CN112229386A - 一种工程勘探用定向距离检测设备及其检测方法 - Google Patents

一种工程勘探用定向距离检测设备及其检测方法 Download PDF

Info

Publication number
CN112229386A
CN112229386A CN202011076516.6A CN202011076516A CN112229386A CN 112229386 A CN112229386 A CN 112229386A CN 202011076516 A CN202011076516 A CN 202011076516A CN 112229386 A CN112229386 A CN 112229386A
Authority
CN
China
Prior art keywords
base
worm
inner cavity
wall
sliding block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011076516.6A
Other languages
English (en)
Inventor
王莉飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011076516.6A priority Critical patent/CN112229386A/zh
Publication of CN112229386A publication Critical patent/CN112229386A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种工程勘探用定向距离检测设备及其检测方法,包括三脚架,还包括:机架,可拆卸设置于所述三脚架的顶端;全站仪,可拆卸设置于所述机架的内腔底端;移动机构,可拆卸设置于所述机架的顶端;标记机构,数量为若干个,且从上至下堆叠设置于所述移动机构的顶端。本发明在实际使用时,无需人工手动测量打孔位置,省时省力,保证了打孔间距的精准度,大大的满足了现代道路建设的需求。

Description

一种工程勘探用定向距离检测设备及其检测方法
技术领域
本发明涉及工程勘探技术领域,具体为一种工程勘探用定向距离检测设备及其检测方法。
背景技术
勘察,是指根据建设工程的要求,查明、分析、评价建设场地的地质、地理环境特征和岩土工程条件并提出合理基础建议,编制建设工程勘察文件的活动。在采矿或工程施工前,对地形、地质构造、地下资源蕴藏情况等进行实地调查。在道路工程中,对路面平整度、定向距离、中心线等测量是必不可少的项目;
护栏作为道路的主要设施,通常要先对路面等距打孔,在埋桩安装护栏,传统的护栏安装是先用米尺等人工测量打孔位置,进行划线后打孔,人工测量既费时费力,又难以保证打孔间距的精准度,无法满足现代道路建设的需求。
发明内容
本发明的目的在于提供一种工程勘探用定向距离检测设备及其检测方法,以至少解决现有技术等距距离测量操作繁琐,打孔间距不够精准,效率低的问题。
为实现上述目的,本发明提供如下技术方案:一种工程勘探用定向距离检测设备,包括三脚架,还包括:机架,可拆卸设置于所述三脚架的顶端;全站仪,可拆卸设置于所述机架的内腔底端;移动机构,可拆卸设置于所述机架的顶端;标记机构,数量为若干个,且从上至下堆叠设置于所述移动机构的顶端;
所述标记机构包括:外壳,标记机构上相邻的两个外壳外壁接触面固定连接;蜗杆,两端分别通过轴承转动连接于所述外壳的左右内壁底端,且右端延伸出外壳的右侧壁;第二旋钮,固定连接于所述蜗杆的右端;蜗轮,通过销轴转动连接于所述外壳的内腔中部,且与所述蜗杆啮合连接;扇形齿轮,通过销轴转动连接于所述外壳的内腔左侧中部,且与所述蜗轮啮合连接;安装座,固定连接于所述扇形齿轮的左端;红外点状激光头,可拆卸设置于所述安装座的左侧壁。
优选的,所述移动机构包括:第一基座,可拆卸设置于所述机架的顶端,所述第一基座的内壁底端从前至后等距开设有若干个定位槽;第一滑块,可前后滑动的内嵌于所述第一基座的内腔,且与位于底部标记机构上的外壳的底端可拆卸连接;弹簧,内嵌于所述第一滑块的内腔内侧;卡球,内嵌于所述第一滑块的内腔外侧,且在弹簧作用下卡球插入定位槽内对第一滑块制动。
优选的,所述第一基座内腔呈燕尾槽形,且第一滑块与第一基座相适配插接。
优选的,所述卡球延伸出第一滑块的最大长度小于其自身半径。
优选的,所述移动机构包括:第二基座,可拆卸设置于所述机架的顶端;螺杆,两端分别通过轴承转动连接于所述第二基座的前后内壁,且前端延伸出第二基座的正面;第二滑块,螺接于所述螺杆的外壁,且相适配内嵌于所述第二基座的内腔,所述第二滑块与位于底部标记机构上的外壳的底端可拆卸连接;制动盘,固定连接于所述第二基座的正面,且与所述螺杆外壁套接;第一旋钮,可拆卸设置于所述螺杆的前端,且与制动盘前侧接触。
优选的,所述第二基座内腔呈燕尾槽形,且第二滑块与第二基座相适配插接。
本设备的检测方法,包括以下步骤,
步骤一,将三脚架放在待观测位置,调试好全站仪,便可利用全站仪对路面进行定向距离观测;
步骤二,当需要进行多点位等距测量时,利用移动机构使标记机构前后移动,直至标记机构处于点位等距测量直线上;
步骤三,在全站仪的观测下,根据等距测量点位的数量,由上至下依次旋拧标记机构中的第二旋钮,促使蜗杆顺时针或逆时针旋转,蜗杆可驱动蜗轮逆时针或顺时针转动,进而使扇形齿轮顺时针或逆时针转动,从而实现红外点状激光头的向上或向下摆动,利用红外点状激光头发出的红外线光柱对路面做出标记,标记测绘时由近到远,避免多个红外点状激光头光柱出现交叉,即可实现多点位等距测量。
本发明提出的一种工程勘探用定向距离检测设备及其检测方法,有益效果在于:
本发明利用全站仪可对路面进行检测,通过移动机构能使标记机构前后移动,使标记机构与测量等距点位在同一直线上,通过标记机构可使红外点状激光头向上或向下摆动,改变红外光柱照向地面的位置,进而实现等距点位测量标记,因此,在实际使用时,无需人工手动测量打孔位置,省时省力,保证了打孔间距的精准度,大大的满足了现代道路建设的需求。
附图说明
图1为本发明结构示意图;
图2为实施例1的移动机构结构示意图;
图3为实施例1的移动机构左视剖面图;
图4为实施例2的移动机构结构示意图;
图5为标记机构结构示意图;
图6为标记机构主视剖面图。
图中:1、三脚架,2、机架,3、全站仪,4、移动机构,41、第一基座,42、定位槽,43、第一滑块,44、弹簧,45、卡球,46、第二基座,47、螺杆,48、第二滑块,49、制动盘,410、第一旋钮,5、标记机构,51、外壳,52、蜗杆,53、第二旋钮,54、蜗轮,55、扇形齿轮,56、安装座,57、红外点状激光头。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一,请参阅图1、2、3、5和6,本发明提供一种技术方案:一种工程勘探用定向距离检测设备,包括三脚架1,还包括机架2、全站仪3、移动机构4和标记机构5,机架2可拆卸设置于三脚架1的顶端,全站仪3可拆卸设置于机架2的内腔底端,通过全站仪3可对路面平整度、垂直度等进行检测,移动机构4可拆卸设置于机架2的顶端,标记机构5数量为若干个,且从上至下堆叠设置于移动机构4的顶端;
标记机构5包括外壳51、蜗杆52、第二旋钮53、蜗轮54、扇形齿轮55、安装座56和红外点状激光头57,外壳51标记机构5上相邻的两个外壳51外壁接触面固定连接,蜗杆52两端分别通过轴承转动连接于外壳51的左右内壁底端,且右端延伸出外壳51的右侧壁,利用蜗杆52的顺时针或逆时针旋转可驱动蜗轮54逆时针或顺时针转动,第二旋钮53固定连接于蜗杆52的右端,第二旋钮53外壁设置有防滑棱,避免出现打滑的现象,蜗轮54通过销轴转动连接于外壳51的内腔中部,且与蜗杆52啮合连接,通过蜗杆52拨动扇形齿轮55顺时针或逆时针转动,扇形齿轮55通过销轴转动连接于外壳51的内腔左侧中部,且与蜗轮54啮合连接,安装座56固定连接于扇形齿轮55的左端,红外点状激光头57可拆卸设置于安装座56的左侧壁,红外点状激光头57可发出红外光柱,照射在地面上可利用光点实现标记。
作为优选方案,更进一步的,移动机构4包括第一基座41、定位槽42、第一滑块43、弹簧44和卡球45,第一基座41可拆卸设置于机架2的顶端,第一基座41的内壁底端从前至后等距开设有若干个定位槽42,定位槽42之间的间距不大于2cm,利于第一滑块43的多点位调整,第一滑块43可前后滑动的内嵌于第一基座41的内腔,且与位于底部标记机构5上的外壳51的底端可拆卸连接,弹簧44内嵌于第一滑块43的内腔内侧,弹簧44为旋转弹簧,受到拉伸或挤压后产生弹性形变,去除外力后恢复至初始状态,利用弹簧44自身弹力可达到驱动卡球45向下移动的目的,卡球45内嵌于第一滑块43的内腔外侧,且在弹簧44作用下卡球45插入定位槽42内对第一滑块43制动。
作为优选方案,更进一步的,第一基座41内腔呈燕尾槽形,且第一滑块43与第一基座41相适配插接,提高第一滑块43在第一基座41内移动的稳定性,避免第一滑块43脱离第一基座41。
作为优选方案,更进一步的,卡球45延伸出第一滑块43的最大长度小于其自身半径,可使卡球45的运动方向由第一滑块43控制,确保在移动第一滑块43时,卡球45能自由进出定位槽42。
一种工程勘探用定向距离检测设备的检测方法,包括以下步骤:
步骤一,将三脚架1放在待观测位置,调试好全站仪3,便可利用全站仪3对路面进行定向距离观测;
步骤二,当需要进行多点位等距测量时,利用移动机构4使标记机构5前后移动,直至标记机构5处于点位等距测量直线上,移动机构4工作的具体步骤为,使第一滑块43在第一基座41内前后滑动,在定位槽42的阻挡下,卡球45可向第一滑块43内移动并挤压弹簧44,直至第一滑块43移动至所需位置,弹簧44在自身弹力作用下驱动卡球45向下移动插入相对应的定位槽42内,即可将标记机构5固定在点位等距测量直线上;
步骤三,在全站仪3的观测下,根据等距测量点位的数量,由上至下依次旋拧标记机构5中的第二旋钮53,促使蜗杆52顺时针或逆时针旋转,蜗杆52可驱动蜗轮54逆时针或顺时针转动,进而使扇形齿轮55顺时针或逆时针转动,从而实现红外点状激光头57的向上或向下摆动,利用红外点状激光头57发出的红外线光柱对路面做出标记,标记测绘时由近到远,避免多个红外点状激光头57光柱出现交叉,即可实现多点位等距测量。
实施例二,请参阅图1、4、5和6,本发明提供一种技术方案:一种工程勘探用定向距离检测设备,包括三脚架1,还包括机架2、全站仪3、移动机构4和标记机构5,机架2可拆卸设置于三脚架1的顶端,全站仪3可拆卸设置于机架2的内腔底端,通过全站仪3可对路面平整度、垂直度等进行检测,移动机构4可拆卸设置于机架2的顶端,标记机构5数量为若干个,且从上至下堆叠设置于移动机构4的顶端;
标记机构5包括外壳51、蜗杆52、第二旋钮53、蜗轮54、扇形齿轮55、安装座56和红外点状激光头57,外壳51标记机构5上相邻的两个外壳51外壁接触面固定连接,蜗杆52两端分别通过轴承转动连接于外壳51的左右内壁底端,且右端延伸出外壳51的右侧壁,利用蜗杆52的顺时针或逆时针旋转可驱动蜗轮54逆时针或顺时针转动,第二旋钮53固定连接于蜗杆52的右端,第二旋钮53外壁设置有防滑棱,避免出现打滑的现象,蜗轮54通过销轴转动连接于外壳51的内腔中部,且与蜗杆52啮合连接,通过蜗杆52拨动扇形齿轮55顺时针或逆时针转动,扇形齿轮55通过销轴转动连接于外壳51的内腔左侧中部,且与蜗轮54啮合连接,安装座56固定连接于扇形齿轮55的左端,红外点状激光头57可拆卸设置于安装座56的左侧壁,红外点状激光头57可发出红外光柱,照射在地面上可利用光点实现标记。
作为优选方案,更进一步的,移动机构4包括第二基座46、螺杆47、第二滑块48、制动盘49和第一旋钮410,第二基座46可拆卸设置于机架2的顶端,螺杆47两端分别通过轴承转动连接于第二基座46的前后内壁,且前端延伸出第二基座46的正面,当螺杆47顺时针或逆时针旋转时,螺杆47螺纹旋转力可驱动第二滑块48向前或向后侧移动,第二滑块48螺接于螺杆47的外壁,且相适配内嵌于第二基座46的内腔,第二滑块48与位于底部标记机构5上的外壳51的底端可拆卸连接,制动盘49固定连接于第二基座46的正面,且与螺杆47外壁套接,制动盘49为高弹材料制成,确保制动盘49可与第一旋钮410保持接触,对第一旋钮410起到制动作用,第一旋钮410可拆卸设置于螺杆47的前端,且与制动盘49前侧接触,第一旋钮410外壁设置有防滑棱,避免出现打滑的现象。
作为优选方案,更进一步的,第二基座46内腔呈燕尾槽形,且第二滑块48与第二基座46相适配插接,进一步提高第二滑块48移动的稳定性,防止第二滑块48在第二基座46内转动。
一种工程勘探用定向距离检测设备的检测方法,包括以下步骤:
步骤一,将三脚架1放在待观测位置,调试好全站仪3,便可利用全站仪3对路面进行定向距离观测;
步骤二,当需要进行多点位等距测量时,利用移动机构4使标记机构5前后移动,直至标记机构5处于点位等距测量直线上,移动机构4工作的具体步骤为,顺时针或逆时针旋拧第一旋钮410,第一旋钮410与制动盘49发生摩擦,促使螺杆47顺时针或逆时针旋转,螺杆47螺纹旋转力可驱动第二滑块48向前或向后移动,直至第二滑块48移动至所需位置,停止旋拧第一旋钮410,制动盘49对第一旋钮410制动,即可将标记机构5固定在点位等距测量直线上;
步骤三,在全站仪3的观测下,根据等距测量点位的数量,由上至下依次旋拧标记机构5中的第二旋钮53,促使蜗杆52顺时针或逆时针旋转,蜗杆52可驱动蜗轮54逆时针或顺时针转动,进而使扇形齿轮55顺时针或逆时针转动,从而实现红外点状激光头57的向上或向下摆动,利用红外点状激光头57发出的红外线光柱对路面做出标记,标记测绘时由近到远,避免多个红外点状激光头57光柱出现交叉,即可实现多点位等距测量。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种工程勘探用定向距离检测设备,包括三脚架(1),其特征在于,还包括:
机架(2),可拆卸设置于所述三脚架(1)的顶端;
全站仪(3),可拆卸设置于所述机架(2)的内腔底端;
移动机构(4),可拆卸设置于所述机架(2)的顶端;
标记机构(5),数量为若干个,且从上至下堆叠设置于所述移动机构(4)的顶端;
所述标记机构(5)包括:
外壳(51),标记机构(5)上相邻的两个外壳(51)外壁接触面固定连接;
蜗杆(52),两端分别通过轴承转动连接于所述外壳(51)的左右内壁底端,且右端延伸出外壳(51)的右侧壁;
第二旋钮(53),固定连接于所述蜗杆(52)的右端;
蜗轮(54),通过销轴转动连接于所述外壳(51)的内腔中部,且与所述蜗杆(52)啮合连接;
扇形齿轮(55),通过销轴转动连接于所述外壳(51)的内腔左侧中部,且与所述蜗轮(54)啮合连接;
安装座(56),固定连接于所述扇形齿轮(55)的左端;
红外点状激光头(57),可拆卸设置于所述安装座(56)的左侧壁。
2.根据权利要求1所述的一种工程勘探用定向距离检测设备,其特征在于:所述移动机构(4)包括:
第一基座(41),可拆卸设置于所述机架(2)的顶端,所述第一基座(41)的内壁底端从前至后等距开设有若干个定位槽(42);
第一滑块(43),可前后滑动的内嵌于所述第一基座(41)的内腔,且与位于底部标记机构(5)上的外壳(51)的底端可拆卸连接;
弹簧(44),内嵌于所述第一滑块(43)的内腔内侧;
卡球(45),内嵌于所述第一滑块(43)的内腔外侧,且在弹簧(44)作用下卡球(45)插入定位槽(42)内对第一滑块(43)制动。
3.根据权利要求2所述的一种工程勘探用定向距离检测设备,其特征在于:所述第一基座(41)内腔呈燕尾槽形,且第一滑块(43)与第一基座(41)相适配插接。
4.根据权利要求2所述的一种工程勘探用定向距离检测设备,其特征在于:所述卡球(45)延伸出第一滑块(43)的最大长度小于其自身半径。
5.根据权利要求1所述的一种工程勘探用定向距离检测设备,其特征在于:所述移动机构(4)包括:
第二基座(46),可拆卸设置于所述机架(2)的顶端;
螺杆(47),两端分别通过轴承转动连接于所述第二基座(46)的前后内壁,且前端延伸出第二基座(46)的正面;
第二滑块(48),螺接于所述螺杆(47)的外壁,且相适配内嵌于所述第二基座(46)的内腔,所述第二滑块(48)与位于底部标记机构(5)上的外壳(51)的底端可拆卸连接;
制动盘(49),固定连接于所述第二基座(46)的正面,且与所述螺杆(47)外壁套接;
第一旋钮(410),可拆卸设置于所述螺杆(47)的前端,且与制动盘(49)前侧接触。
6.根据权利要求5所述的一种工程勘探用定向距离检测设备,其特征在于:所述第二基座(46)内腔呈燕尾槽形,且第二滑块(48)与第二基座(46)相适配插接。
7.根据权利要求1-6任一项所述的一种工程勘探用定向距离检测设备的检测方法,包括以下步骤:
步骤一,将三脚架(1)放在待观测位置,调试好全站仪(3),便可利用全站仪(3)对路面进行定向距离观测;
步骤二,当需要进行多点位等距测量时,利用移动机构(4)使标记机构(5)前后移动,直至标记机构(5)处于点位等距测量直线上;
步骤三,在全站仪(3)的观测下,根据等距测量点位的数量,由上至下依次旋拧标记机构(5)中的第二旋钮(53),促使蜗杆(52)顺时针或逆时针旋转,蜗杆(52)可驱动蜗轮(54)逆时针或顺时针转动,进而使扇形齿轮(55)顺时针或逆时针转动,从而实现红外点状激光头(57)的向上或向下摆动,利用红外点状激光头(57)发出的红外线光柱对路面做出标记,标记测绘时由近到远,避免多个红外点状激光头(57)光柱出现交叉,即可实现多点位等距测量。
CN202011076516.6A 2020-10-10 2020-10-10 一种工程勘探用定向距离检测设备及其检测方法 Withdrawn CN112229386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011076516.6A CN112229386A (zh) 2020-10-10 2020-10-10 一种工程勘探用定向距离检测设备及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011076516.6A CN112229386A (zh) 2020-10-10 2020-10-10 一种工程勘探用定向距离检测设备及其检测方法

Publications (1)

Publication Number Publication Date
CN112229386A true CN112229386A (zh) 2021-01-15

Family

ID=74111881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011076516.6A Withdrawn CN112229386A (zh) 2020-10-10 2020-10-10 一种工程勘探用定向距离检测设备及其检测方法

Country Status (1)

Country Link
CN (1) CN112229386A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511659A1 (de) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Geodätisches Markierungssystem zur Markierung von Zielpunkten
CN104457788A (zh) * 2014-11-06 2015-03-25 上海市计量测试技术研究院 一种大尺寸移动式基线桩及标定方法
EP3410063A1 (en) * 2017-05-31 2018-12-05 Leica Geosystems AG Geodetic surveying with correction for instrument tilt
CN210180440U (zh) * 2019-07-01 2020-03-24 重庆信达工程检测技术有限公司 一种隧道地质雷达测线激光标距仪
CN210920812U (zh) * 2019-09-23 2020-07-03 绵阳市川交建设工程监理咨询有限公司 一种全站仪
CN211649664U (zh) * 2020-01-16 2020-10-09 山东璟祥土木工程有限公司 一种用于施工测量全站仪支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511659A1 (de) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Geodätisches Markierungssystem zur Markierung von Zielpunkten
CN104457788A (zh) * 2014-11-06 2015-03-25 上海市计量测试技术研究院 一种大尺寸移动式基线桩及标定方法
EP3410063A1 (en) * 2017-05-31 2018-12-05 Leica Geosystems AG Geodetic surveying with correction for instrument tilt
CN210180440U (zh) * 2019-07-01 2020-03-24 重庆信达工程检测技术有限公司 一种隧道地质雷达测线激光标距仪
CN210920812U (zh) * 2019-09-23 2020-07-03 绵阳市川交建设工程监理咨询有限公司 一种全站仪
CN211649664U (zh) * 2020-01-16 2020-10-09 山东璟祥土木工程有限公司 一种用于施工测量全站仪支架

Similar Documents

Publication Publication Date Title
CN116697989B (zh) 一种国土空间规划地形测量装置
CN112229386A (zh) 一种工程勘探用定向距离检测设备及其检测方法
CN114184149B (zh) 一种矿山采空区裂隙带测量装置
CN217877464U (zh) 一种公路工程监理用厚度检测设备
CN214372158U (zh) 一种路基路面厚度检测装置
CN210441783U (zh) 一种巷道表面位移测量装置
CN204228114U (zh) 一种巷道表面位移测量装置
CN210981085U (zh) 一种市政工程监理用土方松铺厚度检测尺
CN216846026U (zh) 一种建筑工程监理用桩孔测量装置
CN210108343U (zh) 市政工程道路建设监理用坡度尺
CN109458938B (zh) 一种梁构件的宽度测量装置及其测量方法
CN208621067U (zh) 一种用于桥梁施工中的激光指向仪
CN112318733A (zh) 一种桥梁用钻孔设备
CN208595921U (zh) 一种土木工程测量用具有高度微调功能的支撑装置
CN219455070U (zh) 一种挡土墙测斜设备
CN204439071U (zh) 井下用快速测倾角装置
CN220061335U (zh) 一种工程造价决算验收的现场测绘装置
CN116026207B (zh) 一种公路工程施工用厚度检测装置
CN215211194U (zh) 一种分布式光纤灌注桩侧向变形测量装置
CN213979079U (zh) 一种用于土木工程桩基检测装置
CN215952576U (zh) 一种测绘工程中地籍地形的测量工具
CN216526291U (zh) 一种用于水源地划分勘测装置
CN116182813B (zh) 一种特殊环境下的建筑工地测绘装置
CN203375960U (zh) 一种徕卡激光测距仪支座
CN214010948U (zh) 一种建筑检测用混凝土强度检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210115

WW01 Invention patent application withdrawn after publication