素,
s2为所述信号序列S的第2个元素,
s3为所述信号序列S的第3个元素,
sN-1为所述信号序列S的第N-1个元素,
sN为所述信号序列S的第N个元素,
N为所述信号序列S的长度;
模块203求取分段段数,具体为:分段段数记为N0,所用求取公式为:
Figure BDA0002734856030000081
其中:
σ0为所述信号序列S的均方差,
||ΔS||F表示ΔS的Frobenus范数,
||S||F表示S的Frobenus范数,
σΔ为所述信号差分序列ΔS的均方差,
Figure BDA0002734856030000082
表示对
Figure BDA0002734856030000083
下取整;
模块204求取N个分段信号序列,具体为:第n个分段信号序列记为gn,其第i个元素为
Figure BDA0002734856030000084
所用求取公式为:
Figure BDA0002734856030000085
其中:
Figure BDA0002734856030000089
为所述信号序列S的第|i+(n-1)M0|N个元素,
|i+(n-1)M0|N表示以N为模对i+(n-1)M0取余数,
Figure BDA0002734856030000086
为延迟长度,
Figure BDA0002734856030000087
表示对
Figure BDA0002734856030000088
上取整,
i=1,2,…,N为元素序号;
模块205求取最佳逼近秩,具体为:最佳逼近秩记为Ropt,所用求取公式为:
Figure BDA0002734856030000091
其中:
Figure BDA0002734856030000092
为所述信号序列S的功率当量,
m0为所述信号序列S的均值,
si为所述信号序列S的第i个元素,
Figure BDA0002734856030000093
是矩阵
Figure BDA0002734856030000094
的第r个特征值,
r=1,2,…,N为特征值序号,
go为第k个分段信号序列,
k=1,2,…,N为求和参数;
模块206求取逼近矩阵,具体为:逼近矩阵记为D,所用求取公式为:
Figure BDA0002734856030000095
其中:
o=1,2,…,Ropt为逼近特征值序号,
Figure BDA0002734856030000096
为矩阵
Figure BDA0002734856030000097
的第o个特征值,
go为第o个分段信号序列;
模块207求取重构后的信号序列,具体为:
重构后的信号序列记为Snew,所用求取公式为:
Snew=DS。
下面提供一个具体实施案例,进一步说明本发明的方案
图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:
步骤301获取按时间顺序采集的信号序列S;
步骤302生成差分序列,具体为:差分序列记为ΔS,所用生成公式为:
ΔS=[0,s2-s1,s3-s2,…,sN-sN-1]
s1为所述信号序列S的第1个元素,
s2为所述信号序列S的第2个元素,
s3为所述信号序列S的第3个元素,
sN-1为所述信号序列S的第N-1个元素,
sN为所述信号序列S的第N个元素,
N为所述信号序列S的长度;
步骤303求取分段段数,具体为:分段段数记为N0,所用求取公式为:
Figure BDA0002734856030000101
其中:
σ0为所述信号序列S的均方差,
||ΔS||F表示ΔS的Frobenus范数,
||S||F表示S的Frobenus范数,
σΔ为所述信号差分序列ΔS的均方差,
Figure BDA0002734856030000102
表示对
Figure BDA0002734856030000103
下取整;
步骤304求取N个分段信号序列,具体为:第n个分段信号序列记为gn,其第i个元素为
Figure BDA0002734856030000104
所用求取公式为:
Figure BDA0002734856030000105
其中:
Figure BDA00027348560300001013
为所述信号序列S的第|i+(n-1)M0|N个元素,
|i+(n-1)M0|N表示以N为模对i+(n-1)M0取余数,
Figure BDA0002734856030000106
为延迟长度,
Figure BDA0002734856030000107
表示对
Figure BDA0002734856030000108
上取整,
i=1,2,…,N为元素序号;
步骤305求取最佳逼近秩,具体为:最佳逼近秩记为Ropt,所用求取公式为:
Figure BDA0002734856030000109
其中:
Figure BDA00027348560300001010
为所述信号序列S的功率当量,
m0为所述信号序列S的均值,
si为所述信号序列S的第i个元素,
Figure BDA00027348560300001011
是矩阵
Figure BDA00027348560300001012
的第r个特征值,
r=1,2,…,N为特征值序号,
go为第k个分段信号序列,
k=1,2,…,N为求和参数;
步骤306求取逼近矩阵,具体为:逼近矩阵记为D,所用求取公式为:
Figure BDA0002734856030000111
其中:
o=1,2,…,Ropt为逼近特征值序号,
Figure BDA0002734856030000112
为矩阵
Figure BDA0002734856030000113
的第o个特征值,
go为第o个分段信号序列;
步骤307求取重构后的信号序列,具体为:
重构后的信号序列记为Snew,所用求取公式为:
Snew=DS。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (2)

1.一种利用线性流形投影的微震信号重构方法,其特征在于,包括:
步骤101获取按时间顺序采集的信号序列S;
步骤102生成差分序列,具体为:差分序列记为ΔS,所用生成公式为:
ΔS=[0,s2-s1,s3-s2,···,sN-sN-1]
s1为所述信号序列S的第1个元素,
s2为所述信号序列S的第2个元素,
s3为所述信号序列S的第3个元素,
sN-1为所述信号序列S的第N-1个元素,
sN为所述信号序列S的第N个元素,
N为所述信号序列S的长度;
步骤103求取分段段数,具体为:分段段数记为N0,所用求取公式为:
Figure FDA0002734856020000011
其中:
σ0为所述信号序列S的均方差,
||ΔS||F表示ΔS的Frobenus范数,
||S||F表示S的Frobenus范数,
σΔ为所述信号差分序列ΔS的均方差,
Figure FDA0002734856020000012
表示对
Figure FDA0002734856020000013
下取整;
步骤104求取N个分段信号序列,具体为:第n个分段信号序列记为gn,其第i个元素为
Figure FDA0002734856020000014
所用求取公式为:
Figure FDA0002734856020000015
其中:
Figure FDA0002734856020000016
为所述信号序列S的第|i+(n-1)M0|N个元素,
|i+(n-1)M0|N表示以N为模对i+(n-1)M0取余数,
Figure FDA0002734856020000017
为延迟长度,
Figure FDA0002734856020000018
表示对
Figure FDA0002734856020000019
上取整,
i=1,2,···,N为元素序号;
步骤105求取最佳逼近秩,具体为:最佳逼近秩记为Ropt,所用求取公式为:
Figure FDA00027348560200000110
其中:
Figure FDA0002734856020000021
为所述信号序列S的功率当量,
m0为所述信号序列S的均值,
si为所述信号序列S的第i个元素,
Figure FDA0002734856020000022
是矩阵
Figure FDA0002734856020000023
的第r个特征值,
r=1,2,···,N为特征值序号,
go为第k个分段信号序列,
k=1,2,···,N为求和参数;
步骤106求取逼近矩阵,具体为:逼近矩阵记为D,所用求取公式为:
Figure FDA0002734856020000024
其中:
o=1,2,···,Ropt为逼近特征值序号,
Figure FDA0002734856020000025
为矩阵
Figure FDA0002734856020000026
的第o个特征值,
go为第o个分段信号序列;
步骤107求取重构后的信号序列,具体为:
重构后的信号序列记为Snew,所用求取公式为:
Snew=DS。
2.一种利用线性流形投影的微震信号重构系统,其特征在于,包括:
模块201获取按时间顺序采集的信号序列S;
模块202生成差分序列,具体为:差分序列记为ΔS,所用生成公式为:
ΔS=[0,s2-s1,s3-s2,···,sN-sN-1]
s1为所述信号序列S的第1个元素,
s2为所述信号序列S的第2个元素,
s3为所述信号序列S的第3个元素,
sN-1为所述信号序列S的第N-1个元素,
sN为所述信号序列S的第N个元素,
N为所述信号序列S的长度;
模块203求取分段段数,具体为:分段段数记为N0,所用求取公式为:
Figure FDA0002734856020000027
其中:
σ0为所述信号序列S的均方差,
||ΔS||F表示ΔS的Frobenus范数,
||S||F表示S的Frobenus范数,
σΔ为所述信号差分序列ΔS的均方差,
Figure FDA0002734856020000031
表示对
Figure FDA0002734856020000032
下取整;
模块204求取N个分段信号序列,具体为:第n个分段信号序列记为gn,其第i个元素为
Figure FDA0002734856020000033
所用求取公式为:
Figure FDA0002734856020000034
其中:
Figure FDA0002734856020000035
为所述信号序列S的第|i+(n-1)M0|N个元素,
|i+(n-1)M0|N表示以N为模对i+(n-1)M0取余数,
Figure FDA0002734856020000036
为延迟长度,
Figure FDA0002734856020000037
表示对
Figure FDA0002734856020000038
上取整,
i=1,2,···,N为元素序号;
模块205求取最佳逼近秩,具体为:最佳逼近秩记为Ropt,所用求取公式为:
Figure FDA0002734856020000039
其中:
Figure FDA00027348560200000310
为所述信号序列S的功率当量,
m0为所述信号序列S的均值,
si为所述信号序列S的第i个元素,
Figure FDA00027348560200000311
是矩阵
Figure FDA00027348560200000312
的第r个特征值,
r=1,2,···,N为特征值序号,
go为第k个分段信号序列,
k=1,2,···,N为求和参数。
CN202011130050.3A 2020-10-21 2020-10-21 一种利用线性流形投影的微震信号重构方法和系统 Pending CN112257577A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011130050.3A CN112257577A (zh) 2020-10-21 2020-10-21 一种利用线性流形投影的微震信号重构方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011130050.3A CN112257577A (zh) 2020-10-21 2020-10-21 一种利用线性流形投影的微震信号重构方法和系统

Publications (1)

Publication Number Publication Date
CN112257577A true CN112257577A (zh) 2021-01-22

Family

ID=74263791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011130050.3A Pending CN112257577A (zh) 2020-10-21 2020-10-21 一种利用线性流形投影的微震信号重构方法和系统

Country Status (1)

Country Link
CN (1) CN112257577A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108099A1 (en) * 2009-03-19 2010-09-23 William Marsh Rice University Method and apparatus for compressive domain filtering and interference cancelation
WO2016135132A1 (en) * 2015-02-26 2016-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for processing an audio signal to obtain a processed audio signal using a target time-domain envelope
CN106685555A (zh) * 2017-03-03 2017-05-17 燕山大学 基于低秩矩阵恢复的mimo水声系统信道状态信息反馈方法
CN106897704A (zh) * 2017-03-01 2017-06-27 山东科技大学 一种微震信号降噪方法
CN109271841A (zh) * 2018-07-25 2019-01-25 西安交通大学 基于局部投影与小波包分解的机电系统信号组合降噪方法
CN110414442A (zh) * 2019-07-31 2019-11-05 广东省智能机器人研究院 一种压力时序数据分段特征值预测方法
CN110794456A (zh) * 2019-11-03 2020-02-14 广东石油化工学院 一种利用高斯模型的微震信号重构方法和系统
CN111596367A (zh) * 2020-06-28 2020-08-28 广东石油化工学院 一种利用子空间学习优化的微震信号重构方法和系统
CN111596362A (zh) * 2020-06-26 2020-08-28 广东石油化工学院 一种利用拉格朗日因子的微震信号滤波方法和系统
CN111666870A (zh) * 2020-06-04 2020-09-15 广东石油化工学院 一种利用二次约束的功率信号重构方法和系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108099A1 (en) * 2009-03-19 2010-09-23 William Marsh Rice University Method and apparatus for compressive domain filtering and interference cancelation
WO2016135132A1 (en) * 2015-02-26 2016-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for processing an audio signal to obtain a processed audio signal using a target time-domain envelope
CN106897704A (zh) * 2017-03-01 2017-06-27 山东科技大学 一种微震信号降噪方法
CN106685555A (zh) * 2017-03-03 2017-05-17 燕山大学 基于低秩矩阵恢复的mimo水声系统信道状态信息反馈方法
CN109271841A (zh) * 2018-07-25 2019-01-25 西安交通大学 基于局部投影与小波包分解的机电系统信号组合降噪方法
CN110414442A (zh) * 2019-07-31 2019-11-05 广东省智能机器人研究院 一种压力时序数据分段特征值预测方法
CN110794456A (zh) * 2019-11-03 2020-02-14 广东石油化工学院 一种利用高斯模型的微震信号重构方法和系统
CN111666870A (zh) * 2020-06-04 2020-09-15 广东石油化工学院 一种利用二次约束的功率信号重构方法和系统
CN111596362A (zh) * 2020-06-26 2020-08-28 广东石油化工学院 一种利用拉格朗日因子的微震信号滤波方法和系统
CN111596367A (zh) * 2020-06-28 2020-08-28 广东石油化工学院 一种利用子空间学习优化的微震信号重构方法和系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
互联网检索,MICROSEISMIC SIGNALS RECONSTRUCTION LINEAR MANIFOLD PROJECTION DIFFERENTIAL SEQUENCE SEGMENT APPROXIMATION RANK MATRIX FLORI: "A GEOMETRIC APPROACH TO DYNAMICAL MODEL–ORDER REDUCTION", 《ARXIV》, pages 1 - 28 *
孙远 等: "基于变分模态分解和小波能量熵的微震信号降噪", 《矿业科学学报》, vol. 4, no. 6, pages 469 - 479 *
苏岭东 等: "基于DSPWVD-TFPF的通信信号噪声消除算法研究", 《系统仿真学报》, vol. 27, no. 5, pages 1017 - 1023 *
董林鹭 等: "基于LMD–SVD的微震信号降噪方法研究", 《工程科学与技术》, vol. 51, no. 5, pages 126 - 136 *
赵小虎 等: "基于分布式压缩感知的微震数据压缩与重构", 《中国矿业大学学报》, vol. 47, no. 1, pages 172 - 182 *

Similar Documents

Publication Publication Date Title
CN109613610B (zh) 微震信号到时差的自动拾取方法
CN110146920B (zh) 基于幅值相对变化的微震事件检测方法和系统
CN110146918B (zh) 基于分群的微震事件检测方法和系统
CN110794456A (zh) 一种利用高斯模型的微震信号重构方法和系统
CN111596367A (zh) 一种利用子空间学习优化的微震信号重构方法和系统
CN111856563A (zh) 一种利用转换稀疏性的微震信号重构方法和系统
CN111596362A (zh) 一种利用拉格朗日因子的微震信号滤波方法和系统
CN110703319B (zh) 一种基于Khinchin-Einstein定理的微震事件检测方法和系统
CN110361779B (zh) 一种基于卡方分布的微震事件检测方法和系统
CN110703321B (zh) 一种利用字典理论的微震事件检测方法和系统
CN111679321A (zh) 一种利用泛化梯度的微震信号重构方法和系统
CN110161560B (zh) 一种微震事件的检测方法和装置
CN112257577A (zh) 一种利用线性流形投影的微震信号重构方法和系统
CN110703324A (zh) 一种利用随机字典表示的微震事件检测方法和系统
CN112257565B (zh) 一种利用最大Hull距离的微震事件检测方法和系统
CN112257560B (zh) 一种利用累积相似性的微震事件检测方法和系统
CN110146921B (zh) 基于狄拉克分布概率的微震事件检测方法和系统
CN110685665A (zh) 一种基于边界探测的微震事件检测方法和系统
CN110146919B (zh) 基于正交投影的微震事件检测方法和系统
CN110333530B (zh) 一种微震事件检测方法和系统
CN112394403B (zh) 一种利用边缘探测的微震事件检测方法和系统
CN112180438A (zh) 一种利用选择矩阵的微震信号重构方法和系统
CN111596361A (zh) 一种利用局限点的微震信号滤波方法和系统
CN112180439A (zh) 一种利用凸函数优化的微震事件检测方法和系统
CN112162320A (zh) 一种利用相似时间窗口的微震事件检测方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination