CN112251621A - 改善lpso增强镁合金耐蚀性的氢化热处理方法及合金 - Google Patents

改善lpso增强镁合金耐蚀性的氢化热处理方法及合金 Download PDF

Info

Publication number
CN112251621A
CN112251621A CN202011054847.XA CN202011054847A CN112251621A CN 112251621 A CN112251621 A CN 112251621A CN 202011054847 A CN202011054847 A CN 202011054847A CN 112251621 A CN112251621 A CN 112251621A
Authority
CN
China
Prior art keywords
alloy
heat treatment
lpso
magnesium
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011054847.XA
Other languages
English (en)
Other versions
CN112251621B (zh
Inventor
吴落义
李裕安
令狐锋
蒋福林
陈刚
李泽熙
刘津男
廖志彬
李永康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202011054847.XA priority Critical patent/CN112251621B/zh
Publication of CN112251621A publication Critical patent/CN112251621A/zh
Application granted granted Critical
Publication of CN112251621B publication Critical patent/CN112251621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明涉及一种改善LPSO增强镁合金耐蚀性的氢化热处理方法及合金,属于金属材料及冶金类技术领域。通过在合金的热处理过程中引入氢气,使合金表面层LPSO相中的稀土元素与氢结合,生成稀土氢化物REHx,从而将合金表面层中广泛分布的LPSO相转变成为稀土氢化物相。本发明将氢化热处理工艺运用到含有LPSO相的Mg–RE–Zn–Zr合金的表面处理,通过改变表面层中的第二相组成,达到提高合金耐蚀性的目的;同时,通过综合控制热处理的氢压、温度、反应时间等,将合金表面氢化层厚度控制在0.3mm左右,较薄的氢化层并不会对构件的整体强度产生显著的影响,从而达到提高合金表面层耐蚀性的同时、保持其优异机械强度的目的。

Description

改善LPSO增强镁合金耐蚀性的氢化热处理方法及合金
技术领域
本发明涉及一种长周期有序相(long-period stacking ordered,LPSO)增强的稀土镁合金的表面氢化热处理方法及由该方法生成的镁合金,属于金属材料及冶金类技术领域。所述镁合金经过本发明提出的氢化热处理,合金表面层的显微组织发生变化,改善了合金的耐蚀性。
背景技术
Mg–RE(Gd,Y,Nd)–Zn–Zr系合金的组织中存在大量的、在高温下难溶的富稀土化合物。从现有的研究结果来看,这些难溶化合物有LPSO相、I相(准晶)、w相等。人们已经对长周期有序相的结构、成分、分布以及对材料力学性能的影响等进行了广泛的研究。一般认为,LPSO相是一个重要的强化相。富稀土的LPSO相在高温下相当稳定,经过500℃下10小时的固溶处理后其体积分数未见有明显的降低。其在高温下的稳定性有利于提高合金的蠕变抗力,对合金在350℃下的长期服役有积极的意义。由此,LPSO相增强的Mg–RE–Zn–Zr合金由于其优越的蠕变抗力和室温、高温强度,在国防军工、航空航天等领域具有重要的应用前景,是目前高性能耐热镁合金研究的热点。国内外已将这类高强耐热稀土镁合金应用于飞机零部件、导弹舱体与框架等诸多领域。但是,这种合金的耐蚀性较差,限制了其在高盐、高湿沿海地区的服役。
Mg–RE–Zn–Zr合金的腐蚀行为、微观组织与合金耐蚀性之间的关系等已经得到了广泛的研究。一般说来,LPSO相在镁合金中是一个异质相,其腐蚀电位较高,因而会引发合金的点蚀和电偶腐蚀。在LPSO相(阴极)和α-Mg基体(阳极)之间的电偶效应决定了合金的腐蚀速率。
在经过固溶处理的Mg–Gd–Y–Zn–Zr样品表面观察到了保护性稀土氧化膜,其厚度大约1.5μm,在稀土氧化膜的下面可以观察到无LPSO层(LPSO-free层),LPSO-free层的厚度略低于50μm,在LPSO-free层中几乎没有第二相存在。稀土氧化膜和LPSO-free层的存在大幅度提高了合金的耐蚀性。其原因就在于,稀土氧化膜将镁与腐蚀性介质隔离开来,另一方面,氧化膜下面的LPSO-free层中没有第二相存在,抑制了合金的电偶腐蚀,在LPSO-free层中的腐蚀为均匀腐蚀,与存在LPSO相的表面发生点蚀有明显的不同。经过T6热处理的Mg–Gd–Y–Zn–Zr合金的显微硬度一般不会超过130HV0.5,相当软。在镁制零部件的加工、运输、装配、服役过程中,难免有表面刮擦、或者与较硬物体的撞击发生,固溶处理中生成的LPSO-free层的厚度不到50μm,刮擦和撞击很容易会造成耐蚀性良好的LPSO-free层的局部破坏,在LPSO-free层破坏以后,紧邻其下面的片状LPSO层会加速腐蚀。近年来,国内外学者在阳极氧化、化学转化膜等方面对提高镁合金的耐蚀性开展了大量的工作。然而,上述研究主要涉及材料的表面涂层技术。实际上,通过表面渗碳、渗氮等来改变钢的表面结构和性质的化学热处理工艺得到了广泛的应用。然而,在不影响合金强度的情况下,仅通过化学热处理改变镁合金表面层组织,从而提高镁合金耐蚀性的研究非常少。
早期的文献(R.Lagowshi,Metallography of hydrided ZE63 MagnesiumCasting Alloy,A.F.S.Trans.,1976,84,151.)和美国标准(ASTM Standards B80-76,Standard Specification for Magnesium-Alloy Sand Castings,1976)提出了ZE63A合金及氢化处理工艺。根据ASTM Standards B80-76,其合金成分为:Mg-(5.5~6.0)Zn-(2.1~3.0)RE-(0.40~1.0)Zr(质量百分含量),氢化热处理工艺为:温度482℃,氢气压力1atm。北京航空材料研究院的赵志远等(赵志远,氢化处理ZM8高强度铸造镁合金,航空材料,1979,1,1-7)在ASTM Standards B80-76的基础上,用成本较低的含铈45~60%(质量百分数)的混合稀土替代纯Nd或Ce,发展出了具有我国特色的ZM8高强镁合金。无论是ZE63A还是ZM8,合金中Zn的含量约为6%(质量百分含量),稀土(Nd,Ce,La)等的含量为3%(质量百分含量)。上海交通大学的吴国华等(吴国华,Mg-Zn-RE系镁合金氢化热处理方法,ZL201410018239.1)在Mg-(4~6)Zn-1RE(质量百分含量)合金铸件的热处理中引入氢气,进行了氢化处理并取得了一定的效果。以上这些文献和专利,都是为了解决锌含量较高的Mg-Zn-Zr合金比如ZK60等铸造性能差、凝固过程中产生热裂纹的问题。在ZK60、ZK40等合金的基础上添加1~3%左右的稀土元素来克服热裂缺陷,使合金获得优异的铸造性能,从而用于制造航空工业上的大尺度薄壁复杂铸件。但是,在ZK60、ZK40合金中添加稀土后,稀土与Zn元素结合生成W,I(准晶)等物相,这些物相在高温(480~515℃)下非常稳定,在随后的固溶处理中不能溶于镁基体,造成Mg-Zn-RE系合金不能通过人工时效来获得高强度。Mg-Zn-RE系合金的氢化处理,其目的在于高温下稀土与氢结合,从而释放出W,I(准晶)相中的Zn元素,在随后的141℃的人工时效处理中生成Mg2Zn等强化相,从而达到通过人工时效来提高Mg-Zn-RE系合金强度的目的。近年来,随着WE43和WE54等合金的发展,在新版的美国标准(ASTM Standards B80-15,Standard Specification for Magnesium-Alloy SandCastings,2015)中已经删除了ZE63A合金及其热处理方法。
最近,R.Lapovok等(R.Lapovok,et al.,Materials Science&Engineering A 719(2018)171–177)报道了Mg–RE(Gd,Y)–Zn–Zr合金的氢化处理。通过氢化处理,合金样品中的LPSO相全部转变成为了颗粒状的稀土氢化物相,由于样品中含有的稀土元素全部被氢化,高密度的稀土氢化物取代了LPSO相。合金中稀土元素与氢完全反应,稀土被消耗后合金不具备时效硬化效应;氢化处理后,合金强度显著降低、而延伸率增加。这一方法的缺点在于:长时间的氢化处理使氢渗透了试样的整个横截面,合金内部的增强相LPSO全部消失,从而使合金丧失了耐热、高强的优异力学性能。本发明聚焦于合金的表面氢化处理,将表面氢化层的厚度控制在0.3mm左右,合金内部的LPSO相并没有被氢化,从而保持了材料高强、耐热的性能。同时,通过优化氢化处理工艺,在合金表面层生成了新颖的密集片状结构聚集体,提高了合金的耐蚀性。
发明内容
本发明所述方法主要针对五元Mg–RE(Gd,Y)–Zn–Zr合金,合金中含有Mg、Gd、Y、Zn和Zr五种合金元素,经过热处理后LPSO相是合金中主要的强化相之一。然而,Mg–RE(Gd,Y,Nd)–Zn–Zr系合金中LPSO相与α-Mg基体构成腐蚀原电池,促进了电偶腐蚀,造成合金耐蚀性不良。针对合金中的LPSO结构与α-Mg基体构成腐蚀原电池,导致电偶腐蚀的问题,本发明提出在合金的热处理过程中通入氢气,将合金表面层中的LPSO相转变为稀土氢化物相,即将合金表面层中的强阴极相(LPSO相)转变为弱阴极相(稀土氢化物相),减缓了合金的电偶腐蚀,达到了改善合金耐蚀性的目的。
本发明采用的技术方案为,一种改善LPSO增强镁合金耐蚀性的氢化热处理方法,分为以下步骤:
S1实验材料的制备。
S1.1准备熔炼合金的原材料:高纯镁、高纯锌、镁-钆中间合金、镁-钇中间合金以及镁-锆中间合金。
S1.2合金的熔炼与浇铸。将合适数量(根据合金成分和要得到的铸锭的重量,用一个简单的计算公式,再加上一点经验,就可以确定每一种原材料的投料量,此为本领域的公知常识:如要得到约1公斤的铸锭,需要准备0.4公斤的25%镁-钆中间合金,0.1公斤的25%镁-钇中间合金,40克高纯锌和45克25%镁-锆中间合金,其余为高纯镁;具体参见L.Wu,etal.,Journal of Alloys and Compounds 626(2015)194–202)的99.99%纯镁、99.99%纯锌,25%Mg-Gd中间合金,25%镁-Y中间合金以及Mg-Zr中间合金置于中碳钢坩埚中、熔剂保护下熔炼,随后浇铸得到合金铸锭。所述合金的化学成分(质量百分含量)范围为:
Gd的含量:8~15%;
Y的含量:2~5%;
Zn的含量:2~4%;
Zr的含量:0.4~1.0%;
其余为Mg和少量杂质元素。
S2 Mg–Gd–Y–Zn–Zr合金铸锭的固溶热处理
将S1制备出的合金铸锭置于电阻炉中在500℃下保温10小时,于约70℃的热水中淬火,使铸态合金中的共晶第二相Mg3(Gd,Y)转变为LPSO相。
S3氢化热处理,具体包括以下步骤:
S3.1将S2经过固溶热处理后的合金样品置于氢气炉中进行氢化热处理,温度440~515℃,氢压0.3~10兆帕,时间0.5~10小时;
S3.2氢化热处理结束后将合金样品从氢气炉中取出强制空冷或淬火。
优选的,S3中合金表面层的氢化热处理温度为482℃,处理时间为4小时,氢气压力为1兆帕。
本发明还提供一种采用上述方法制备出的镁合金,所述镁合金的化学成分质量百分含量范围为:
Gd的含量:8~15%;
Y的含量:2~5%;
Zn的含量:2~4%;
Zr的含量:0.4~1.0%;
其余为Mg和少量杂质元素。
优选的,所述镁合金的化学成分质量百分含量为:
Gd 10.27%,
Y 2.71%,
Zn 2.09%,
Zr 0.76%,
余量为Mg及不可避免的杂质元素。
与现有技术相比,本发明的有益效果是:本发明提出了一种提高合金表面层耐蚀性的氢化热处理方法,即在合金的热处理过程中引入氢气,使合金表面层LPSO相中的稀土元素(Gd,Y)与氢结合,生成稀土氢化物REHx,从而将合金表面层中广泛分布的LPSO相转变成为稀土氢化物相。本发明将氢化热处理工艺运用到含有LPSO相的Mg–RE–Zn–Zr合金的表面处理,通过改变表面层中的第二相组成,达到了提高合金耐蚀性的目的;同时,通过综合控制热处理的氢压、温度、反应时间等,将合金表面氢化层的厚度控制在0.3mm左右,较薄的氢化层并不会对构件的整体强度产生显著的影响,从而达到提高合金表面层耐蚀性的同时能够保持其优异机械强度的目的,具体表现为:
1)本发明是在Mg–Gd–Y–Zn–Zr合金的固溶热处理之后,增加一个氢化热处理工序,使合金表层的块状LPSO相转变为片状稀土氢化物结构聚集体。经X射线衍射、扫描电镜等分析,这一片状结构聚集体是(Gd,Y)Hx相的一种新的存在形态。
2)本发明通过合金的氢化热处理,将合金表层电化学特征表现为强阴极相的LPSO相转变为弱阴极相(片状稀土氢化物结构聚集体),从而减弱了合金表面层的电偶效应,达到了提高合金表面层耐蚀性的目的。
3)本发明通过氢化热处理工艺,改变了合金表面层的微观结构。在氢化层之下,合金内部的增强相LPSO相的数量、分布保持不变,从而在提高合金耐蚀性的同时,不会明显降低合金的力学性能。
附图说明
图1.氢化热处理后,氢化层中颗粒状稀土氢化物取代了LPSO相;
图2.Mg–10.27Gd–2.71Y–2.09Zn–0.76Zr合金经过表面层渗氢处理后的横截面样品的二次电子像。a)横截面样品的低倍形貌;b)近表面处氢化层高倍像;c)氢化反应前沿;d)样品内部未氢化区的形貌图;
图3.氢化热处理前后样品表面X射线衍射图。a)铸态;b)固溶态(500℃下保温10小时);c)氢化处理后样品的初始表面;d)样品在氢化处理后磨去表面层10μm厚度,除去表面氧化皮;
图4.铸态、固溶态合金和氢化热处理合金在3.5%氯化钠溶液中的氢释放曲线;
图5.氢化热处理后,横截面样品的腐蚀形貌。
具体实施方式
为了进一步的阐明本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点而不是对本发明专利要求的限制。
本发明涉及的试验材料的化学成分为:Mg–10.27Gd–2.71Y–2.09Zn–0.76Zr(质量百分比),余量为Mg及<0.1%的杂质元素。
本发明涉及到的Mg–10.27Gd–2.71Y–2.09Zn–0.76Zr合金的熔炼、浇铸等制备方法和随后的固溶热处理方法,是LPSO增强稀土镁合金制备和热处理的公知常识(L.Wu,etal.,Effect of selective oxidation on corrosion behavior of Mg-Gd-Y-Zn-Zralloy,Corrosion Science 142(2018):238-248.)。需要说明的是,本领域技术人员能够根据合金的组分来配比原料,并适当计算合金元素在熔炼中的损失来合理确定投料量;能够利用常规的熔剂保护熔炼方法制备出成分基本准确的合金铸锭。
本发明涉及到的固溶热处理方法,已经得到广泛报道(L.Wu,et al.,Effect ofselective oxidation on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy,CorrosionScience 142(2018):238-248.),为了避免固溶样品在淬火时出现裂纹,一般采用约70℃的热水作为淬火介质。本发明的关键要点在于固溶后样品的氢化热处理:
1)将固溶处理后的的合金样品置于氢气炉中进行氢化热处理,温度440~515℃,氢压0.2~10兆帕,时间0.5~10小时。
2)氢化处理结束后将样品从炉中取出强制空冷或淬火。
下面结合附图和实施例对本发明进一步说明。
实施例1
Mg–10.27Gd–2.71Y–2.09Zn–0.76Zr合金经过固溶处理后,进行如下工艺的氢化处理:
1)合金表面层的氢化热处理温度为482℃,
2)合金表面层的氢化热处理保温时间为10小时,
3)合金表面层的氢化热处理氢气压力为0.2兆帕。
实施例2
Mg–10.27Gd–2.71Y–2.09Zn–0.76Zr合金经过固溶处理后,进行如下工艺的氢化处理:
1)合金表面层的氢化热处理温度为482℃,
2)合金表面层的氢化热处理保温时间为4小时,
3)合金表面层的氢化热处理氢气压力为1.0兆帕。
在实施例1中,在482℃、0.2兆帕氢气压力的条件下,合金经过10小时的氢化热处理后,氢化层的微观组织如图1所示。在图1中,合金表面层中块状LPSO相完全消失,颗粒状的第二相广泛分布于合金基体。这说明,经过实施例1的氢化热处理,在合金的表面层,稀土氢化物取代了LPSO相,成为了合金表面层中主要的第二相。
在实施例2中,在482℃、1.0兆帕氢气压力的条件下,合金经过4小时的氢化热处理后,氢化层的微观组织如图2所示。在合金的表面氢化层中,大量的密集片状结构聚集体取代了块状的LPSO相(图2b),与图1中颗粒状的第二相有显著的不同。经过4小时的氢化热处理,合金表面氢化层的厚度大约为280μm(图2a)。在图2c中,观察到了在氢化反应的前沿LPSO相转化为片状密集结构的界面;在靠近合金表层的方向LPSO相已经转变成为了片状的稀土氢化物,而靠近合金芯部的方向,LPSO的形态依然保持为块状,并未可见明显的变化。在材料的内部,块状的LPSO相沿晶界分布(图2d),增强相LPSO相的形态和分布并没有受到氢化热处理的影响。
图3示出了实施例2中氢化处理样品的表面X射线衍射图。结合图2和图3可知,氢化处理的样品表面,主要的第二相为Gd0.5Y0.5H1.96
镁合金在3.5%氯化钠水溶液中浸泡析氢实验是现在常用的一个评价合金耐蚀性的方法,特点是设备简便、灵敏度很高,其原理是镁合金在腐蚀过程中与水反应放出氢气,通过测量析出氢的体积就可以计算出合金在3.5%氯化钠溶液中的腐蚀失重。合金铸态、固溶态、实施例1、实施例2的析氢曲线如图4所示。从图4中可知,实施例2的样品具有最低的析氢速率,可以推断当合金表面生成密集片状结构聚集体时,合金具有最好的耐蚀性。实施例1的样品表面密集分布着稀土氢化物颗粒,其氢释放速率高于实施例2,反映了其耐蚀性要比实施例2稍差。实施例2和铸态合金都具有较低的氢释放速率,而固溶态样品的氢释放速率最高,这说明固溶处理后合金中LPSO相的生成对合金的耐蚀性有不利的影响。
综上所述,与实施例1比较,在实施例2中氢压提高至1.0兆帕,热处理时间缩短至4小时。在实施例1中,氢化热处理后,合金表面氢化层中微观组织的主要特征为颗粒状的稀土氢化广泛分布,块状LPSO相消失;而在实施例2中,新颖的密集片状结构聚集体取代了块状LPSO相。在3.5%氯化钠溶液中浸泡200小时后,合金铸态、固溶态、实施例1和实施例2样品的腐蚀速率见表1所示。
表1合金铸态、固溶态、实施例1和实施例2的腐蚀速率
Figure BDA0002705510430000061
从表1中可知,经过实施例2的氢化热处理,合金表面层的耐蚀性有了明显的改善。在480℃下,氢与LPSO相中的稀土元素Gd、Y结合,使电化学特征表现为强阴极的LPSO结构由于稀土元素的流失而分解,弱阴极的稀土氢化物生成。将经过实施例2处理过程的横截面样品,表面抛光、脱脂后于3.5%的氯化钠容易中浸泡74小时,取出样品、清洗后于热气流中吹干,再稍微磨去表面腐蚀产物层。横截面样品腐蚀后的低倍形貌如图5所示。在图5中,样品的表面层较为完整,而样品的芯部在3.5%的氯化钠溶液中腐蚀严重,经过74小时的浸泡,形成了较深的蚀坑,这也说明了氢化层的耐蚀性要高于样品的芯部。通过合适的氢化热处理工艺,使合金表面氢化层中生成一种新颖的密集片状结构聚集体,导致了合金表面层伏打电位的降低,可能是氢致合金耐蚀性改善的电化学机制。
本发明所述材料是Mg–RE(Gd,Y)–Zn–Zr系合金,其中Zn的含量(2%,质量百分含量)远低于Mg-Zn-RE系合金,是最近20年发展起来的新型高强耐热镁合金,其主要特征就是在熔体的凝固和随后的固溶处理中生成了LPSO相,其是主要的强化相之一。但是,LPSO相与镁基体构成腐蚀原电池,造成合金的耐蚀性较差。本发明的目的在于,通过氢致表面层中LPSO相分解,将LPSO(强阴极相)转变为稀土氢化物(弱阴极相),从而达到提高合金表面层耐蚀性的目的。本发明通过氢化处理,只是改变了合金表面层的微观组织特征,不影响材料内部强化相LPSO的数量和分布,不涉及对材料力学性能的影响。
需要特别指出的是,经过优化的氢化处理工艺,本发明报道了氢化处理的样品中生成了一种新颖的密集片状结构聚集体(如图2所示),这一稀土氢化物的新形态与R.Lapovok等报道的氢化物的颗粒状形态(如图1所示)完全不同。在3.5%氯化钠溶液中的浸泡实验表明,当合金表面氢化层中氢化物为新颖的密集片状结构聚集体形态时,与生成颗粒状氢化物的氢化处理样品相比,具有更好的耐蚀性。
显然,以上实施例的说明只是用于帮助理解本发明的原理及其核心思想。应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明专利权利要求的保护范围内。

Claims (4)

1.一种改善LPSO增强镁合金耐蚀性的氢化热处理方法,其特征在于,该方法分为以下步骤:
S1实验材料的制备
S1.1准备熔炼合金的原材料:高纯镁、高纯锌、镁-钆中间合金、镁-钇中间合金以及镁-锆中间合金;
S1.2合金的熔炼与浇铸:将合适数量的99.99%纯镁,99.99%纯锌,25%Mg-Gd中间合金,25%镁-Y中间合金以及Mg-Zr中间合金置于中碳钢坩埚中、熔剂保护下熔炼,随后浇铸得到合金铸锭;所述合金化学成分的质量百分含量范围为:
Gd的含量:8~15%;
Y的含量:2~5%;
Zn的含量:2~4%;
Zr的含量:0.4~1.0%;
其余为Mg和少量杂质元素;
S2 Mg–Gd–Y–Zn–Zr合金铸锭的固溶热处理
将S1制备出的合金铸锭置于电阻炉中在500℃下保温10小时,于约70℃的热水中淬火,使铸态合金中的共晶第二相Mg3(Gd,Y)转变为LPSO相;
S3氢化热处理,具体包括以下步骤:
S3.1将S2经过固溶热处理后的合金样品置于氢气炉中进行氢化热处理,温度440~515℃,氢压0.3~10兆帕,时间0.5~10小时;
S3.2氢化热处理结束后将合金样品从氢气炉中取出强制空冷或淬火。
2.一种根据权利要求1所述改善LPSO增强镁合金耐蚀性的氢化热处理方法,其特征在于:S3中合金表面层的氢化热处理温度为482℃,处理时间为4小时,氢气压力为1兆帕。
3.一种采用如权利要求1或2所述方法制备出的镁合金,其特征在于:所述镁合金的化学成分质量百分含量范围为:Gd的含量:8~15%;Y的含量:2~5%;Zn的含量:2~4%;Zr的含量:0.4~1.0%,其余为Mg和少量杂质元素。
4.一种根据权利要求3所述镁合金,其特征在于:所述镁合金的化学成分质量百分含量为:Gd 10.27%,Y 2.71%,Zn 2.09%,Zr 0.76%,余量为Mg及不可避免的杂质元素。
CN202011054847.XA 2020-09-28 2020-09-28 改善lpso增强镁合金耐蚀性的氢化热处理方法及合金 Active CN112251621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011054847.XA CN112251621B (zh) 2020-09-28 2020-09-28 改善lpso增强镁合金耐蚀性的氢化热处理方法及合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011054847.XA CN112251621B (zh) 2020-09-28 2020-09-28 改善lpso增强镁合金耐蚀性的氢化热处理方法及合金

Publications (2)

Publication Number Publication Date
CN112251621A true CN112251621A (zh) 2021-01-22
CN112251621B CN112251621B (zh) 2022-02-11

Family

ID=74234500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011054847.XA Active CN112251621B (zh) 2020-09-28 2020-09-28 改善lpso增强镁合金耐蚀性的氢化热处理方法及合金

Country Status (1)

Country Link
CN (1) CN112251621B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693972A (zh) * 2009-10-27 2010-04-14 上海交通大学 耐热稀土镁合金发动机活塞的挤压铸造制备方法
CN101693971A (zh) * 2009-10-27 2010-04-14 上海交通大学 耐热稀土镁合金发动机活塞的低压铸造制备方法
CN102205409A (zh) * 2011-04-28 2011-10-05 上海交通大学 内燃机用复合式活塞毛坯的制造方法
CN102337441A (zh) * 2011-10-27 2012-02-01 哈尔滨工业大学 一种超高强稀土镁合金板材及其制备方法
CN102392166A (zh) * 2011-10-27 2012-03-28 哈尔滨工业大学 一种Mg-Gd-Y-Zn-Zr系合金大型铸锭及其制备方法
CN103774068A (zh) * 2014-01-15 2014-05-07 上海交通大学 Mg-Zn-RE系镁合金氢化热处理方法
CN103805821A (zh) * 2012-11-15 2014-05-21 北京有色金属研究总院 一种超高强度高韧性镁合金材料及其制备方法
CN104611655A (zh) * 2013-11-04 2015-05-13 北京有色金属研究总院 一种适用于Mg-Gd-Y系合金的变温变形工艺及后续加工方法
CN106756370A (zh) * 2016-12-10 2017-05-31 哈尔滨工业大学 一种高强韧耐蚀防燃Mg‑Gd‑Y‑Zn‑Zr合金及其制备方法
CN111560550A (zh) * 2020-05-26 2020-08-21 中南大学 一种Mg-Gd-Y稀土镁合金铸锭均匀化热处理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693972A (zh) * 2009-10-27 2010-04-14 上海交通大学 耐热稀土镁合金发动机活塞的挤压铸造制备方法
CN101693971A (zh) * 2009-10-27 2010-04-14 上海交通大学 耐热稀土镁合金发动机活塞的低压铸造制备方法
CN102205409A (zh) * 2011-04-28 2011-10-05 上海交通大学 内燃机用复合式活塞毛坯的制造方法
CN102337441A (zh) * 2011-10-27 2012-02-01 哈尔滨工业大学 一种超高强稀土镁合金板材及其制备方法
CN102392166A (zh) * 2011-10-27 2012-03-28 哈尔滨工业大学 一种Mg-Gd-Y-Zn-Zr系合金大型铸锭及其制备方法
CN103805821A (zh) * 2012-11-15 2014-05-21 北京有色金属研究总院 一种超高强度高韧性镁合金材料及其制备方法
CN104611655A (zh) * 2013-11-04 2015-05-13 北京有色金属研究总院 一种适用于Mg-Gd-Y系合金的变温变形工艺及后续加工方法
CN103774068A (zh) * 2014-01-15 2014-05-07 上海交通大学 Mg-Zn-RE系镁合金氢化热处理方法
CN106756370A (zh) * 2016-12-10 2017-05-31 哈尔滨工业大学 一种高强韧耐蚀防燃Mg‑Gd‑Y‑Zn‑Zr合金及其制备方法
CN111560550A (zh) * 2020-05-26 2020-08-21 中南大学 一种Mg-Gd-Y稀土镁合金铸锭均匀化热处理方法

Also Published As

Publication number Publication date
CN112251621B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CA2508079C (en) Castable magnesium alloys
US5059390A (en) Dual-phase, magnesium-based alloy having improved properties
Hu et al. Corrosion and surface treatment of magnesium alloys
RU2513323C2 (ru) Магниевый сплав, содержащий редкоземельные металлы
Boby et al. Mechanical characterization and corrosion behavior of newly designed Sn and Y added AZ91 alloy
EP1516074A1 (en) Creep resistant magnesium alloy
CN105483485B (zh) 一种含Zn和重稀土Gd的高强度铸造镁合金及制备方法
JP2022513645A (ja) マグネシウム合金材およびその製造方法
Zengin et al. Influence of Sn addition on microstructure and corrosion resistance of AS21 magnesium alloy
Hort et al. Properties and processing of magnesium-tin-calcium alloys
EP1967600B1 (en) Creep-resistant magnesium alloy for casting
CN109852859B (zh) 适于重力铸造的高强韧耐热Mg-Y-Er合金及其制备方法
Wang et al. Bridge for the thermodynamics and kinetics of electrochemical corrosion: Designing of the high corrosion-resistant magnesium alloy
Wang et al. Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg-3Al-1Zn alloy
Cui et al. Effect of Zn addition on microstructure and mechanical properties of Mg–9Gd–3Y–0.5 Zr alloy
CN112251621B (zh) 改善lpso增强镁合金耐蚀性的氢化热处理方法及合金
JP2004238676A (ja) マグネシウム合金
KR20210028682A (ko) 고강도 및 내부식성 마그네슘 합금 재료 및 이의 제조방법
JPH04176839A (ja) マグネシウム基合金
JP4526769B2 (ja) マグネシウム合金
CN109943759B (zh) 适于重力铸造的高强韧耐热Mg-Er合金及其制备方法
CN109881065B (zh) 适于低压铸造的高强韧耐热Mg-Gd-Er合金及其制备方法
CN110144505B (zh) 一种可降解生物医用锻造态镁合金及其制备方法
CN109797332B (zh) 适于低压铸造的高强韧耐热Mg-Gd-Y合金及其制备方法
Fang et al. Electrochemical corrosion behavior of backward extruded Mg-Zn-Ca alloys in different media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant