CN112195780A - 一种关于节段预制桥梁架设线形的数控方法 - Google Patents

一种关于节段预制桥梁架设线形的数控方法 Download PDF

Info

Publication number
CN112195780A
CN112195780A CN202010940069.8A CN202010940069A CN112195780A CN 112195780 A CN112195780 A CN 112195780A CN 202010940069 A CN202010940069 A CN 202010940069A CN 112195780 A CN112195780 A CN 112195780A
Authority
CN
China
Prior art keywords
deviation
measuring point
erection
erected
line shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010940069.8A
Other languages
English (en)
Inventor
孙峻岭
郑庚伟
凌致远
彭重驹
罗圣明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Hanyang Engineering Consulting Co ltd
Original Assignee
Guangzhou Hanyang Engineering Consulting Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Hanyang Engineering Consulting Co ltd filed Critical Guangzhou Hanyang Engineering Consulting Co ltd
Priority to CN202010940069.8A priority Critical patent/CN112195780A/zh
Publication of CN112195780A publication Critical patent/CN112195780A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements
    • B28B17/0072Product control or inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

本发明公开了一种关于节段预制桥梁架设线形的数控方法,包括以下步骤:测得架设完成后的节段梁的实际测点位置,将其与其理论测点坐标进行对比,得出该节段梁的架设偏差;根据所述架设偏差构建平移矩阵和旋转矩阵,将所有未架设节段梁的理论测点坐标都按照所述平移矩阵和所述旋转矩阵进行空间移动,并进行线形拟合,得出最后一个节段梁的预测偏差,根据该预测偏差,考虑后续未架设节段梁是否继续进行正常架设或采取纠偏措施。本发明对桥梁预制节段架设施工的线形预测,使架设施工误差处于可控范围,顺利完成合龙施工,避免由于架设线形未及时纠正导致的工程损失。

Description

一种关于节段预制桥梁架设线形的数控方法
技术领域
本发明涉及节段预制桥梁架设施工技术领域,特别涉及一种关于节段预制桥梁架设线形的数控方法。
背景技术
桥梁节段预制技术方法是在预制场内预制好节段梁,同时在预制过程中会在节段梁顶板埋设测点并进行测量记录,并计算出节段梁测点理论架设坐标。然后再将预制好的节段梁运至架设现场进行拼装。在进行预制节段装配施工的时候,由于在施工过程中必然存在施工误差,并且施工误差会随着施工进行而累积,甚至造成无法合龙的严重后果。
在工程实践中,节段架设的细小误差很有可能会导致比较严重的后果。特别是在架设初始节段时存在的偏差,会随着施工的进行而不断累加,对合龙施工有巨大影响,如果没有及时识别并考虑修正所述偏差,严重时会导致桥梁无法顺利合龙,需要重新预制,重新装配施工。而在目前的技术环境下并没有对架设偏差所产生的后续影响进行判断,所述影响往往随着工程的进行才会逐渐被意识到。但对偏差的纠正所需要的人力、物力、财力以及时间往往会随着工程的进行而增大。因此如果没有及时对偏差的影响进行判断将会造成较大损失。如中国专利CN108625296A公开一种用于节段预制桥梁安装线形控制方法,该方法在进行节段梁基准块定位之后,由于测量误差无法完全消除,在第一片节段梁架设完成后,若误差不满足需要,暂不进行偏差调整,根据现有线形连续安装三片节段梁,基于误差线性放大原理,第一片节段梁的转角误差在第三片节段梁上得到显著放大,利用三片节段梁整体法转动调整第三片节段梁的坐标,来控制前两片节段梁的坐标在合理范围内。
发明内容
本发明的目的在于针对现有技术没有涉及对节段预制梁架设线形进行预测的问题,提供一种桥梁节段预制技术架设施工三维数控方法,实现对桥梁预制节段架设施工的线形预测,使架设施工误差处于可控范围,顺利完成合龙施工,避免由于架设线形未及时纠正导致的工程损失。
为实现上述目的,本发明采用以下技术方案。
一种关于节段预制桥梁架设线形的数控方法,其特征在于,包括以下步骤:
S1,在每个节段梁架设完成后测得该段节段梁的实际测点位置;
S2,将步骤S1所测得的实际测点位置与其理论测点坐标进行对比,得出该节段梁的架设偏差,该架设偏差包括纵向、高程和横向方向上的位移偏差(δ1、δ2、δ3)以及所对应的纵轴、竖轴和横轴的转角偏差(Φ1、Φ2、Φ3);
S3,根据所述位移偏差(δ1、δ2、δ3)和所述转角偏差(Φ1、Φ2、Φ3)构建平移矩阵和旋转矩阵;
所述平移矩阵为:
Figure BDA0002673337790000021
所述旋转矩阵为:
Figure BDA0002673337790000031
预测时先将已完成架设的某段节段梁的其中一个测点理论位置运用所述平移矩阵移动至与其对应测点实测位置重合的位置,
即平移计算公式为:(x',y',z',1)=(x,y,z,1)·Rmov
在移动时,其余测点跟随该测点一起平移;
然后再对各测点运用所述旋转矩阵使其转到相应位置,
即旋转计算公式为:(x',y',z')=(x,y,z)·Rrot
S4,将所有未架设节段梁的理论测点坐标都按照步骤S3所述的平移矩阵和所述的旋转矩阵进行空间移动,并进行线形拟合,得出最后一个节段梁的预测测点位置;
S5,将步骤S4所得的最后一个节段梁的预测测点位置与其理论测点坐标进行对比,得出最后一个节段梁的预测偏差;
S6,根据步骤S5的所述预测偏差,考虑后续未架设节段梁是否继续进行正常架设或采取纠偏措施。
其中,在步骤S5中,所述预测偏差为纵向位移、高程位移、横向位移、纵轴转角、竖轴转角和横轴转角六个自由度方向上的偏差(Δ1、Δ2、Δ3、θ1、θ2、θ3)。
与现有技术相比本发明的有益效果为:
现有技术并没有涉及对预制节段架设线形的预测,大多都是对架设线形的调整方法。而本专利方法通过预测线形的方式,提前判断有可能造成的误差大小,是否符合设计要求,相当于起到一个预警的作用,进而更好地把控工程进度与质量,避免造成如无法合龙等无法挽回的后果。
附图说明
图1是节段预制桥梁架设的预测线形与理论线形示意图。
图2是节段梁空间六个自由度方向上的偏差示意图。
图3是本发明架设线形预测数控方法的流程图。
具体实施方式
下面结合附图对本发明作进一步的说明。
如图1所示,其示意出了节段预制桥梁架设的预测线形与理论线形,其中标记1为已架设节段位置,2为理论架设节段位置,3为预测架设线形,4为理论架设线形,5为预测最后节段,6为理论最后节段。图1示意出架设初始节段时存在的偏差,会随着施工的进行而不断累加,对合龙施工有巨大影响。
节段预制桥梁的架设是在预制厂内预制好墩顶块,运输至架设现场后,通过龙门吊等装置将墩顶块吊装至施工好的桥墩上,按照节段梁测点理论坐标放样对墩顶块进行位置的调整。由于实际施工环境与理论环境存在偏差,按放样调整后的墩顶块在大多数的情况下难以和理论坐标重合。因此在墩顶块架设好无法再进行调整后,现场监控人员需要再次对墩顶块的位置进行测点复测以及线形预测工作。测量人员将测量数据传输至线形监控中心的服务器中。线形监控中心服务器运算完数据后若偏差超出阈值,其将向现场测量人员发出预警,并让其协调现场考虑是否进行纠偏。
参见图3所示的架设线形数控方法的流程图,首先在预制厂内按照设计尺寸预制节段梁,然后架设节段梁,再根据理论数据对该节段梁调整后固定,节段梁架设完成后测得该段节段梁实际测点位置的坐标数据,将该坐标数据反馈至监控中心服务器,由软件预测该节段预制桥梁的未来架设线形,然后将该预测线形与理论线形进行比较,并判断偏差是否超限,如果无超限,则正常架设下一节段,如果超限,则考虑在架设下一节段时进行纠偏。
本数控方法的预测算法包括以下步骤:
S1,在每个节段梁架设完成后测得该段节段梁的实际测点位置;
S2,将步骤S1所测得的实际测点位置与其理论测点坐标进行对比,得出该节段梁的架设偏差,如图3所示,该架设偏差包括纵向7、高程8和横向9方向上的位移偏差(δ1、δ2、δ3)以及所对应的纵轴10、竖轴11和横轴12的转角偏差(Φ1、Φ2、Φ3);
S3,根据所述位移偏差(δ1、δ2、δ3)和所述转角偏差(Φ1、Φ2、Φ3)构建平移矩阵和旋转矩阵;
所述平移矩阵为:
Figure BDA0002673337790000051
所述旋转矩阵为:
Figure BDA0002673337790000052
预测时先将已完成架设的某段节段梁的其中一个测点运用所述平移矩阵移动至与其对应预测测点重合的位置,
即平移计算公式为:(x',y',z',1)=(x,y,z,1)·Rmov
在移动时,其余测点跟随该测点一起平移;
然后再对各测点运用所述旋转矩阵使其转到相应位置,
即旋转计算公式为:(x',y',z')=(x,y,z)·Rrot
S4,将所有未架设节段梁的理论测点坐标都按照步骤S3所述的平移矩阵和所述的旋转矩阵进行空间移动,并进行线形拟合,得出最后一个节段梁的预测测点位置;
S5,将步骤S4所得的最后一个节段梁的预测测点位置与其理论测点坐标进行对比,得出最后一个节段梁的预测偏差;
S6,根据步骤S5的所述预测偏差,考虑后续未架设节段梁是否继续进行正常架设或采取纠偏措施。
其中,在步骤S5中,所述预测偏差为纵向位移、高程位移、横向位移、纵轴转角、竖轴转角和横轴转角六个自由度方向上的偏差(Δ1、Δ2、Δ3、θ1、θ2、θ3)。
本专利所述的架设线形的数控方法具有以下有益效果:
(1)在节段预制桥梁架设装配过程中根据已装配的预制节段线形,预测该跨桥梁按照已架设节段线形继续进行后续预制节段装配时的合龙偏差,得以预判该跨架设线形是否符合设计线形要求,进而考虑是否需要对架设线形进行纠偏调整,保证桥梁顺利合龙。
(2)根据已装配完成的预制节段,对后续未装配预制节段的架设线形进行预测,避免因施工误差不断累加导致最后无法合龙所造成的人力、物力、财力以及时间的损失。
以上所述仅是本发明的较佳实施方式,故凡依本发明专利申请范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明专利申请范围内。

Claims (2)

1.一种关于节段预制桥梁架设线形的数控方法,其特征在于,包括以下步骤:
S1,在每个节段梁架设完成后测得该段节段梁的实际测点位置;
S2,将步骤S1所测得的实际测点位置与其理论测点坐标进行对比,得出该节段梁的架设偏差,该架设偏差包括纵向、高程和横向方向上的位移偏差(δ1、δ2、δ3)以及所对应的纵轴、竖轴和横轴的转角偏差(Φ1、Φ2、Φ3);
S3,根据所述位移偏差(δ1、δ2、δ3)和所述转角偏差(Φ1、Φ2、Φ3)构建平移矩阵和旋转矩阵;
所述平移矩阵为:
Figure FDA0002673337780000011
所述旋转矩阵为:
Figure FDA0002673337780000012
预测时先将已完成架设的某段节段梁的其中一个测点理论位置运用所述平移矩阵移动至与其对应测点实测位置重合的位置,即平移计算公式为:(x',y',z',1)=(x,y,z,1)·Rmov,在移动时,其余测点跟随该测点一起平移;然后再对各测点运用所述旋转矩阵使其转到相应位置,即旋转计算公式为:(x',y',z')=(x,y,z)·Rrot
S4,将所有未架设节段梁的理论测点坐标都按照步骤S3所述的平移矩阵和所述的旋转矩阵进行空间移动,并进行线形拟合,得出最后一个节段梁的预测测点位置;
S5,将步骤S4所得的最后一个节段梁的预测测点位置与其理论测点坐标进行对比,得出最后一个节段梁的预测偏差;
S6,根据步骤S5的所述预测偏差,考虑后续未架设节段梁是否继续进行正常架设或采取纠偏措施。
2.根据权利要求1所述的一种关于节段预制桥梁架设线形的数控方法,其特征在于,在步骤S5中,所述预测偏差为纵向位移、高程位移、横向位移、纵轴转角、竖轴转角和横轴转角六个自由度方向上的偏差(Δ1、Δ2、Δ3、θ1、θ2、θ3)。
CN202010940069.8A 2020-09-09 2020-09-09 一种关于节段预制桥梁架设线形的数控方法 Pending CN112195780A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010940069.8A CN112195780A (zh) 2020-09-09 2020-09-09 一种关于节段预制桥梁架设线形的数控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010940069.8A CN112195780A (zh) 2020-09-09 2020-09-09 一种关于节段预制桥梁架设线形的数控方法

Publications (1)

Publication Number Publication Date
CN112195780A true CN112195780A (zh) 2021-01-08

Family

ID=74005672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010940069.8A Pending CN112195780A (zh) 2020-09-09 2020-09-09 一种关于节段预制桥梁架设线形的数控方法

Country Status (1)

Country Link
CN (1) CN112195780A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113863142A (zh) * 2021-09-10 2021-12-31 中国建筑第八工程局有限公司 大跨度跨河连廊悬臂安装方法
CN116090076A (zh) * 2023-03-07 2023-05-09 四川省公路规划勘察设计研究院有限公司 一种复杂环境下的石笼桥台建造系统及其快速建造方法
CN117217048A (zh) * 2023-09-07 2023-12-12 重庆中环建设有限公司 一种悬挑梁施工监控系统及监控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290933A (ja) * 1999-04-07 2000-10-17 Yokogawa Bridge Corp プレキャストセグメントの形状管理方法およびプレキャストセグメント工法による橋梁架設方法
CN102251478A (zh) * 2011-04-27 2011-11-23 中铁港航局集团第二工程有限公司 斜拉桥塔梁同步施工测量控制方法
CN109440648A (zh) * 2018-11-20 2019-03-08 湖南工业大学 双湿接缝节段预制桥梁拼装线形调整装置
CN109543216A (zh) * 2018-10-16 2019-03-29 华南理工大学 一种基于短线匹配法的节段梁预制线形控制方法
CN110777669A (zh) * 2019-11-15 2020-02-11 中铁北京工程局集团有限公司 高铁连续梁短线匹配预制悬臂拼装线形控制方法
CN111622114A (zh) * 2020-05-08 2020-09-04 中铁大桥科学研究院有限公司 一种桥梁节段预制施工线形误差调整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290933A (ja) * 1999-04-07 2000-10-17 Yokogawa Bridge Corp プレキャストセグメントの形状管理方法およびプレキャストセグメント工法による橋梁架設方法
CN102251478A (zh) * 2011-04-27 2011-11-23 中铁港航局集团第二工程有限公司 斜拉桥塔梁同步施工测量控制方法
CN109543216A (zh) * 2018-10-16 2019-03-29 华南理工大学 一种基于短线匹配法的节段梁预制线形控制方法
CN109440648A (zh) * 2018-11-20 2019-03-08 湖南工业大学 双湿接缝节段预制桥梁拼装线形调整装置
CN110777669A (zh) * 2019-11-15 2020-02-11 中铁北京工程局集团有限公司 高铁连续梁短线匹配预制悬臂拼装线形控制方法
CN111622114A (zh) * 2020-05-08 2020-09-04 中铁大桥科学研究院有限公司 一种桥梁节段预制施工线形误差调整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜淑幸: "《计算机图形学基础与CAD开发》", 30 September 2018, 西安电子科技大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113863142A (zh) * 2021-09-10 2021-12-31 中国建筑第八工程局有限公司 大跨度跨河连廊悬臂安装方法
CN116090076A (zh) * 2023-03-07 2023-05-09 四川省公路规划勘察设计研究院有限公司 一种复杂环境下的石笼桥台建造系统及其快速建造方法
CN117217048A (zh) * 2023-09-07 2023-12-12 重庆中环建设有限公司 一种悬挑梁施工监控系统及监控方法

Similar Documents

Publication Publication Date Title
CN112195780A (zh) 一种关于节段预制桥梁架设线形的数控方法
CN1978801B (zh) 超大跨度钢斜拱施工方法
CN110245399B (zh) 一种异形钢结构合龙段精确配切量的确定方法
CN114086669A (zh) 一种大型空间异形曲面钢网架模块化快速建造方法
JP2000290933A (ja) プレキャストセグメントの形状管理方法およびプレキャストセグメント工法による橋梁架設方法
CN106223623B (zh) 钢结构箱型拱形屋架安装方法
US20230279620A1 (en) Three-dimensional bridge deck finisher
CN114541264B (zh) 一种斜拉桥索导管一体化测量定位方法
CN105178607A (zh) 一种大型放射状弧形架体结构施工方法
CN105887686A (zh) 内倾式三角拱桥钢拱肋合龙方法
CN116816103A (zh) 一种大跨度铝合金单层网壳穹顶结构“外扩式”施工方法
JP3165339B2 (ja) ショートラインマッチキャスティング用型枠自動制御システム
CN110080271B (zh) 地脚螺栓埋件预埋质量控制的施工方法
JP2021116684A (ja) 部材配置システム、完成体組立て方法
CN109750603A (zh) 结合节段梁结构短线法施工的几何监测系统及监测方法
CN115467243A (zh) 一种控制钢箱系杆拱肋锚管角度误差的方法
CN210622423U (zh) 一种焊接连接的接触网硬横梁
CN110685306B (zh) 地铁明挖车站y型钢结构柱定位测量方法
CN113652977A (zh) 跨河钢箱梁桥的主梁安装方法
CN116084287A (zh) 一种超高异型索塔施工工艺
CN115248948B (zh) 一种钢结构滑雪大跳台顶部装置结构安装方法
CN114876210A (zh) 一种基于三维扫描技术的钢结构屋面系统分段安装工艺
Kumar et al. Automated geometry control of precast segmental bridges
CN117454494B (zh) 一种波形钢腹板梁桥的预制线形确定方法
CN118070405B (zh) 一种基于gis和bim的斜拉桥模型构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210108