CN112226464B - Construction method and application of novel coronavirus humanized receptor hACE2 mouse model - Google Patents

Construction method and application of novel coronavirus humanized receptor hACE2 mouse model Download PDF

Info

Publication number
CN112226464B
CN112226464B CN202010974969.4A CN202010974969A CN112226464B CN 112226464 B CN112226464 B CN 112226464B CN 202010974969 A CN202010974969 A CN 202010974969A CN 112226464 B CN112226464 B CN 112226464B
Authority
CN
China
Prior art keywords
hace2
mouse
seq
sequence
grna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010974969.4A
Other languages
Chinese (zh)
Other versions
CN112226464A (en
Inventor
韩正滨
李佳琪
于浩然
汪梦芸
何佳
吴琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010974969.4A priority Critical patent/CN112226464B/en
Publication of CN112226464A publication Critical patent/CN112226464A/en
Application granted granted Critical
Publication of CN112226464B publication Critical patent/CN112226464B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • C12N15/8775Murine embryos
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention belongs to the field of genetic engineering, and provides a construction method and application of a novel coronavirus humanized receptor hACE2 mouse model. In order to obtain an animal model which can be used for research and development of a pathogenesis mechanism, a medicine and a vaccine of a new coronavirus, an mT/mG mouse is used as an experimental animal, a CRISPR/Cas9 gene editing technology is utilized, and a CDS sequence of human angiotensin converting enzyme hACE2 with a polyA sequence at the 3' end is inserted in front of an initiation codon of mouse endogenous angiotensin converting enzyme mACE2, so that a new coronavirus humanized receptor hACE2 mouse model capable of red-green fluorescence conversion is obtained, the problems of random insertion of hACE2 and expression of mouse endogenous ACE2 protein are solved, tracking, positioning and detection of a virus infection process can be realized, and subsequent research and application can be greatly facilitated.

Description

Construction method and application of novel coronavirus humanized receptor hACE2 mouse model
Technical Field
The invention belongs to the field of genetic engineering, and particularly relates to a construction method and application of a novel coronavirus humanized receptor hACE2 mouse model.
Background
The animal model is a key ring for research and development of new coronavirus medicines and vaccines, and is also an essential tool for deeply developing researches on virus pathogenesis and the like. Non-human primates (such as monkeys) are closer to humans, but are not suitable for general popularization and application due to the problems of high price, long period, inconvenient operation and the like. The mouse is the most common experimental animal and still the first choice of animal model, but because of the large difference between the structure of the virus receptor (ACE2) and the human, the mouse is not susceptible to the new coronavirus, and can not be directly applied to the experiment.
Similar to SARS virus, the new coronavirus (COVID-19) also mediates invasion of cells via the human cell surface receptor protein ACE 2. In the process of researching SARS, a plurality of mouse models expressing humanized ACE2 are established at home and abroad, such as an hACE2 mouse established by McCray and the like (2007), Tseng and the like (2007) and units such as China's cooperative medical university (2007), military medical academy of sciences (2008) and the like. The common defect of the mouse models is that random insertion of hACE2 causes that the integration site and copy number can not be controlled, on one hand, random insertion can cause potential negative effects on mice; on the other hand, human ACE2 is expressed simultaneously with mouse endogenous ACE2, which may cause the mouse model not to reproduce human disease characteristics well. More importantly, the traditional mouse models cannot rapidly and intuitively reflect the virus infection condition and cannot study the virus infection process in real time.
Disclosure of Invention
In order to solve the problems of random insertion of the existing novel coronavirus humanized receptor mouse model hACE2 and expression of endogenous ACE2 protein of a mouse, the invention provides a construction method of the novel coronavirus humanized receptor hACE2 mouse model, the construction strategy is shown in figure 1, and the specific method is as follows:
1) design of gRNA: designing 2 gRNA sites near a second exon initiation codon ATG of a mouse angiotensin converting enzyme mACE2 gene;
2) design of Donor DNA: connecting an upstream homologous arm of human angiotensin converting enzyme hACE2, a CDS sequence and a polyA sequence of human angiotensin converting enzyme hACE2 and a downstream homologous arm of human angiotensin converting enzyme hACE2 to form a Donor DNA fragment;
3) microinjection: mixing the 2 gRNAs obtained in the step 1), the Donor DNA obtained in the step 2), the Cas9 protein and the Microinjection buffer, and injecting the mixture into a pronucleus of a fertilized egg of an mT/mG mouse to obtain an embryo;
4) embryo transplantation: continuously culturing the embryo obtained in the step 3) to 2-cells, then carrying out oviduct transplantation, transplanting the 2-cell embryo to the oviduct of a pseudopregnant female mouse, and continuously feeding the female mouse until a newborn mouse is born;
5) and (3) genotype identification: and (4) identifying the genotype of the baby mouse obtained in the step (4), wherein the baby mouse with the gene sequence of the human angiotensin converting enzyme hACE2 is the new coronavirus humanized receptor hACE2 mouse model.
In one embodiment of the invention, the sequence of the second exon of the mouse angiotensin converting enzyme mACE2 gene is shown as SEQ ID No. 4.
Further limiting, the two gRNAs in the step 1) are gRNA-1 and gRNA-2 respectively, the sequence of the gRNA-1 is shown as SEQ ID No.1, and the sequence of the gRNA-2 is shown as SEQ ID No. 2.
Further limited, the CDS sequence of the human angiotensin converting enzyme hACE2 in the step 2) is shown as SEQ ID No. 5.
Further limited, the sequence of the upstream homology arm in the step 2) is shown as SEQ ID No.11, and the sequence of the downstream homology arm is shown as SEQ ID No. 12.
Further limiting, the primer-F of the upstream homology arm is shown as SEQ ID No.13, the primer-R of the upstream homology arm is shown as SEQ ID No.14, the primer-F of the downstream homology arm is shown as SEQ ID No.15, and the primer-R of the downstream homology arm is shown as SEQ ID No. 16.
Further limited, the sequence of the Donor DNA is shown as SEQ ID No. 17.
In one embodiment of the invention, step 3) is mixing gRNA-1, gRNA-2, Donor DNA and Cas protein in a final concentration ratio of 5:5:2: 25.
In one embodiment of the present invention, the mouse fertilized egg described in step 3) is incubated at 37 ℃ for 15 minutes before microinjection.
The invention also provides application of the novel coronavirus humanized receptor hACE2 mouse model obtained by the construction method in research of pathogenesis of novel coronavirus and research and development of medicines or vaccines.
Advantageous effects
The construction method of the new coronavirus humanized receptor hACE2 mouse model provided by the invention adopts a gene editing technology, replaces the expression of the angiotensin converting enzyme mACE2 gene of a mouse by a human angiotensin converting enzyme hACE2 coding region, not only solves the problems that the integration site and copy number can not be controlled due to the random insertion of hACE2 in the existing new coronavirus humanized receptor hACE2 mouse model, and the human ACE2 is expressed and simultaneously the human ACE2 is also expressed, which possibly causes the mouse model not to well reproduce the human disease characteristics, moreover, by using mice with fluorescence conversion elements as experimental animals, infected cells (green) and uninfected cells (red) can be distinguished, the obtained mouse model can realize tracking, positioning and detection of the virus infection process, and can be greatly convenient for subsequent research and application.
Drawings
FIG. 1.hACE2 gene knock-in strategy;
FIG. 2. Process for obtaining Donor DNA;
FIG. 3 shows the mT/mG fluorescence conversion principle and an example of the embryonic cell fluorescence conversion;
FIG. 4 shows the results of genotyping of mice.
Detailed Description
The present invention will be described in further detail with reference to the following embodiments and the accompanying drawings, and the present invention is not limited to the following embodiments. Variations and advantages that may occur to those skilled in the art may be incorporated into the invention without departing from the spirit and scope of the inventive concept, and the scope of the appended claims is intended to be protected. The procedures, conditions, reagents, experimental methods and the like for carrying out the present invention are general knowledge and common general knowledge in the art except for the contents specifically mentioned below, and the present invention is not particularly limited. Such as described in Sambrook et al, molecular cloning, A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press,1989), or according to the manufacturer's recommendations.
Example 1:
design of gRNAs
Through multi-tool prediction and comprehensive analysis, 3 transcripts of the mouse mACE2 can be known, 2 gRNA sites with potential high targeting and low off-target risk are screened near the second exon initiation codon ATG of the mACE2 gene, so that 22bp sequences including ATG can be completely knocked out, and further the endogenous ACE2 of the mouse can not be expressed. The seed sequence of gRNA-1 is shown in SEQ ID NO.1, namely GGATGGGATCTTGGCGCACG; the seed sequence of gRNA-2 is shown in SEQ ID NO.2, namely GAAAGATGTCCAGCTCCTCC; the knocked-out 22bp sequence is shown as SEQ ID NO.3, namely ACGGGGAAAGATGTCCAGCTCC; the sequence of the second exon containing the initiation codon is shown in SEQ ID NO. 4.
Design of Donor DNA
We first cloned the CDS and polyA sequence of hACE2 from the purchased hACE2 plasmid, and verified the sequences to be completely correct by sequencing, wherein the hACE2 plasmid is purchased from VISIE Biotechnology GmbH, the product name is ACE2, the product code is NM-021804, the CDS sequence of hACE2 is shown in SEQ ID NO.5, the polyA sequence is shown in SEQ ID NO.6, the sequences of the primers hACE2-F and hACE2-R are shown in SEQ ID NO.7 and SEQ ID NO.8, respectively, in addition, when designing the primer of hACE2, a Flag tag and a 6 XHis tag are added at the downstream of hACE2 for later detection, the sequence of the Flag tag is shown in SEQ ID NO.9, and the sequence of the 6 XHis tag is shown in SEQ ID NO. 10; an upstream homology arm and a downstream homology arm of the pCE-zero vector are respectively designed according to the cutting sites of the gRNA, the length of the upstream homology arm is 980bp, the sequence is shown as SEQ ID NO.11, the length of the downstream homology arm is 978bp, and the sequence is shown as SEQ ID NO. 12; an upstream homologous arm sequence, an hACE2 sequence, a polyA sequence and a downstream homologous arm sequence are sequentially connected together by utilizing a homologous recombination method and cloned to a pCE-zero vector, wherein the used upstream homologous arm primer-F sequence is shown as SEQ ID NO.13, the upstream homologous arm primer-R sequence is shown as SEQ ID NO.14, the downstream homologous arm primer-F sequence is shown as SEQ ID NO.15, and the downstream homologous arm primer-R sequence is shown as SEQ ID NO. 16. And finally obtaining the recombinant plasmid with completely correct sequence by transforming escherichia coli, and carrying out PCR detection and sequencing identification on the colony monoclonal. Using this plasmid as a template, a DNA fragment containing the upstream homology arm, hACE2+ polyA and the downstream homology arm was amplified and purified as a Donor DNA whose sequence is shown in SEQ ID NO.17, and the results of PCR amplification are shown in FIG. 2. The Kit used in the experimental process is Clon express One Step Cloning Kit (C115) of Vazyme company.
3. Microinjection and embryo transfer
The invention takes mT/mG mice as experimental animals, and the mice are pre-provided with fluorescence conversion elements at the safe loci of the genome Rosa 26. As shown in FIG. 3, the principle of fluorescence conversion is briefly that a Cre/loxP recombinase system is used, loxP sites are added on both sides of a red fluorescent protein gene tdTomato, and a STOP transcription termination sequence is added on the upstream of a green fluorescent protein gene EGFP. Normally, the promoter CAG initiates transcription of tdTomato to express red fluorescent protein, while green fluorescent protein is not expressed due to the presence of STOP sequence, so the cells show red fluorescence. And when Cre recombinase is introduced, the Cre recombinase can specifically act on the loxP sites, so that tdTomato and STOP elements are cut, green fluorescent protein is expressed, and the fluorescence of the cells is converted from red to green.
We have verified the effectiveness of the fluorescence transition by preliminary microinjection experiments. The cells can successfully complete the fluorescence conversion of red → green and develop into blastocysts by injecting the fertilized ovum or Cre mRNA of 2-cell monoblastomere in a microinjection way. The blastocyst is transplanted to breed mother mouse, and various fluorescence converting mice can be obtained. Therefore, if the new coronavirus is slightly modified and the Cre gene sequence is added, the red → green fluorescence conversion can occur after the new coronavirus infects the mouse cells, so that the infected cells and the uninfected cells can be visually distinguished.
And (3) superovulation treatment is carried out on the mT/mG female mouse, and then the female mouse and the male mouse are closed to obtain a fertilized egg. On the day of microinjection, 2 grnas, Donor DNA, and Cas9 protein were mixed uniformly, the ratio and final concentration of each component are shown in table 1, and the mixture was injected into the pronuclei of mT/mG mouse zygotes incubated at 37 ℃ for 15 minutes. After injection, the embryos are continuously cultured to 2-cells for oviduct transplantation. Approximately 10 2-cell embryos were transplanted into the oviduct of each side of a pseudopregnant mother mouse, and the mother mouse continued to be fed for approximately 19 days until the newborn mouse was born.
TABLE 1 microinjection System Components amounts and Final concentrations
Figure BDA0002685442510000051
4. Genotyping
And (4) on the 6 th day after birth of the newborn mouse, taking the clipped toe or tail tip of the newborn mouse for genotype identification. 21 born mice of 1 pregnant mother mouse are preliminarily identified by hACE2 detection primer, and target bands (shown as A in figure 4) are amplified from No.5, No.13, No.15, No.16 and No. 21 mice. Further, it was confirmed that hACE2 did indeed generate gene knock-in by 2-pair detection of primers in which the upper and lower homologous arms were ligated to hACE 2. Detection of the WT band of interest by the mouse ACE2 specific primer also amplified, indicating that a single allele knock-in occurred (shown as B in figure 4). The insert was sequenced in full length and the 5, 15, 16 and 21 mouse inserts were completely correct, so these 4 mice were fountain mice, a humanized receptor for new corona virus hACE2 mouse model, and subsequently homozygous mouse models with the biallelic hACE2 gene knock-in were obtained by mating propagation. Primers for the wild-type ACE2 sequence used in the examples are shown in SEQ ID NO.18 and SEQ ID NO. 19.
SEQ ID NO.6
Name: PolyA sequence
AACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTA
SEQ ID NO.7
Name: hACE2-F
CAACCCAAGTTCAAAGGCTGATG
SEQ ID NO.8
Name: hACE2-R
GTCGTCCATTGTCACCTT
SEQ ID NO.9
Name: flag tag
GATTATAAGGATGACGACGATAAA
SEQ ID NO.10
Name: 6 × His tag
CACCACCACCACCACCA CACCACCACCACCACCAC C
SEQ ID No.13
Name: upstream homology arm primer-F
ggatcttccagagatCAAAGCCACACAGGAAGCATC
SEQ ID NO.14
Name: upstream homology arm primer-R
taccggatcctAGATCCCATCCACTGAGCAACT
SEQ ID NO.15
Name: downstream homology arm primer-F
atgggatctAGGATCCGGTACCGAGGAGA
SEQ ID NO.16
Name: downstream homology arm primer-R
ctgagaaggagTCAAACGAGTTGGTGCTCATGG
SEQ ID NO.18
Name: wild type sequence-F
CAACCCAAGTTCAAAGGCTGATG
SEQ ID NO.19
Name: wild type sequence-R
cctcaagaacttacCATCTTTTGGG
SEQUENCE LISTING
<110> Harbin Industrial university
<120> construction method and application of novel coronavirus humanized receptor hACE2 mouse model
<130>
<160> 19
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> DNA
<213> gRNA-1
<400> 1
ggatgggatc ttggcgcacg 20
<210> 2
<211> 20
<212> DNA
<213> gRNA-2
<400> 2
gaaagatgtc cagctcctcc 20
<210> 3
<211> 22
<212> DNA
<213> cut-out 22bp sequence
<400> 3
acggggaaag atgtccagct cc 22
<210> 4
<211> 2712
<212> DNA
<213> sequence of second exon of mACE2 gene in mouse
<400> 4
ataatcaagc aggcccatga gccctgccat ttaaagtggc tcctctctta cactctggga 60
atgaggacac ggagccagct gctgaacttc accaggataa ccattaaaat tgctttggag 120
ttcatatttc cacgatccca tgcctatgga tgccaaggac ttgtcatgga tgcgctttgg 180
atttcataat gcagagtcat tattacttcc ttgagttctc agctgagttg taagcaggta 240
agtgaaaggg aaagaggcac ctgataaagt cagctgtagg actagagttt agcatgtctc 300
ctgagaaata gaaaatgact gcttgaaact ttaccaaagc cacacaggaa gcatcaaact 360
ccctatggag tggagaagag tcttataatt ttttaaatgg gcagagaaat gaatttattt 420
ttaattttta gagacagggt ttctttgtat agctctagct gtctttgatt ggtagacaaa 480
gctgtcctca aactcagaga tcttccttcc tttgtctcct gagtgctggg attaaaggca 540
tggaccacca ctgccctgcc ccattctctc cattaatttt aagtgaatgc ttgcaaaagc 600
tcacttcttt ggtgaacagc ttcctttaca aataagtacc tttgccttcg tttttatagg 660
attcttaaaa agaaaaaaaa gattcagcca ggtggttgtg gtgcacacct ttaatcccag 720
cagtcaggag gcagaggaaa gcagatctct tgagtttgag gctagcctag tctacagagg 780
gagttccagg acagccaagg ctacagagag gaactgtcta aaaacaccaa gaaagagaga 840
aaggagagag ggagaggatg gatagcttat tgatagaatt gtcagaaaag gctataagtt 900
ccaatatgtg tcccatgatt tctaagtcta gccctttctg ttatagtaaa atcatagtac 960
accctcctcc tccagtgtat ctttaacagc ttttaaggaa catattaact aaatgtccag 1020
gttttgattt ggccataaaa tgttagcaaa gctaaggttt tctaggatta atgaataaca 1080
tgtctttatt tagtttactt aaaaaaatca ttctaaaata tctgtttaca tatctgtcct 1140
ctccaggatt aacttcatat tggtccagca gcttgtttac tgttctcttc tgtttcttct 1200
tctgcttttt ttttcttctc ttctcagtgc ccaacccaag ttcaaaggct gatgagagag 1260
aaaaactcat gaagagattt tactctaggg aaagttgctc agtggatggg atcttggcgc 1320
acggggaaag atgtccagct cctcctggct ccttctcagc cttgttgctg ttactactgc 1380
tcagtccctc accgaggaaa atgccaagac atttttaaac aactttaatc aggaagctga 1440
agacctgtct tatcaaagtt cacttgcttc ttggaattat aatactaaca ttactgaaga 1500
aaatgcccaa aagatggtaa gttcttgagg ctacccaggg ggttattgat tgcttcttaa 1560
agatcagaat tactgcctat aaaactggat aaggaaatca tagagatctc tcaagtgtga 1620
ggatgagtga ctgcctctgt agctctgatc ctagtctccc agatggctaa attcaattga 1680
ccttagagtt catctggaaa attgttatga atgaattatt tgcccagatt ccaaagatga 1740
gtgaaaatgt ttaataaagt tgccatcact attctcatta tatttggtat gtaaagcatt 1800
catggaaatg ttctaagtcg ttattgagcc aataattttc tttagcttat aatgccaaca 1860
ggtctatccg agaactacaa atgacatatt aactgaaaaa tgcaactggg gtttactgaa 1920
ggcagcagct tagtaattaa ggtaaccatg gcttaggtga aactggacct gggaattcct 1980
tctttcattg acacagagct ctgaggaatt tccaaaggtc acagaagaaa agctataatt 2040
aaactagtcc caaaaaatct cagcctactc tgggaaagca gcatattttg tttgacaagt 2100
gcaaggactt agaacttttt tttttctcac tgatcctgaa gtgcctttta agtatagtta 2160
agtggtggaa aattgagcaa ctatttaaga aaagactctt ttttttcttc ttccagcaat 2220
gctttccttc aaaacggtag cttcaaaact tcctgtcttt taaatgatca gggggctgtg 2280
tgtttaaatt attgccattc atagaacaga gtgggtctga ggatgcctgt ttcctttgaa 2340
attctatgcc ccctcccagt tttctaaaat ttaagaaacc acagagactt tgacaatgta 2400
gttgccaaat gagttgcttt taactgctct aatagtttgg tcttaccggt gttgttttta 2460
gtgtaacttt ttttcccctc agtttttatt ttatttctgt tggagatcac caacgtgtac 2520
tgtagatttt ctgagctgaa tggttcaagg tgagactaat attatacttg aaagcctagc 2580
ctggagctga catccagatc ctggctgtac cactttttag ctgggtaaac ttgaattcat 2640
taaatggaca gtctgggtct tagttacttt ttgttttaag atgtatttta attttaaaac 2700
tatgtgtatg tg 2712
<210> 5
<211> 2415
<212> DNA
<213> CDS sequence of hACE2
<400> 5
atgtcaagct cttcctggct ccttctcagc cttgttgctg taactgctgc tcagtccacc 60
attgaggaac aggccaagac atttttggac aagtttaacc acgaagccga agacctgttc 120
tatcaaagtt cacttgcttc ttggaattat aacaccaata ttactgaaga gaatgtccaa 180
aacatgaata atgctgggga caaatggtct gcctttttaa aggaacagtc cacacttgcc 240
caaatgtatc cactacaaga aattcagaat ctcacagtca agcttcagct gcaggctctt 300
cagcaaaatg ggtcttcagt gctctcagaa gacaagagca aacggttgaa cacaattcta 360
aatacaatga gcaccatcta cagtactgga aaagtttgta acccagataa tccacaagaa 420
tgcttattac ttgaaccagg tttgaatgaa ataatggcaa acagtttaga ctacaatgag 480
aggctctggg cttgggaaag ctggagatct gaggtcggca agcagctgag gccattatat 540
gaagagtatg tggtcttgaa aaatgagatg gcaagagcaa atcattatga ggactatggg 600
gattattgga gaggagacta tgaagtaaat ggggtagatg gctatgacta cagccgcggc 660
cagttgattg aagatgtgga acataccttt gaagagatta aaccattata tgaacatctt 720
catgcctatg tgagggcaaa gttgatgaat gcctatcctt cctatatcag tccaattgga 780
tgcctccctg ctcatttgct tggtgatatg tggggtagat tttggacaaa tctgtactct 840
ttgacagttc cctttggaca gaaaccaaac atagatgtta ctgatgcaat ggtggaccag 900
gcctgggatg cacagagaat attcaaggag gccgagaagt tctttgtatc tgttggtctt 960
cctaatatga ctcaaggatt ctgggaaaat tccatgctaa cggacccagg aaatgttcag 1020
aaagcagtct gccatcccac agcttgggac ctggggaagg gcgacttcag gatccttatg 1080
tgcacaaagg tgacaatgga cgacttcctg acagctcatc atgagatggg gcatatccag 1140
tatgatatgg catatgctgc acaacctttt ctgctaagaa atggagctaa tgaaggattc 1200
catgaagctg ttggggaaat catgtcactt tctgcagcca cacctaagca tttaaaatcc 1260
attggtcttc tgtcacccga ttttcaagaa gacaatgaaa cagaaataaa cttcctgctc 1320
aaacaagcac tcacgattgt tgggactctg ccatttactt acatgttaga gaagtggagg 1380
tggatggtct ttaaagggga aattcccaaa gaccagtgga tgaaaaagtg gtgggagatg 1440
aagcgagaga tagttggggt ggtggaacct gtgccccatg atgaaacata ctgtgacccc 1500
gcatctctgt tccatgtttc taatgattac tcattcattc gatattacac aaggaccctt 1560
taccaattcc agtttcaaga agcactttgt caagcagcta aacatgaagg ccctctgcac 1620
aaatgtgaca tctcaaactc tacagaagct ggacagaaac tgttcaatat gctgaggctt 1680
ggaaaatcag aaccctggac cctagcattg gaaaatgttg taggagcaaa gaacatgaat 1740
gtaaggccac tgctcaacta ctttgagccc ttatttacct ggctgaaaga ccagaacaag 1800
aattcttttg tgggatggag taccgactgg agtccatatg cagaccaaag catcaaagtg 1860
aggataagcc taaaatcagc tcttggagat aaagcatatg aatggaacga caatgaaatg 1920
tacctgttcc gatcatctgt tgcatatgct atgaggcagt actttttaaa agtaaaaaat 1980
cagatgattc tttttgggga ggaggatgtg cgagtggcta atttgaaacc aagaatctcc 2040
tttaatttct ttgtcactgc acctaaaaat gtgtctgata tcattcctag aactgaagtt 2100
gaaaaggcca tcaggatgtc ccggagccgt atcaatgatg ctttccgtct gaatgacaac 2160
agcctagagt ttctggggat acagccaaca cttggacctc ctaaccagcc ccctgtttcc 2220
atatggctga ttgtttttgg agttgtgatg ggagtgatag tggttggcat tgtcatcctg 2280
atcttcactg ggatcagaga tcggaagaag aaaaataaag caagaagtgg agaaaatcct 2340
tatgcctcca tcgatattag caaaggagaa aataatccag gattccaaaa cactgatgat 2400
gttcagacct ccttt 2415
<210> 6
<211> 122
<212> DNA
<213> PolyA sequence
<400> 6
aacttgttta ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca 60
aataaagcat ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct 120
ta 122
<210> 7
<211> 23
<212> DNA
<213> hACE2-F
<400> 7
caacccaagt tcaaaggctg atg 23
<210> 8
<211> 18
<212> DNA
<213> hACE2-R
<400> 8
gtcgtccatt gtcacctt 18
<210> 9
<211> 24
<212> DNA
<213> Flag tag
<400> 9
gattataagg atgacgacga taaa 24
<210> 10
<211> 36
<212> DNA
<213> 6 × His tag
<400> 10
caccaccacc accaccacac caccaccacc accacc 36
<210> 11
<211> 980
<212> DNA
<213> upstream homology arm
<400> 11
caaagccaca caggaagcat caaactccct atggagtgga gaagagtctt ataatttttt 60
aaatgggcag agaaatgaat ttatttttaa tttttagaga cagggtttct ttgtatagct 120
ctagctgtct ttgattggta gacaaagctg tcctcaaact cagagatctt ccttcctttg 180
tctcctgagt gctgggatta aaggcatgga ccaccactgc cctgccccat tctctccatt 240
aattttaagt gaatgcttgc aaaagctcac ttctttggtg aacagcttcc tttacaaata 300
agtacctttg ccttcgtttt tataggattc ttaaaaagaa aaaaaagatt cagccaggtg 360
gttgtggtgc acacctttaa tcccagcagt caggaggcag aggaaagcag atctcttgag 420
tttgaggcta gcctagtcta cagagggagt tccaggacag ccaaggctac agagaggaac 480
tgtctaaaaa caccaagaaa gagagaaagg agagagggag aggatggata gcttattgat 540
agaattgtca gaaaaggcta taagttccaa tatgtgtccc atgatttcta agtctagccc 600
tttctgttat agtaaaatca tagtacaccc tcctcctcca gtgtatcttt aacagctttt 660
aaggaacata ttaactaaat gtccaggttt tgatttggcc ataaaatgtt agcaaagcta 720
aggttttcta ggattaatga ataacatgtc tttatttagt ttacttaaaa aaatcattct 780
aaaatatctg tttacatatc tgtcctctcc aggattaact tcatattggt ccagcagctt 840
gtttactgtt ctcttctgtt tcttcttctg cttttttttt cttctcttct cagtgcccaa 900
cccaagttca aaggctgatg agagagaaaa actcatgaag agattttact ctagggaaag 960
ttgctcagtg gatgggatct 980
<210> 12
<211> 978
<212> DNA
<213> downstream homology arm
<400> 12
ctccttctca gccttgttgc tgttactact gctcagtccc tcaccgagga aaatgccaag 60
acatttttaa acaactttaa tcaggaagct gaagacctgt cttatcaaag ttcacttgct 120
tcttggaatt ataatactaa cattactgaa gaaaatgccc aaaagatggt aagttcttga 180
ggctacccag ggggttattg attgcttctt aaagatcaga attactgcct ataaaactgg 240
ataaggaaat catagagatc tctcaagtgt gaggatgagt gactgcctct gtagctctga 300
tcctagtctc ccagatggct aaattcaatt gaccttagag ttcatctgga aaattgttat 360
gaatgaatta tttgcccaga ttccaaagat gagtgaaaat gtttaataaa gttgccatca 420
ctattctcat tatatttggt atgtaaagca ttcatggaaa tgttctaagt cgttattgag 480
ccaataattt tctttagctt ataatgccaa caggtctatc cgagaactac aaatgacata 540
ttaactgaaa aatgcaactg gggtttactg aaggcagcag cttagtaatt aaggtaacca 600
tggcttaggt gaaactggac ctgggaattc cttctttcat tgacacagag ctctgaggaa 660
tttccaaagg tcacagaaga aaagctataa ttaaactagt cccaaaaaat ctcagcctac 720
tctgggaaag cagcatattt tgtttgacaa gtgcaaggac ttagaacttt tttttttctc 780
actgatcctg aagtgccttt taagtatagt taagtggtgg aaaattgagc aactatttaa 840
gaaaagactc ttttttttct tcttccagca atgctttcct tcaaaacggt agcttcaaaa 900
cttcctgtct tttaaatgat cagggggctg tgtgtttaaa ttattgccat tcatagaaca 960
gagtgggtct gaggatgc 978
<210> 13
<211> 36
<212> DNA
<213> upstream homology arm primer-F
<400> 13
ggatcttcca gagatcaaag ccacacagga agcatc 36
<210> 14
<211> 33
<212> DNA
<213> upstream homology arm primer-R
<400> 14
taccggatcc tagatcccat ccactgagca act 33
<210> 15
<211> 29
<212> DNA
<213> downstream homology arm primer-F
<400> 15
atgggatcta ggatccggta ccgaggaga 29
<210> 16
<211> 33
<212> DNA
<213> downstream homology arm primer-R
<400> 16
ctgagaagga gtcaaacgag ttggtgctca tgg 33
<210> 17
<211> 4887
<212> DNA
<213> Donor DNA
<400> 17
caaagccaca caggaagcat caaactccct atggagtgga gaagagtctt ataatttttt 60
aaatgggcag agaaatgaat ttatttttaa tttttagaga cagggtttct ttgtatagct 120
ctagctgtct ttgattggta gacaaagctg tcctcaaact cagagatctt ccttcctttg 180
tctcctgagt gctgggatta aaggcatgga ccaccactgc cctgccccat tctctccatt 240
aattttaagt gaatgcttgc aaaagctcac ttctttggtg aacagcttcc tttacaaata 300
agtacctttg ccttcgtttt tataggattc ttaaaaagaa aaaaaagatt cagccaggtg 360
gttgtggtgc acacctttaa tcccagcagt caggaggcag aggaaagcag atctcttgag 420
tttgaggcta gcctagtcta cagagggagt tccaggacag ccaaggctac agagaggaac 480
tgtctaaaaa caccaagaaa gagagaaagg agagagggag aggatggata gcttattgat 540
agaattgtca gaaaaggcta taagttccaa tatgtgtccc atgatttcta agtctagccc 600
tttctgttat agtaaaatca tagtacaccc tcctcctcca gtgtatcttt aacagctttt 660
aaggaacata ttaactaaat gtccaggttt tgatttggcc ataaaatgtt agcaaagcta 720
aggttttcta ggattaatga ataacatgtc tttatttagt ttacttaaaa aaatcattct 780
aaaatatctg tttacatatc tgtcctctcc aggattaact tcatattggt ccagcagctt 840
gtttactgtt ctcttctgtt tcttcttctg cttttttttt cttctcttct cagtgcccaa 900
cccaagttca aaggctgatg agagagaaaa actcatgaag agattttact ctagggaaag 960
ttgctcagtg gatgggatct aggatccggt accgaggaga tctgccgccg cgatcgcatg 1020
tcaagctctt cctggctcct tctcagcctt gttgctgtaa ctgctgctca gtccaccatt 1080
gaggaacagg ccaagacatt tttggacaag tttaaccacg aagccgaaga cctgttctat 1140
caaagttcac ttgcttcttg gaattataac accaatatta ctgaagagaa tgtccaaaac 1200
atgaataatg ctggggacaa atggtctgcc tttttaaagg aacagtccac acttgcccaa 1260
atgtatccac tacaagaaat tcagaatctc acagtcaagc ttcagctgca ggctcttcag 1320
caaaatgggt cttcagtgct ctcagaagac aagagcaaac ggttgaacac aattctaaat 1380
acaatgagca ccatctacag tactggaaaa gtttgtaacc cagataatcc acaagaatgc 1440
ttattacttg aaccaggttt gaatgaaata atggcaaaca gtttagacta caatgagagg 1500
ctctgggctt gggaaagctg gagatctgag gtcggcaagc agctgaggcc attatatgaa 1560
gagtatgtgg tcttgaaaaa tgagatggca agagcaaatc attatgagga ctatggggat 1620
tattggagag gagactatga agtaaatggg gtagatggct atgactacag ccgcggccag 1680
ttgattgaag atgtggaaca tacctttgaa gagattaaac cattatatga acatcttcat 1740
gcctatgtga gggcaaagtt gatgaatgcc tatccttcct atatcagtcc aattggatgc 1800
ctccctgctc atttgcttgg tgatatgtgg ggtagatttt ggacaaatct gtactctttg 1860
acagttccct ttggacagaa accaaacata gatgttactg atgcaatggt ggaccaggcc 1920
tgggatgcac agagaatatt caaggaggcc gagaagttct ttgtatctgt tggtcttcct 1980
aatatgactc aaggattctg ggaaaattcc atgctaacgg acccaggaaa tgttcagaaa 2040
gcagtctgcc atcccacagc ttgggacctg gggaagggcg acttcaggat ccttatgtgc 2100
acaaaggtga caatggacga cttcctgaca gctcatcatg agatggggca tatccagtat 2160
gatatggcat atgctgcaca accttttctg ctaagaaatg gagctaatga aggattccat 2220
gaagctgttg gggaaatcat gtcactttct gcagccacac ctaagcattt aaaatccatt 2280
ggtcttctgt cacccgattt tcaagaagac aatgaaacag aaataaactt cctgctcaaa 2340
caagcactca cgattgttgg gactctgcca tttacttaca tgttagagaa gtggaggtgg 2400
atggtcttta aaggggaaat tcccaaagac cagtggatga aaaagtggtg ggagatgaag 2460
cgagagatag ttggggtggt ggaacctgtg ccccatgatg aaacatactg tgaccccgca 2520
tctctgttcc atgtttctaa tgattactca ttcattcgat attacacaag gaccctttac 2580
caattccagt ttcaagaagc actttgtcaa gcagctaaac atgaaggccc tctgcacaaa 2640
tgtgacatct caaactctac agaagctgga cagaaactgt tcaatatgct gaggcttgga 2700
aaatcagaac cctggaccct agcattggaa aatgttgtag gagcaaagaa catgaatgta 2760
aggccactgc tcaactactt tgagccctta tttacctggc tgaaagacca gaacaagaat 2820
tcttttgtgg gatggagtac cgactggagt ccatatgcag accaaagcat caaagtgagg 2880
ataagcctaa aatcagctct tggagataaa gcatatgaat ggaacgacaa tgaaatgtac 2940
ctgttccgat catctgttgc atatgctatg aggcagtact ttttaaaagt aaaaaatcag 3000
atgattcttt ttggggagga ggatgtgcga gtggctaatt tgaaaccaag aatctccttt 3060
aatttctttg tcactgcacc taaaaatgtg tctgatatca ttcctagaac tgaagttgaa 3120
aaggccatca ggatgtcccg gagccgtatc aatgatgctt tccgtctgaa tgacaacagc 3180
ctagagtttc tggggataca gccaacactt ggacctccta accagccccc tgtttccata 3240
tggctgattg tttttggagt tgtgatggga gtgatagtgg ttggcattgt catcctgatc 3300
ttcactggga tcagagatcg gaagaagaaa aataaagcaa gaagtggaga aaatccttat 3360
gcctccatcg atattagcaa aggagaaaat aatccaggat tccaaaacac tgatgatgtt 3420
cagacctcct ttacgcgtac gcggccgctc gaggattata aggatgacga cgataaattc 3480
gtcgagcacc accaccacca ccactaataa ggtttatccg atccaccgga tctagataag 3540
atatccgatc caccggatct agataactga tcataatcag ccataccaca tttgtagagg 3600
ttttacttgc tttaaaaaac ctcccacacc tccccctgaa cctgaaacat aaaatgaatg 3660
caattgttgt tgttaacttg tttattgcag cttataatgg ttacaaataa agcaatagca 3720
tcacaaattt cacaaataaa gcattttttt cactgcattc tagttgtggt ttgtccaaac 3780
tcatcaatgt atcttaacgc ggatctgggc gtggttaagg gtgggaaaga atatataagg 3840
tgggggtctt atgtagtttt gtatctgttt tgcagcagcc gccgccgcca tgagcaccaa 3900
ctcgtttgac tccttctcag ccttgttgct gttactactg ctcagtccct caccgaggaa 3960
aatgccaaga catttttaaa caactttaat caggaagctg aagacctgtc ttatcaaagt 4020
tcacttgctt cttggaatta taatactaac attactgaag aaaatgccca aaagatggta 4080
agttcttgag gctacccagg gggttattga ttgcttctta aagatcagaa ttactgccta 4140
taaaactgga taaggaaatc atagagatct ctcaagtgtg aggatgagtg actgcctctg 4200
tagctctgat cctagtctcc cagatggcta aattcaattg accttagagt tcatctggaa 4260
aattgttatg aatgaattat ttgcccagat tccaaagatg agtgaaaatg tttaataaag 4320
ttgccatcac tattctcatt atatttggta tgtaaagcat tcatggaaat gttctaagtc 4380
gttattgagc caataatttt ctttagctta taatgccaac aggtctatcc gagaactaca 4440
aatgacatat taactgaaaa atgcaactgg ggtttactga aggcagcagc ttagtaatta 4500
aggtaaccat ggcttaggtg aaactggacc tgggaattcc ttctttcatt gacacagagc 4560
tctgaggaat ttccaaaggt cacagaagaa aagctataat taaactagtc ccaaaaaatc 4620
tcagcctact ctgggaaagc agcatatttt gtttgacaag tgcaaggact tagaactttt 4680
ttttttctca ctgatcctga agtgcctttt aagtatagtt aagtggtgga aaattgagca 4740
actatttaag aaaagactct tttttttctt cttccagcaa tgctttcctt caaaacggta 4800
gcttcaaaac ttcctgtctt ttaaatgatc agggggctgt gtgtttaaat tattgccatt 4860
catagaacag agtgggtctg aggatgc 4887
<210> 18
<211> 23
<212> DNA
<213> wild type sequence-F
<400> 18
caacccaagt tcaaaggctg atg 23
<210> 19
<211> 25
<212> DNA
<213> wild type sequence-R
<400> 19
cctcaagaac ttaccatctt ttggg 25

Claims (9)

1. A method for constructing a novel coronavirus humanized receptor hACE2 mouse model is characterized by comprising the following steps:
1) design of gRNA: 2 gRNA sites are designed near an ATG (initiator codon) of a second exon of a mouse angiotensin converting enzyme mACE2 gene, and gRNA-1 and gRNA-2 are respectively arranged, wherein the sequence of the gRNA-1 is shown in SEQ ID No.1, and the sequence of the gRNA-2 is shown in SEQ ID No. 2;
2) design of Donor DNA: connecting an upstream homologous arm of human angiotensin converting enzyme hACE2, a CDS sequence and a polyA sequence of human angiotensin converting enzyme hACE2 and a downstream homologous arm of human angiotensin converting enzyme hACE2 to form a Donor DNA fragment;
3) microinjection: mixing the 2 gRNAs obtained in the step 1), the Donor DNA obtained in the step 2), the Cas9 protein and the Microinjection buffer, and injecting the mixture into a pronucleus of a fertilized egg of an mT/mG mouse to obtain an embryo;
4) embryo transplantation: continuously culturing the embryo obtained in the step 3) to 2-cells, and then transplanting the 2-cell embryo into the oviduct of a pseudopregnant female mouse until a newborn mouse is born;
5) and (3) genotype identification: and (3) identifying the genotype of the baby mouse obtained in the step 4), wherein the baby mouse with the gene sequence of the human angiotensin converting enzyme hACE2 is the new coronavirus humanized receptor hACE2 mouse model.
2. The construction method according to claim 1, wherein the sequence of the second exon of the mouse angiotensin converting enzyme mACE2 gene is shown as SEQ ID No. 4.
3. The method of claim 1, wherein the CDS sequence of the human angiotensin-converting enzyme hACE2 in step 2) is shown in SEQ ID No. 5.
4. The construction method according to claim 3, wherein the upstream homology arm sequence in step 2) is shown as SEQ ID No.11, and the downstream homology arm sequence is shown as SEQ ID No. 12.
5. The construction method according to claim 4, wherein the primer-F of the upstream homology arm is shown as SEQ ID No.13, the primer-R of the upstream homology arm is shown as SEQ ID No.14, the primer-F of the downstream homology arm is shown as SEQ ID No.15, and the primer-R of the downstream homology arm is shown as SEQ ID No. 16.
6. The method according to claim 5, wherein the DNA of Donor has the sequence shown in SEQ ID No. 17.
7. The method according to claim 1, wherein the mixing in step 3) is performed by mixing gRNA-1, gRNA-2, Donor DNA and Cas protein in a final concentration ratio of 5:5:2: 25.
8. The method according to claim 1, wherein the mouse fertilized egg of step 3) is incubated at 37 ℃ for 15 minutes before microinjection.
9. The use of the mouse model of the humanized receptor hACE2 for the novel coronavirus obtained by the construction method of claim 1 in research on pathogenic mechanism of the novel coronavirus, and development of drugs or vaccines.
CN202010974969.4A 2020-09-16 2020-09-16 Construction method and application of novel coronavirus humanized receptor hACE2 mouse model Active CN112226464B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010974969.4A CN112226464B (en) 2020-09-16 2020-09-16 Construction method and application of novel coronavirus humanized receptor hACE2 mouse model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010974969.4A CN112226464B (en) 2020-09-16 2020-09-16 Construction method and application of novel coronavirus humanized receptor hACE2 mouse model

Publications (2)

Publication Number Publication Date
CN112226464A CN112226464A (en) 2021-01-15
CN112226464B true CN112226464B (en) 2021-11-05

Family

ID=74106957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010974969.4A Active CN112226464B (en) 2020-09-16 2020-09-16 Construction method and application of novel coronavirus humanized receptor hACE2 mouse model

Country Status (1)

Country Link
CN (1) CN112226464B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213498A1 (en) * 2020-04-24 2021-10-28 中国食品药品检定研究院 Mouse model having knocked-in human ace2 gene, production method therefor and use thereof
CN112680466B (en) * 2021-01-21 2023-08-18 广州派真生物技术有限公司 Animal model for expressing humanized ACE2 and application thereof
CN112852882A (en) * 2021-02-04 2021-05-28 中吉智药(南京)生物技术有限公司 System and method for producing AAV gene medicine by infecting insect cell with baculovirus
CN113416711B (en) * 2021-06-22 2023-07-18 广州医科大学附属第一医院 Construction method and application of SARS-COV-2 virus strain and mouse model
CN113528571B (en) * 2021-07-16 2023-08-15 北京复昇生物科技有限公司 Construction method and application of hACE2 humanized transgenic pig
CN113684227B (en) * 2021-07-19 2022-11-29 上海南方模式生物科技股份有限公司 Rapid construction method and application of ACE2 humanized mouse model
CN114350706A (en) * 2021-12-14 2022-04-15 斯贝福(北京)生物技术有限公司 Lethal mouse animal model infected by new coronavirus and construction method thereof
CN114107225B (en) * 2022-01-25 2022-04-19 南京科冠生物医药科技有限公司 SARS-CoV-2 adaptive strain based on KI-hACE2 mouse and its construction method
CN114921492B (en) * 2022-05-05 2024-04-16 复旦大学 Gene targeting vector, type I interferon receptor partially humanized mouse model, construction method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090083865A1 (en) * 2006-01-11 2009-03-26 Chan Teh-Sheng Transgenic Mouse Lines Expressing Human Ace2 and Uses Thereof
CN107858373B (en) * 2017-11-16 2020-03-17 山东省千佛山医院 Construction method of endothelial cell conditional knockout CCR5 gene mouse model
CN111621523A (en) * 2020-06-09 2020-09-04 湖南昭泰生物医药有限公司 ACE2 cell humanized mouse model and construction method and application thereof

Also Published As

Publication number Publication date
CN112226464A (en) 2021-01-15

Similar Documents

Publication Publication Date Title
CN112226464B (en) Construction method and application of novel coronavirus humanized receptor hACE2 mouse model
Whitworth et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs
Yao et al. Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells
WO2017104404A1 (en) Genetic modification non-human organism, egg cells, fertilized eggs, and method for modifying target genes
WO2017143894A1 (en) Immunodeficient mouse, preparation method therefor, and application thereof
CN109679953B (en) Target sequence group, vector and method for preparing gene point mutation animal model embryo by using CRISPR-Cas9 system
CN104837989A (en) Production of FMDV-resistant livestock by allele substitution
CN111733183B (en) Targeting vector for constructing liver injury mouse model, nucleic acid composition and construction method
CN111979273B (en) Method for preparing humanized ACE2 mouse model
KR20160015333A (en) Genetic techniques for making animals with sortable sperm
WO2019206236A1 (en) Implementation of efficient and precise targeted integration by means of tild-crispr
JP2022522112A (en) Humanized cell line
US11535850B2 (en) Methods for improving the health of porcine species by targeted inactivation of CD163
JP2958643B2 (en) Method for producing stable cell line for production of specific protein derived from transgenic animal, neoplastic cell line, and protein obtained thereby
CN106978416B (en) Gene positioning integration expression system and application thereof
WO1997011597A1 (en) Method for preparing transgenic animal
JP2010522549A (en) Polynucleotide for enhancing expression of polynucleotide of interest
KR102362814B1 (en) Animal model for transplanting human hepatocytes and a method for screening anti-viral agent by using the animal model
WO2021174742A1 (en) Animal preparation method
CN110157704B (en) Mouse for resisting mouse hepatitis virus and preparation method thereof
Liu et al. In vivo exon replacement in the mouse Atp7b gene by the Cas9 system
WO1993024626A1 (en) Transgenic animal production with biolistically transformed spermatozoa
CN101519664B (en) Method for breeding genetically modified animal by using recombinant adenovirus vector
CN113308480B (en) A-type Seneca virus SVA/HeB full-length infectious cDNA clone, and preparation method and application thereof
WO2023176982A1 (en) Mhc gene group humanized animal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant