CN112250082A - 一种过渡族金属化合物及其制备方法 - Google Patents

一种过渡族金属化合物及其制备方法 Download PDF

Info

Publication number
CN112250082A
CN112250082A CN202011154769.0A CN202011154769A CN112250082A CN 112250082 A CN112250082 A CN 112250082A CN 202011154769 A CN202011154769 A CN 202011154769A CN 112250082 A CN112250082 A CN 112250082A
Authority
CN
China
Prior art keywords
powder
graphite
sintering
equal
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011154769.0A
Other languages
English (en)
Other versions
CN112250082B (zh
Inventor
吴来磊
陈志斌
缑慧阳
田瑞丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202011154769.0A priority Critical patent/CN112250082B/zh
Publication of CN112250082A publication Critical patent/CN112250082A/zh
Application granted granted Critical
Publication of CN112250082B publication Critical patent/CN112250082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/21Sulfides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种过渡族金属化合物及其制备方法,属于多元化合物技术领域。本发明先将过渡族金属粉末与非金属粉末混合,进行研磨,得到混合粉末;再将所述混合粉末依次进行压制成型和烧结,得到过渡族金属化合物;所述烧结的压力为4.5~5.5GPa。本发明以单质粉末作为原料,避免了有机溶剂的使用,环保无害;本发明通过在高压条件下进行烧结,可以极大的改变原子之间的成键强度,从而提高过渡族金属化合物的结晶性和稳定性。实施例结果表明,本发明所得Ni2B0.11P0.89,NiFeB均具有良好的结晶度和稳定性。

Description

一种过渡族金属化合物及其制备方法
技术领域
本发明涉及多元化合物技术领域,特别涉及一种过渡族金属化合物及其制备方法。
背景技术
过渡族金属由于具有和铂、铑以及钌等贵金属相似的最外层电子排列的特性以及价格低廉、地球储存量丰富的特点,是作为电解水的新型催化剂的新选择。然而过渡族金属单质的催化活性较低,通过与一些非金属元素形成化合物可以提高其催化活性。
现有的技术中,通常采取的过渡族金属化合物制备方法有以下几种:(1)水热/溶剂热法:以金属盐作为金属源,在一些含有硼元素、磷元素或硫元素的有机溶剂中通过加热发生反应得到目标产物,此工艺会使用到有机溶剂,具有毒性。(2)化学气相沉积法:以含金属的材料作为基底,在氮气气氛下将非金属元素沉积在表面得到目标产物;此工艺可以合成某些氮化物,但是制备得到的材料稳定性较差,且工艺复杂,原料要求高。(3)电化学沉积法:以金属单质作为电极,含非金属的盐溶液作为电解液,通过施加外电场而发生电化学反应在电极上发生氧化还原反应得到目标产物;此工艺容易实现,但是制得的产品可能由于电压电流的不稳定导致结晶性差。
发明内容
有鉴于此,本发明的目的在于提供一种过渡族金属化合物及其制备方法,本发明提供的制备方法操作简单、无毒,所得过渡族金属化合物具有良好的结晶性和稳定性。
为了实现上述发明的目的,本发明提供以下技术方案:
本发明提供了一种过渡族金属化合物的制备方法,包括以下步骤:
(1)将过渡族金属粉末与非金属粉末混合,研磨后得到混合粉末;
所述过渡族金属粉末为Ni粉、Fe粉、Pd粉和Co粉中的一种或几种,所述非金属粉末为B粉、P粉和S粉中的一种或几种;
(2)将所述混合粉末压制成型,得到成型块体;
(3)对所述成型块体进行高压烧结,得到过渡族金属化合物;
所述高压烧结的压力为4.5~5.5GPa。
优选的,所述过渡族金属粉末的粒径为100~200nm,所述非金属粉末的粒径为80~120μm。
优选的,所述混合粉末的粒径为100~104nm。
优选的,所述烧结包括:
将所述成型块体装填入烧结装置中,进行加压;
当压力达到3GPa时,同步加压和升温;
当温度达到第一烧结温度后,进行第一保温;
所述第一烧结温度为1000~1500℃。
优选的,所述第一保温的时间为20~30min;升温至所述第一烧结温度的升温速率为4~10℃/min。。
优选的,所述第一保温后,还包括降温至第二烧结温度,进行第二保温;
所述第二烧结温度低于第一烧结温度200~300℃;所述第二保温的时间为15~30min,降温至所述第二烧结温度的降温速率为20~40℃/min。
优选的,所述烧结使用的烧结装置包括基体,所述基体开有通孔;所述基体的材质为叶腊石;
所述通孔中自上而下依次装填有第一导电钢帽、石墨垫片、石墨胶囊、石墨垫片和第二导电钢帽;
所述石墨胶囊的数量为一个或多个;当所述石墨胶囊的数量为多个时,所述多个石墨胶囊串联排列,相邻石墨胶囊间通过石墨垫片进行分隔;
所述石墨胶囊包括石墨胶囊腔体和石墨盖体;
所述石墨胶囊腔体内设有氮化硼胶囊,所述氮化硼胶囊包括氮化硼胶囊腔体和氮化硼盖体;
当进行烧结时,所述成型块体装填于所述氮化硼腔体中。
本发明提供了上述制备方法制备得到的过渡族金属化合物,包括NiBxPy,其中0≤x≤0.2,0.8≤y≤1;
FexNi2-xB,其中0≤x≤1;
PdSx,其中1.8≤x≤2.2;
和PdPxS2-x,其中0≤x≤2中的一种或几种。
本发明提供了一种过渡族金属化合物的制备方法,先将过渡族金属粉末与非金属粉末混合,进行研磨,得到混合粉末;再将所述混合粉末依次进行压制成型和烧结,得到过渡族金属化合物;所述烧结的压力为5GPa。本发明以单质粉末作为原料,避免了有机溶剂的使用,环保无害;本发明通过在高压下进行烧结,可以极大的提高原子之间的成键强度,从而提高过渡族金属化合物的结晶性和稳定性。实施例结果表明,本发明所得Ni2B0.11P0.89,NiFeB均具有良好的结晶度和稳定性。
附图说明
图1为本发明烧结装置的结构示意图;
图2为实施例1所得镍的硼磷化物的扫描电镜图;
图3为实施例1所得镍的硼磷化物的能谱分析图;
图4为实施例1所得镍的硼磷化物的X射线衍射图;
图5为实施例1所得镍的硼磷化物的结构和晶型;
图6为实施例2所得铁镍的硼化物的扫描电镜图;
图7为实施例2所得铁镍的硼化物的能谱分析图;
图8为实施例2所得铁镍的硼化物的X射线衍射图;
图9为实施例2所得铁镍的硼化物的结构和晶型;
图10为实施例3所得PdS2的扫描电镜图;
图11为实施例3所得PdS2的能谱分析图;
图12为实施例4所得PdPS的扫描电镜图;
图13为实施例4所得PdPS的能谱分析图。
具体实施方式
本发明提供了一种过渡族金属化合物的制备方法,包括以下步骤:
(1)将过渡族金属粉末与非金属粉末混合,研磨后得到混合粉末;
所述过渡族金属粉末为Ni粉、Fe粉、Pd粉和Co粉中的一种或几种,所述非金属粉末为B粉、P粉和S粉中的一种或几种;
(2)将所述混合粉末压制成型,得到成型块体;
(3)对所述成型块体进行高压烧结,得到过渡族金属化合物;
所述高压烧结的压力为5GPa。
本发明将过渡族金属粉末与非金属粉末混合,进行研磨,得到混合粉末。在本发明中,所述过渡族金属为Ni、Fe、Pd和Co中的一种或几种,所述非金属为B、P和S中的一种或几种。在本发明中,所述过渡族金属优选为在本发明中,所述过渡族金属粉末的粒径优选为100~200nm,更优选为120~180nm;所述过渡族金属粉末的纯度优选≥99.9%。在本发明中,所述非金属粉末的粒径优选为80~120μm,更优选为100μm;所述非金属粉末的纯度优选≥99%。在本发明中,当已知过渡族金属化合物目标产物的结构时,所述过渡族金属与非金属的摩尔比优选与目标产物中过渡族金属与非金属的摩尔比相同。
本发明对所述混合的方式没有特殊的要求,使用本领域技术人员熟知的混合方式即可,具体的如搅拌混合。本发明对所述研磨的方式没有特殊的要求,使用本领域技术人员熟知的研磨方式即可,所述研磨的时间优选为30~40min,更优选为32~36min;本发明优选使用玛瑙研进行所述研磨。在本发明中,所述混合粉末的粒径优选为100~104nm,更优选为500~5000nm。在本发明中,所述混合和研磨优选在氩气环境中进行。本发明通过在氩气环境中进行混合和研磨,避免混合粉末被氧化。
得到所述混合粉末后,本发明将所述混合粉末压制成型,得到成型块体。本发明对所述压制成型的方式没有特殊的要求,使用本领域技术人员熟知的压制成型方式即可。作为本发明的一个具体实施例,本发明优选使用硬质合金模具和压片机进行压制,作为本发明的一个具体实施例,所述压制的时间优选为10min,压力优选为2MPa。
在本发明实施例中,所述成型块体优选为圆柱形;所述成型块体的直径优选为3~5mm,更优选为3.5~4.5mm;高度优选为3.5~4mm,更优选为3.6~3.8mm。本发明通过所述压制成型,便于后续烧结的进行。
得到所述成型块体后,本发明对所述成型块体进行烧结,得到过渡族金属化合物。在本发明中,所述烧结的温度优选为1000~1200℃,更优选为1050~1150℃,进一步优选为1100℃;所述压力优选为4.5~5.5GPa,更优选为5GPa。在本发明中,所述烧结的过程优选包括:
将所述成型块体装填入烧结装置中,进行加压;
当压力达到3GPa时,同步加压和升温;
当温度达到第一烧结温度后,进行第一保温。
在本发明中,所述烧结装置优选包括基体,所述基体开有通孔;所述基体的材质为叶腊石;
所述通孔中自上而下依次装填有第一导电钢帽、石墨垫片、石墨胶囊、石墨垫片和第二导电钢帽;
所述石墨胶囊的数量为一个或多个;当所述石墨胶囊的数量为多个时,所述多个石墨胶囊串联排列,相邻石墨胶囊间通过石墨垫片进行分隔;
所述石墨胶囊包括石墨胶囊腔体和石墨盖体;
所述石墨胶囊腔体内设有氮化硼胶囊,所述氮化硼胶囊包括氮化硼胶囊腔体和氮化硼盖体;
当进行烧结时,所述成型块体装填于所述氮化硼腔体中。
在本发明中,所述烧结装置的形状优选为立方体型。在本发明中,所述通孔的孔径优选为12±0.1mm。在本发明中,所述导电钢帽封堵通孔的两端开口;本发明对所述导电钢帽、石墨垫片没有特殊的要求,使用本领域技术人员熟知的导电钢帽和石墨垫片即可;作为本发明的一个具体实施例,所述导电钢帽的直径优选为12±0.1mm,厚度优选为6±0.1mm;所述石墨垫片的直径优选为12±0.1mm,厚度优选为1.5±0.1mm。在本发明中,所述导电钢帽起到导电的作用,石墨垫片起到加热元件的作用。
在本发明中,所述石墨胶囊的外径优选为12±0.1mm mm,内径优选为9±0.1mmmm,所述石墨胶囊腔体的深度优选为5±0.1mm mm,所述石墨盖体的厚度优选为1.5±0.1mm。在本发明中,当所述石墨胶囊的数量为多个时,所述多个石墨胶囊串联排列;所述石墨胶囊的数量优选为2个。
在本发明中,所述氮化硼胶囊的外径优选为9±0.1mm,内径优选为5±0.1mm;所述氮化硼胶囊腔体的深度优选为4.5±0.1mm,所述氮化硼盖体的厚度优选为1±0.1mm。
在本发明中,上述尺寸为实验室操作尺寸,当进行工业生产时,所述烧结装置的的尺寸等比例放大即可。
在本发明中,所述烧结装置的结构示意图如图1所示。
在本发明中,上述烧结装置具有良好的传压性能,能够保证所得过渡族金属化合物的结晶性和稳定性。在本发明中,所述氮化硼胶囊稳定,在烧结的过程中不会与原料发生反应,能够保证所得过渡族金属化合物的稳定性。
本发明优选使用人造金刚石六面顶液压机进行所述加压,所述加压速率优选为5GPa/min。
在本发明中,所述第一烧结的温度优选为1000~1500℃,更优选为1200~1400℃,进一步优选为1350℃;所述第一保温的时间优选为20~30min,更优选为25min;升温至所述第一烧结温度的升温速率优选为4~10℃/min,更优选为6℃/min。本发明从温度达到所述烧结温度后开始计算第一保温时间。
所述第一保温后,本发明还优选降温至第二烧结温度,进行第二保温,在本发明中,所述第二烧结温度优选低于第一烧结温度200~300℃,更优选为220~260℃;所述第二保温的时间优选为20~30min,更优选为22~28min,进一步优选为25min。在本发明中,降温至所述第二烧结温度的降温速率优选为20~40℃/min,更优选为30℃/min;本发明从温度达到所述烧结温度后开始计算第二保温的时间。本发明通过所述分阶段烧结,能够提高产品的结晶度和纯度。
完成所述烧结后,本发明优选对烧结产物进行冷却;在本发明中,所述冷却的方式优选为随炉冷却至室温。
所述烧结后,本发明优选将得到的烧结产物进行后处理,得到所述过渡族金属化合物;所述后处理优选包括抛光或球磨。
本发明对所述抛光的方式没有特殊的要求,使用本领域技术人员熟知的抛光方式即可。
本发明对所述球磨的方式没有特殊的要求,使用本领域技术人员熟知的球磨方式即可。本发明对所述球磨后的粒径没有特殊的要求,根据产品的需要进行相应的设计即可。
本发明提供了上述制备方法制备得到的制备方法得到的过渡族金属化合物,包括NiBxPy(0≤x≤0.2,0.8≤y≤1)、FexNi2-xB(0≤x≤1)、PdSx(1.8≤x≤2.2)和PdPxS2-x((0≤x≤2)中的一种或几种,优选包括Ni2B0.11P0.89,NiFeB、PdS2和PdPS中的一种或几种。
下面结合实施例对本发明提供的过渡族金属化合物及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
(1)在氩气环境手套箱中,将纯度≥99%、粒径为100μm的红磷粉,纯度≥99.9%、粒径为100nm的镍粉,纯度≥99%、粒径为100μm的硼粉按照摩尔比为3:1:1混合,在玛瑙研钵中手工研磨30min,得到粒径为100~104nm的混合粉末。
(2)利用型号为5毫米的硬质合金模具和压片机将所述混合粉末压制成直径为5mm,高度为4mm的块体。
(3)将上述得到的块体装填到外径为9mm,内径为5mm,深度为4.5mm的氮化硼胶囊中,盖上一个厚度为1mm的氮化硼盖子;将整个氮化硼胶囊装入一个外径为12mm,内径为9mm,深度为5mm的石墨胶囊中;将整个石墨胶囊、石墨垫片以及导电钢帽按照导电钢帽-石墨垫片-石墨胶囊-石墨垫片-导电钢帽的顺序装入含有通孔的叶腊石中,通孔的直径为12mm。将整个叶腊石放入人造金刚石六面顶液压机中,预设压力为5GPa,当压力增加到3GPa时开始烧结,以6℃/min的速率升温至1350℃,保温30min后用30分钟慢降温到1100℃,保温30分钟。然后随炉冷却到室温取出烧结块,利用球磨机研磨成粒径为100nm左右的粉体,得到镍的硼磷化物粉末(Ni2B0.11P0.89)。
对所得镍的硼磷化物粉末进行扫描电镜测试,所得结果如图2所示。由图2可以看出,所得样品为单一成分。
对所得镍的硼磷化物粉末进行能谱分析,所得能谱分析图谱如图3所示。由图3可以看出,本发明所得镍的硼磷化物为纯相。
对所得镍的硼磷化物粉末进行X射线衍射分析,所得X射线衍射图谱如图4所示。由图4可以看出,所得镍的硼磷化物具有良好的结晶度;同时图4中没有杂峰,说明本发明所得产物在空气中不会氧化,具有良好的稳定性。
本发明所得镍的硼磷化物的结构和晶型如图5所示。由图5可以看出,该样品为六方Ni2P结构,所属空间群为P62m[空间群号,189]。
实施例2
(1)在氩气环境手套箱中,将纯度≥99.9%、粒径为100nm的铁粉,纯度≥99.9%、粒径为100nm的镍粉,纯度≥99%、粒径为100μm的硼粉按照摩尔比为1:1:1混合,在玛瑙研钵中手工研磨40min,得到粒径为100~104nm的混合粉末。
(2)利用型号为5毫米的硬质合金模具和压片机将所述混合粉末压制成直径为5mm,高度为3.5mm的块体。
(3)将上述得到的块体装填到外径为9mm,内径为5mm,深度为4.5mm的氮化硼胶囊中,盖上一个厚度为1mm的氮化硼盖子;将整个氮化硼胶囊装入一个外径为12mm,内径为9mm,深度为5mm的石墨胶囊中;将整个石墨胶囊、石墨垫片以及导电钢帽按照导电钢帽-石墨垫片-石墨胶囊-石墨垫片-导电钢帽的顺序装入含有通孔的叶腊石中,通孔的直径为12mm。将整个叶腊石放入人造金刚石六面顶液压机中,预设压力为5GPa,当压力增加到3GPa时开始烧结,以6℃/min的速率升温至1500℃,保温30min。然后随炉冷却到室温取出烧结块,利用球磨机研磨成粒径为100nm左右的粉体,得到铁镍的硼化物粉末(NiFeB)。
对所得铁镍的硼化物粉末进行扫描电镜测试,所得结果如图6所示。由图6可以看出,该产物为单一成分。
对所得铁镍的硼化物粉末进行能谱分析,所得能谱分析图谱如图7所示。由图7可以看出,本发明所得铁镍的硼化物为纯相。
对所得铁镍的硼化物粉末进行X射线衍射分析,所得X射线衍射图谱如图8所示。由图8可以看出,所得铁镍的硼化物具有良好的结晶度;同时图8中没有杂峰,说明本发明所得产物所得在空气中样品不会氧化产生别的物质,具有良好的稳定性。
本发明所得铁镍的硼化物的结构和晶型如图9所示。由图9可以看出,四方Ni2B结构,所属空间群为P4/mmm(空间群号:123)。
实施例3
(1)在氩气环境手套箱中,将纯度≥99.9%、粒径为100nm的钯粉,纯度≥99%、粒径为100μm的硫粉按照摩尔比为1:2混合,在玛瑙研钵中手工研磨35min,得到粒径为100~104nm的混合粉末。
(2)利用型号为5毫米的硬质合金模具和压片机将所述混合粉末压制成直径为5mm,高度为3.5mm的块体。
(3)将上述得到的块体装填到外径为9mm,内径为5mm,深度为4.5mm的氮化硼胶囊中,盖上一个厚度为1mm的氮化硼盖子;将整个氮化硼胶囊装入一个外径为12mm,内径为9mm,深度为5mm的石墨胶囊中;将整个石墨胶囊、石墨垫片以及导电钢帽按照导电钢帽-石墨垫片-石墨胶囊-石墨垫片-导电钢帽的顺序装入含有通孔的叶腊石中,通孔的直径为12mm。将整个叶腊石放入人造金刚石六面顶液压机中,预设压力为5GPa,当压力增加到3GPa时开始烧结,以6℃/min的速率升温至1500℃,保温20min后以20℃/min的速率降温到900℃,保温30min。然后随炉冷却到室温取出烧结块,利用球磨机研磨成粒径为100nm左右的粉体,得到PdS2粉末。
对所得PdS2粉末进行扫描电镜测试,所得结果如图10所示。由图10可以看出,所得样品为单一成分。
对所得PdS2粉末进行能谱分析,所得能谱分析图谱如图11所示。由图11可以看出,本发明所得PdS2为纯相。
能谱分析所得元素的智能量化结果如表1所示:
表1所得元素的智能量化结果
元素 质量% Atomic% Netlnt. Error% Kratio Z R A F
S 43.10 71.54 7107.13 2.99 0.4273 1.1560 0.0110 0.8406 1.0204
Pd 56.90 28.46 3384.24 3.08 0.4309 0.8835 1.0978 0.8483 1.0104
由表1可以看出,所得样品为PdS2
实施例4
(1)在氩气环境手套箱中,将纯度≥99.9%、粒径为100nm的钯粉,纯度≥99%、粒径为110μm的硫粉,纯度≥99%、粒径为100μm的磷粉按照摩尔比为1:1:1混合,在玛瑙研钵中手工研磨30min,得到粒径为100~104nm的混合粉末。
(2)利用型号为5毫米的硬质合金模具和压片机将所述混合粉末压制成直径为5mm,高度为3.5mm的块体。
(3)将上述得到的块体装填到外径为9mm,内径为5mm,深度为4.5mm的氮化硼胶囊中,盖上一个厚度为1mm的氮化硼盖子;将整个氮化硼胶囊装入一个外径为12mm,内径为9mm,深度为5mm的石墨胶囊中;将整个石墨胶囊、石墨垫片以及导电钢帽按照导电钢帽-石墨垫片-石墨胶囊-石墨垫片-导电钢帽的顺序装入含有通孔的叶腊石中,通孔的直径为12mm。将整个叶腊石放入人造金刚石六面顶液压机中,预设压力为5GPa,当压力增加到3GPa时开始烧结,以6℃/min的速率升温至1500℃,保温20min后以40℃/min的速率降温到900℃,保温30min。然后随炉冷却到室温取出烧结块,利用球磨机研磨成粒径为100nm左右的粉体,得到PdPS粉末。
对所得PdPS粉末进行扫描电镜测试,所得结果如图12所示。由图12可以看出,所得样品为单一成分。
对所得PdPS粉末进行能谱分析,所得能谱分析图谱如图13所示。由图13可以看出,本发明所得PdPS为纯相。
能谱分析所得元素的智能量化结果如表2所示:
表2所得元素的智能量化结果
元素 质量% Atomic% Netlnt. Error% Kratio Z R A F
P 23.07 38.66 3065.71 3.84 0.2068 1.1357 0.9067 0.7714 1.0236
S 21.65 34.07 2524.74 4.63 0.1740 1.1599 0.9149 0.6980 1.0211
Pd 55.89 27.27 2956.59 2.94 0.4314 0.8864 1.1023 0.8617 1.0106
由表2可以看出,所得样品为PdPS。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种过渡族金属化合物的制备方法,包括以下步骤:
(1)将过渡族金属粉末与非金属粉末混合,研磨后得到混合粉末;
所述过渡族金属粉末为Ni粉、Fe粉、Pd粉和Co粉中的一种或几种,所述非金属粉末为B粉、P粉和S粉中的一种或几种;
(2)将所述混合粉末压制成型,得到成型块体;
(3)对所述成型块体进行高压烧结,得到过渡族金属化合物;
所述高压烧结的压力为4.5~5.5GPa。
2.根据权利要求1所述的制备方法,其特征在于,所述过渡族金属粉末的粒径为100~200nm,所述非金属粉末的粒径为80~120μm。
3.根据权利要求1所述的制备方法,其特征在于,所述混合粉末的粒径为100~104nm。
4.根据权利要求1所述的制备方法,其特征在于,所述烧结包括:
将所述成型块体装填入烧结装置中,进行加压;
当压力达到3GPa时,同步加压和升温;
当温度达到第一烧结温度后,进行第一保温;
所述第一烧结温度为1000~1500℃。
5.根据权利要求4所述的制备方法,其特征在于,所述第一保温的时间为20~30min;升温至所述第一烧结温度的升温速率为4~10℃/min。。
6.根据权利要求4所述的制备方法,其特征在于,所述第一保温后,还包括降温至第二烧结温度,进行第二保温;
所述第二烧结温度低于第一烧结温度200~300℃;所述第二保温的时间为15~30min,降温至所述第二烧结温度的降温速率为20~40℃/min。
7.根据权利要求1或4所述的制备方法,其特征在于,所述烧结使用的烧结装置包括基体,所述基体开有通孔;所述基体的材质为叶腊石;
所述通孔中自上而下依次装填有第一导电钢帽、石墨垫片、石墨胶囊、石墨垫片和第二导电钢帽;
所述石墨胶囊的数量为一个或多个;当所述石墨胶囊的数量为多个时,所述多个石墨胶囊串联排列,相邻石墨胶囊间通过石墨垫片进行分隔;
所述石墨胶囊包括石墨胶囊腔体和石墨盖体;
所述石墨胶囊腔体内设有氮化硼胶囊,所述氮化硼胶囊包括氮化硼胶囊腔体和氮化硼盖体;
当进行烧结时,所述成型块体装填于所述氮化硼腔体中。
8.权利要求1~7任意一项所述制备方法制备得到的过渡族金属化合物,包括NiBxPy,其中0≤x≤0.2,0.8≤y≤1;
FexNi2-xB,其中0≤x≤1;
PdSx,其中1.8≤x≤2.2;
和PdPxS2-x,其中0≤x≤2中的一种或几种。
CN202011154769.0A 2020-10-26 2020-10-26 一种过渡族金属化合物及其制备方法 Active CN112250082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011154769.0A CN112250082B (zh) 2020-10-26 2020-10-26 一种过渡族金属化合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011154769.0A CN112250082B (zh) 2020-10-26 2020-10-26 一种过渡族金属化合物及其制备方法

Publications (2)

Publication Number Publication Date
CN112250082A true CN112250082A (zh) 2021-01-22
CN112250082B CN112250082B (zh) 2022-03-22

Family

ID=74261583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011154769.0A Active CN112250082B (zh) 2020-10-26 2020-10-26 一种过渡族金属化合物及其制备方法

Country Status (1)

Country Link
CN (1) CN112250082B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114016066A (zh) * 2021-11-29 2022-02-08 西藏大学 一种Ni-Fe双金属硼化物纳米片阵列催化剂、其制备方法和应用
CN114524438A (zh) * 2022-03-03 2022-05-24 吉林大学 一种镍硼化合物单一相块体材料的高温高压制备方法
CN116589282A (zh) * 2023-06-06 2023-08-15 西安热工研究院有限公司 一种NiB2 化合物的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938814A (en) * 1997-02-25 1999-08-17 Kawasaki Steel Corporation Iron based powder mixture for powder metallurgy
US20100116088A1 (en) * 2008-11-10 2010-05-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength composition iron powder and sintered part made therefrom
CN202594786U (zh) * 2012-05-14 2012-12-12 河南飞孟金刚石工业有限公司 一种合成立方氮化硼的加热装置
CN107651959A (zh) * 2017-11-02 2018-02-02 中国科学院地球化学研究所 一种在高温高压下制备一磷化二铁Fe2P的方法
CN107778008A (zh) * 2017-11-02 2018-03-09 中国科学院地球化学研究所 一种在高温高压下制备一磷化一铁FeP的方法
CN107814572A (zh) * 2017-11-02 2018-03-20 中国科学院地球化学研究所 一种在高温高压下制备一磷化三铁Fe3P的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938814A (en) * 1997-02-25 1999-08-17 Kawasaki Steel Corporation Iron based powder mixture for powder metallurgy
US20100116088A1 (en) * 2008-11-10 2010-05-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength composition iron powder and sintered part made therefrom
CN202594786U (zh) * 2012-05-14 2012-12-12 河南飞孟金刚石工业有限公司 一种合成立方氮化硼的加热装置
CN107651959A (zh) * 2017-11-02 2018-02-02 中国科学院地球化学研究所 一种在高温高压下制备一磷化二铁Fe2P的方法
CN107778008A (zh) * 2017-11-02 2018-03-09 中国科学院地球化学研究所 一种在高温高压下制备一磷化一铁FeP的方法
CN107814572A (zh) * 2017-11-02 2018-03-20 中国科学院地球化学研究所 一种在高温高压下制备一磷化三铁Fe3P的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘亚州: "铁硼化合物合成及物性研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114016066A (zh) * 2021-11-29 2022-02-08 西藏大学 一种Ni-Fe双金属硼化物纳米片阵列催化剂、其制备方法和应用
CN114524438A (zh) * 2022-03-03 2022-05-24 吉林大学 一种镍硼化合物单一相块体材料的高温高压制备方法
CN116589282A (zh) * 2023-06-06 2023-08-15 西安热工研究院有限公司 一种NiB2 化合物的制备方法及其应用

Also Published As

Publication number Publication date
CN112250082B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN112250082B (zh) 一种过渡族金属化合物及其制备方法
Jin et al. Three-dimensional porous MoNi 4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting
Jeoung et al. Direct conversion of coordination compounds into Ni 2 P nanoparticles entrapped in 3D mesoporous graphene for an efficient hydrogen evolution reaction
CN108129153B (zh) 一种多元稀土硼化物(LaxSr1-x)B6多晶阴极材料及其制备方法
CN108611539A (zh) 一种复合强化硬质合金及其制备方法
CN109182874A (zh) 一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法
CN111747742A (zh) 一种黑色导电氧化锆陶瓷的制备方法
CN113716580A (zh) 一种高熵硼化物微纳陶瓷颗粒及其制备方法
CN108118234B (zh) 一种CBN混合式含硼金刚石的制备方法及一种Fe基合金触媒
CN104843727A (zh) 多元稀土硼化物(LaxCe1-x)B6固溶体多晶阴极材料及其制备方法
SE511102C2 (sv) Förfarande för framställning av diamantimpregnerad karbid via in-situ-omvandling av dispergerad grafit
CN112403395A (zh) 一种金属磷化物的制备方法
CN108034851A (zh) 一种原位合成TiC增强铜基复合材料及其制备方法和应用
CN111847401B (zh) 一种贵金属氮化物纳米材料的制备方法
CN108274005B (zh) 一种以纳米WC-Co复合粉末制备低钴、超细晶硬质合金棒材的方法
KR101759720B1 (ko) 다공성 탄소 및 이의 제조 방법
CN110983142A (zh) 一种碳化钨-镍硬质合金的制备方法
CN114029002B (zh) 一种单晶金刚石的合成方法及合成装置
EP4112206A1 (en) Method of making a powder for additive manufacturing
CN110499529B (zh) 一种常规超导体材料磷化钨(wp)的高温高压制备
EP1409408A1 (de) Methode zur herstellung von magnesiumdiborid sowie von magnesiumdiborid-formkörpern aus magnesiumhydrid und elementarem bor mittels puls-plasma-synthese
CN114471364A (zh) 一种免晶种生长IIa型金刚石大单晶的合成块及其制备方法
CN114606525A (zh) 一种整体式多孔金属电极及其制备方法
CN113584337A (zh) 一种低铜含量钨铜复合材料的制备方法及产品
CN111809227A (zh) 一种制备多孔单晶金刚石的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant