CN112250114A - 一种钛掺杂改性二氧化锰电极材料的制备方法与应用 - Google Patents

一种钛掺杂改性二氧化锰电极材料的制备方法与应用 Download PDF

Info

Publication number
CN112250114A
CN112250114A CN202011006232.XA CN202011006232A CN112250114A CN 112250114 A CN112250114 A CN 112250114A CN 202011006232 A CN202011006232 A CN 202011006232A CN 112250114 A CN112250114 A CN 112250114A
Authority
CN
China
Prior art keywords
titanium
manganese dioxide
electrode material
doped modified
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011006232.XA
Other languages
English (en)
Inventor
曹成伟
王意
汪敏
何金鑫
丁琳琳
赵晓蕾
张金涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute of Technology
Original Assignee
Changzhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute of Technology filed Critical Changzhou Institute of Technology
Priority to CN202011006232.XA priority Critical patent/CN112250114A/zh
Publication of CN112250114A publication Critical patent/CN112250114A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种钛掺杂改性二氧化锰电极材料的制备方法与应用。包括:(1)将锰源溶于分散剂中并搅拌,得分散液A;(2)将钛源溶于分散剂中并搅拌,得分散液B;(3)向分散液A加入酸得混合液A;(4)将分散液B加入混合液A得到混合液B;(5)将金属还原剂用有机溶剂和酸浸泡,清洗;(6)将清洗后的金属还原剂加入混合液B并加热恒温处理,冷却,除去上清液,洗涤,干燥,得到钛掺杂改性二氧化锰电极材料。本发明的制备方法简单易行,且材料价格低廉,制备成本低;本发明采用一步氧化还原法制备钛掺杂改性的二氧化锰正极材料,并用于水系锌离子电池后表现出较好的储锌性能,该方法在水系锌离子体系中具有一定的潜在应用价值。

Description

一种钛掺杂改性二氧化锰电极材料的制备方法与应用
技术领域
本发明涉及电池电极材料制备技术领域,具体涉及一种钛掺杂改性二氧化锰电极材料的制备方法与应用。
背景技术
二次电池作为一种能量储存装置,能高效的实现化学能和电能之间的转换,是合理有效利用能源的重要媒介。锂离子电池因其具有高能量密度、高输出电压、体积小、自放电小、无记忆效应、充放电效率高、工作温度范围广等一系列优点,自上个世纪90年代索尼公司将其商品化以来,已广泛应用在各种便携式电子设备上。但由于其锂资源相对匮乏以及有机电解液所引起的安全性问题,严重限制其在大规模电动汽车上的使用。近年来,水系锌离子二次电池因具有高安全性、价格低廉、制备工艺简单、环境友好、高比容量、高比功率等一系列较为突出的优点而有望成为下一代锂离子电池的替代品。
二氧化锰(MnO2)由于其成本低廉、原材料丰富、安全性高、对环境友好等优点,是目前研究较多且最具有潜力的水系锌离子电池正极材料。但经过大量研究发现,尽管Mn系材料的比容量较高(约300mA h g-1),但随着充放电循环的不断进行,电池容量衰减较快,从而限制了其实际应用。研究者针对其充放电机理展开了大量的研究,发现材料本身较差的导电性、Mn3+的歧化反应引起Mn的溶解以及材料反复充放电后结构的破坏可能是造成其容量严重衰减的原因。向材料内部引入外来原子,不仅可以改善材料内部的本征电子导电性,还可以稳定其结构,是一种有效的改善材料电化学性能的改性方法。
发明内容
本发明的目的在于提供一种简单易操作的钛掺杂改性的二氧化锰电极材料的制备方法,并将该材料用于水系锌离子电池中。
本发明是通过如下技术方案实现的:
一种钛掺杂改性二氧化锰电极材料的制备方法,其特征在于,该方法包括如下步骤:
(1)将锰源溶于分散剂中并搅拌,得到分散液A;
(2)将钛源溶于分散剂中并搅拌,得到分散液B;
(3)向所述分散液A中加入酸并搅拌,得到混合液A;
(4)将所述分散液B加入所述混合液A并搅拌,得到混合液B;
(5)将金属还原剂分别用有机溶剂和酸浸泡,浸泡后清洗;
(6)将清洗后的金属还原剂加入所述混合液B中并加热恒温处理,然后冷却,除去上层清液,洗涤,干燥,得到钛掺杂改性二氧化锰电极材料。本发明的制备方法简单易行,且材料价格低廉成本低。
进一步,步骤(1)中所述的锰源为高锰酸钾;所述的分散剂为去离子水;所述的高锰酸钾与所述的去离子水的摩尔体积比为0.04-0.08mol/L;所述搅拌为室温搅拌,且搅拌20-40分钟。
进一步,步骤(2)中所述钛源与所述锰源的摩尔比为1:(1-40);所述的钛源为草酸钛钾;所述的分散剂为去离子水;所述草酸钛钾与所述去离子水的摩尔体积比为0.01-0.05mol/L;所述搅拌为室温搅拌,且搅拌20-40分钟。
进一步,步骤(3)中所述的酸为质量分数80-90%的浓硫酸;所述的分散液A与所述酸的体积比为(10-20):1;所述的搅拌时间为10-20分钟。
进一步,步骤(5)中所述金属还原剂为铜箔;将所述铜箔分别置于无水乙醇和稀硝酸中浸泡10-30分钟,浸泡后用去离子水清洗3-5次。
进一步,步骤(6)将清洗后的金属还原剂加入所述混合液B中,将溶液转移至集热式恒温加热磁力搅拌器中,在60-80℃下恒温静置5-10小时,然后自然冷却至室温,除去上层清液,用去离子水离心洗涤3-5次,然后在60-70℃下干燥12-24小时,得到钛掺杂改性二氧化锰电极材料。
一种钛掺杂改性二氧化锰电极材料的应用,其特征在于,将上述的制备方法制得的钛掺杂改性二氧化锰电极材料作为正极材料,用于组装水系锌离子电池。从电化学测试结果看,钛掺杂改性处理能有效改善α-MnO2材料的电化学储锌性,该方法在水系锌离子体系中具有一定的潜在应用价值。
进一步,组装水系锌离子电池包括如下步骤:
(1)将所述钛掺杂改性二氧化锰电极材料、导电剂和粘结剂加入有机溶剂中并搅拌,得到涂覆浆料;
(2)将所得涂覆浆料全部涂覆于集流体上,然后干燥,得到电极片;
(3)将上述步骤(2)所得的电极片作为正极,金属锌作为负极,1.0mol/L的硫酸锌水溶液作为电解液,玻璃纤维作为隔膜,组装水系锌离子电池。
进一步,组装水系锌离子电池:步骤(1)中所述的导电剂为乙炔黑;所述的粘结剂为聚偏氟乙烯(PVDF);所述有机溶剂为1-甲基-2-吡咯烷酮;所述钛掺杂改性二氧化锰电极材料、所述导电剂与所述粘结剂之间的质量比为7:2:1。
进一步,组装水系锌离子电池:步骤(2)中所述干燥为真空干燥,干燥温度为90-110℃,干燥12-24小时。
本发明的有益效果:
(1)本发明的制备方法简单易行,材料价格低廉,制备成本低;
(2)本发明采用一步氧化还原法制备钛掺杂改性的二氧化锰正极材料,经过掺杂改性后的材料,被用于水系锌离子电池后表现出较好的储锌性能,该方法在水系锌离子体系中具有一定的潜在应用价值。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为原始二氧化锰和本发明实施例1制得的钛掺杂改性二氧化锰电极材料的X射线衍射图;
图2(a)为原始二氧化锰和钛掺杂后二氧化锰材料的充放电曲线,图2(b)为应用例1组装的水系锌离子电池的循环稳定性图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种钛掺杂改性二氧化锰电极材料的制备方法,包括如下步骤:
(1)将0.0078mol的高锰酸钾溶于140.0mL的去离子水中,并在室温下搅拌20分钟,即得到分散液A;
(2)将0.0002mol的草酸钛钾溶于10.0mL的去离子水中,并在室温下搅拌30分钟,即得到分散液B;
(3)向所述分散液A中加入8.0mL的浓硫酸(所述浓硫酸的质量分数为85%)并搅拌10分钟,即得到混合液A;
(4)将所述分散液B缓慢均匀地滴加至所述混合液A中,并持续搅拌30分钟,即得到混合液B;
(5)将铜箔分别置于无水乙醇和稀硝酸中各自浸泡20分钟,浸泡后取出用去离子水清洗3次;
(6)将清洗后的铜箔放入上述的混合液B中,然后将溶液转移至集热式恒温加热磁力搅拌器中,在70℃磁力搅拌下恒温处理8小时,然后自然冷却至室温,除去上层清液,接着用去离子水离心洗涤3次,然后在鼓风干燥箱中60℃下干燥18小时,即得到钛掺杂改性二氧化锰电极材料。
实施例2
(1)将0.0072mol的高锰酸钾溶于100.0mL的去离子水中,并在室温下搅拌40分钟,即得到分散液A;
(2)将0.0008mol的草酸钛钾溶于20.0mL的去离子水中,并在室温下搅拌20分钟,即得到分散液B;
(3)向所述分散液A中加入8.0mL的浓硫酸(所述浓硫酸的质量分数为90%)并搅拌15分钟,即得到混合液A;
(4)将所述分散液B缓慢均匀地滴加至所述混合液A中,并持续搅拌30分钟,即得到混合液B;
(5)将铜箔分别置于无水乙醇中浸泡30分钟,然后在稀硝酸中浸泡10分钟,浸泡后取出用去离子水清洗5次;
(6)将清洗后的铜箔放入上述的混合液B中,然后将溶液转移至集热式恒温加热磁力搅拌器中,在60℃磁力搅拌下恒温处理10小时,然后自然冷却至室温,除去上层清液,接着用去离子水离心洗涤4次,然后在鼓风干燥箱中65℃下干燥24小时,即得到钛掺杂改性二氧化锰电极材料。
实施例3
(1)将0.0076mol的高锰酸钾溶于120.0mL的去离子水中,并在室温下搅拌30分钟,即得到分散液A;
(2)将0.0004mol的草酸钛钾溶于15.0mL的去离子水中,并在室温下搅拌40分钟,即得到分散液B;
(3)向所述分散液A中加入8.0mL的浓硫酸(所述浓硫酸的质量分数为80%)并搅拌20分钟,即得到混合液A;
(4)将所述分散液B缓慢均匀地滴加至所述混合液A中,并持续搅拌30分钟,即得到混合液B;
(5)将铜箔分别置于无水乙醇中浸泡10分钟,然后在稀硝酸中浸泡30分钟,浸泡后取出用去离子水清洗4次;
(6)将清洗后的铜箔放入上述的混合液B中,然后将溶液转移至集热式恒温加热磁力搅拌器中,在80℃下恒温静置5小时,自然冷却至室温,除去上层清液,用去离子水离心洗涤5次,然后在鼓风干燥箱中70℃下干燥12小时,即得到钛掺杂改性二氧化锰电极材料。
应用例1
取上述实施例1制备的钛掺杂改性二氧化锰电极材料作为正极材料,并用于组装水系锌离子电池:
组装水系锌离子电池包括如下步骤:
(1)取上述实施例1制得的钛掺杂改性二氧化锰电极材料0.21g、乙炔黑0.06g和聚偏氟乙烯(PVDF)0.03g,加入1.0mL的1-甲基-2-吡咯烷酮中并搅拌均匀,得到涂覆浆料;
(2)将所得涂覆浆料全部涂覆于集流体钛箔上,然后置于真空干燥箱中,并在100℃下干燥16小时,干燥后将钛箔切成一定尺寸的圆片,即得到电极片;
(3)将上述步骤(2)所得的电极片作为正极,金属锌作为负极,1.0mol/L的硫酸锌水溶液作为电解液,玻璃纤维作为隔膜,组装2032型扣式水系锌离子电池。
测试例1
将上述实施例1制得的钛掺杂改性二氧化锰电极材料,通过X射线衍射进行表征,如图1所示,从图1中可以看出本发明方法制得的钛掺杂改性二氧化锰电极材料为2×2隧道结构的α-MnO2,且钛掺杂前后,材料的结构并未发生明显的变化。
测试例2
将上述应用例1装配好的2032型扣式水系锌离子电池,在CHI760E电化学工作站及新威电池测试仪上对其循环伏安、充放电比容量、循环寿命等电化学性能进行测试,其结果如图2所示。从图2(a)可以看出,钛元素的引入,并未改变二氧化锰材料的充放电工作机理,但使其充放电平台之间的电压差有略微增加,表明离子的引入使该材料极化电位略微增加,电化学极化现象有所增加;从图2(b)中可以看出,在100mA g-1的电流密度下进行循环充放电测试,钛掺杂后样品的首次可逆比容量为271mA h g-1,而原始样品的仅为162mA h g-1;经过50次充放电循环后,钛掺杂样品的可逆容量为127mA h g-1,而原始样品的为76mA hg-1,结果表明钛掺杂改性处理,有效改善了α-MnO2的储锌电化学特性。
上述为本发明的较佳实施例仅用于解释本发明,并不用于限定本发明。凡由本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (10)

1.一种钛掺杂改性二氧化锰电极材料的制备方法,其特征在于,该方法包括如下步骤:
(1)将锰源溶于分散剂中并搅拌,得到分散液A;
(2)将钛源溶于分散剂中并搅拌,得到分散液B;
(3)向所述分散液A中加入酸并搅拌,得到混合液A;
(4)将所述分散液B加入所述混合液A并搅拌,得到混合液B;
(5)将金属还原剂分别用有机溶剂和酸浸泡,浸泡后清洗;
(6)将清洗后的金属还原剂加入所述混合液B中并加热,然后冷却,除去上清液,洗涤,干燥,得到钛掺杂改性二氧化锰电极材料。
2.根据权利要求1所述的一种钛掺杂改性二氧化锰电极材料的制备方法,其特征在于,步骤(1)中所述的锰源为高锰酸钾;所述的分散剂为去离子水;所述高锰酸钾与所述去离子水的摩尔体积比为0.04-0.08mol/L;所述搅拌为室温搅拌,且搅拌20-40分钟。
3.根据权利要求1所述的一种钛掺杂改性二氧化锰电极材料的制备方法,其特征在于,步骤(2)中所述钛源与所述锰源的摩尔比为1:(1-40);所述钛源为草酸钛钾;所述分散剂为去离子水;所述草酸钛钾与所述去离子水的摩尔体积比为0.01-0.05mol/L;所述搅拌为室温搅拌,且搅拌20-40分钟。
4.根据权利要求1所述的一种钛掺杂改性二氧化锰电极材料的制备方法,其特征在于,步骤(3)中所述酸为质量分数80-90%的浓硫酸;所述分散液A与所述酸的体积比为(10-20):1;所述搅拌时间为10-20分钟。
5.根据权利要求1所述的一种钛掺杂改性二氧化锰电极材料的制备方法,其特征在于,步骤(5)中所述金属还原剂为铜箔;将所述铜箔分别置于无水乙醇和稀硝酸中浸泡10-30分钟,浸泡后用去离子水清洗3-5次。
6.根据权利要求1所述的一种钛掺杂改性二氧化锰电极材料的制备方法,其特征在于,步骤(6)将清洗后的金属还原剂加入所述混合液B中,将溶液转移至集热式恒温加热磁力搅拌器中,在60-80℃下恒温静置5-10小时,然后自然冷却至室温,除去上层清液,用去离子水离心洗涤3-5次,然后在60-70℃下干燥12-24小时,得到钛掺杂改性二氧化锰电极材料。
7.一种钛掺杂改性二氧化锰电极材料的应用,其特征在于,将权利要求1-6任一项所述的制备方法制得的钛掺杂改性二氧化锰电极材料作为正极材料,用于组装水系锌离子电池。
8.根据权利要求7所述的一种钛掺杂改性二氧化锰电极材料的应用,其特征在于,组装水系锌离子电池包括如下步骤:
(1)将所述钛掺杂改性二氧化锰电极材料、导电剂和粘结剂加入有机溶剂中并搅拌,得到涂覆浆料;
(2)将所得涂覆浆料全部涂覆于集流体上,然后干燥,得到电极片;
(3)将上述步骤(2)所得的电极片作为正极,金属锌作为负极,1.0mol/L的硫酸锌水溶液作为电解液,玻璃纤维作为隔膜,组装水系锌离子电池。
9.根据权利要求8所述的一种钛掺杂改性二氧化锰电极材料的应用,其特征在于,组装水系锌离子电池:步骤(1)中所述导电剂为乙炔黑;所述粘结剂为聚偏氟乙烯;所述有机溶剂为1-甲基-2-吡咯烷酮;所述钛掺杂改性二氧化锰电极材料、所述导电剂与所述粘结剂之间的质量比为7:2:1。
10.根据权利要求8所述的一种钛掺杂改性二氧化锰电极材料的应用,其特征在于,组装水系锌离子电池:步骤(2)中所述干燥为真空干燥,干燥温度为90-110℃,干燥12-24小时。
CN202011006232.XA 2020-09-23 2020-09-23 一种钛掺杂改性二氧化锰电极材料的制备方法与应用 Withdrawn CN112250114A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011006232.XA CN112250114A (zh) 2020-09-23 2020-09-23 一种钛掺杂改性二氧化锰电极材料的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011006232.XA CN112250114A (zh) 2020-09-23 2020-09-23 一种钛掺杂改性二氧化锰电极材料的制备方法与应用

Publications (1)

Publication Number Publication Date
CN112250114A true CN112250114A (zh) 2021-01-22

Family

ID=74232968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011006232.XA Withdrawn CN112250114A (zh) 2020-09-23 2020-09-23 一种钛掺杂改性二氧化锰电极材料的制备方法与应用

Country Status (1)

Country Link
CN (1) CN112250114A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937278A (zh) * 2021-10-15 2022-01-14 北京化工大学 一种硫阴离子掺杂的二氧化锰材料及其制备与用途、以及包含其的锌离子电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937278A (zh) * 2021-10-15 2022-01-14 北京化工大学 一种硫阴离子掺杂的二氧化锰材料及其制备与用途、以及包含其的锌离子电池

Similar Documents

Publication Publication Date Title
CN107221716B (zh) 一种可充电水系锌离子电池
CN113270577B (zh) 一种水系锌离子电池及正极材料
CN113422048B (zh) 一种水系锌离子电池正极材料的制备方法及其应用
CN109830672A (zh) 一种MnO@氮掺杂多孔碳纳米复合物的制备方法及用途
CN107546372B (zh) 一种阴离子掺杂的磷酸钛锂负极材料及其制备和应用
CN114883559A (zh) 一种萘醌-喹喔啉有机电极材料及其在水系锌离子电池中的应用
CN111900406A (zh) 一种碳包覆硅酸锰材料的制备方法与应用
CN110649259A (zh) 钾离子电池用正极材料K0.75MnO2及其制备方法
CN111081986B (zh) 一种高功率外敷式铅炭电池负极的制备方法
CN113130878B (zh) 一种硼掺杂硅基负极材料的制备方法及其应用
CN112928343B (zh) 一种适用于大规模储能应用的水系铜离子电池
CN109346717A (zh) 一种自支撑NaxMnO2阵列钠离子电池正极材料及其制备方法
CN112250114A (zh) 一种钛掺杂改性二氧化锰电极材料的制备方法与应用
CN111082162B (zh) 一种水系钠离子电池
CN113130884A (zh) 一种F掺杂TiO2-B的制备方法及其应用
CN114725313B (zh) 一种硅基负极片及其制备方法与应用
CN115084471B (zh) 层状卤化物双钙钛矿锂离子电池负极材料及其制备方法
CN112490414A (zh) 一种二氧化锡和五氧化二钒复合电极材料及其制备方法和应用
CN114824542A (zh) 废旧锂离子电池中负极石墨的回收方法及应用
CN109841800A (zh) 一种氟磷酸钒钠与碳复合物及其制备和应用
CN113526527A (zh) 钠离子电池普鲁士蓝正极材料及其制备方法和应用
CN105070900A (zh) 用电解锰阳极泥制备富锂锰基电极材料的工艺
CN114538500B (zh) 一种棒状结构Zn2GeO4材料及其制备方法和应用
CN115849446B (zh) 一种铜元素掺杂铌酸钛微球负极材料及其制备方法和应用
CN111943204B (zh) 一种空位钒基max的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210122

WW01 Invention patent application withdrawn after publication