CN112193900B - 一种伺服驱动张力辊的微张力控制系统及方法 - Google Patents

一种伺服驱动张力辊的微张力控制系统及方法 Download PDF

Info

Publication number
CN112193900B
CN112193900B CN202011011656.5A CN202011011656A CN112193900B CN 112193900 B CN112193900 B CN 112193900B CN 202011011656 A CN202011011656 A CN 202011011656A CN 112193900 B CN112193900 B CN 112193900B
Authority
CN
China
Prior art keywords
tension
value
servo motor
swing roller
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011011656.5A
Other languages
English (en)
Other versions
CN112193900A (zh
Inventor
高虎军
杨智江
李江涛
常峻
唐康
任浩
张乐
张龙
范鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Aerospace Huayang Electrical And Mechanical Equipment Co ltd
Original Assignee
Xi'an Aerospace Huayang Electrical And Mechanical Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Aerospace Huayang Electrical And Mechanical Equipment Co ltd filed Critical Xi'an Aerospace Huayang Electrical And Mechanical Equipment Co ltd
Priority to CN202011011656.5A priority Critical patent/CN112193900B/zh
Publication of CN112193900A publication Critical patent/CN112193900A/zh
Application granted granted Critical
Publication of CN112193900B publication Critical patent/CN112193900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/26Registering, tensioning, smoothing or guiding webs longitudinally by transverse stationary or adjustable bars or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H26/00Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms
    • B65H26/02Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms responsive to presence of irregularities in running webs
    • B65H26/04Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms responsive to presence of irregularities in running webs for variation in tension

Abstract

本发明公开了一种伺服驱动张力辊的微张力控制系统,包括安装导轨上的CPU模块,CPU模块连接模拟量输入输出模块、数字量输入输出模块,CPU模块通过以太网网线连接HMI人机界面、摆辊伺服驱动器及张力轴伺服驱动器,摆辊伺服驱动器连接摆辊伺服电机,摆辊伺服电机连接摆辊机构,张力轴伺服驱动器连接张力轴伺服电机,张力轴伺服电机连接减速机构,减速机构连接张力轴,模拟量输入输出模块分别连接张力传感器、多圈电位器。本发明微张力控制方法,实现了隔膜设备微张力性能的要求,保证张力平稳,使设备收放料端实现微张力调节,提高了控制精度。

Description

一种伺服驱动张力辊的微张力控制系统及方法
技术领域
本发明主要属于隔膜涂布设备领域,涉及了一种伺服驱动张力辊的微张力控制系统,本发明还涉及该伺服驱动张力辊的微张力控制方法。
背景技术
目前的隔膜涂布设备,采用被动摆辊,即气缸驱动摆辊机构,多圈电位器控制放料、收料,由于隔膜设备的材料一般是PE、PP与之类似的表面有孔薄膜,基材厚度一般为6-25μm,表面的孔要求锂离子可以通过,电子不可以通过,一般张力设定在2N至15N之间,张力要求较小。传统控制方法采用气缸推动摆辊控制电机速度,用于调整收放料端张力,这种方式张力不稳定,会造成膜表面的孔变形,影响产品质量,成品率低,同时也无法实现微张力要求。
发明内容
本发明公开了一种伺服驱动张力辊的微张力控制系统,解决了现有设备在微张力情况下,收放料无法保持张力稳定的问题。
本发明所采用的技术方案是,一种伺服驱动张力辊的微张力控制系统,包括安装导轨上的CPU模块,CPU模块电连接模拟量输入输出模块、数字量输入输出模块,CPU模块通过以太网网线连接HMI人机界面、摆辊伺服驱动器及张力轴伺服驱动器,摆辊伺服驱动器连接摆辊伺服电机,摆辊伺服电机连接摆辊机构,张力轴伺服驱动器连接张力轴伺服电机,张力轴伺服电机连接减速机构,减速机构连接张力轴,模拟量输入输出模块分别连接张力传感器与多圈电位器。
本发明的特点还在于,张力传感器安装在张力轴两侧下方,多圈电位器安装于摆辊机构轴端。
CPU模块通过数字量输入输出模块连接继电器后,对应连接摆辊伺服电机和张力轴伺服电机,数字量输入输出模块连接张力轴开关,张力轴开关连接张力轴开关指示灯。
摆辊伺服驱动器采用西门子V90系列型号摆辊伺服驱动器,所述摆辊伺服电机采用1FL6系列型号摆辊伺服电机,摆辊伺服电机自带20位多圈绝对值编码器,编码器采用1FL6系列型号。
HMI人机界面采用西门子人机界面,CPU模块采用西门子S7-1500控制器,安装导轨采用西门子S7-1500,张力传感器采用厦门微控MCT型号张力传感器。
本发明的另一目的是提供一种伺服驱动张力辊的微张力控制方法。
本发明的另一技术方案是,一种伺服驱动张力辊的微张力控制方法,其特征在于,具体控制过程如下:
步骤1、启动机构前,将应用程序存储在CPU模块当中,根据HMI人机界面显示张力轴运行状态及设定参数,输入张力值;再根据不同材料及工艺,设置设备主机速度V=0时,P值、I值、PI限制值;当设备主机速度V>0时的P值、I值、PI限制值,输入参数通过PROFINET通信方式传送至CPU模块中;
步骤2、分别通过张力传感器采集张力波动信号,多圈电位器采集摆辊机构位置信号;
步骤3、打开张力轴开关,数字量输入输出模块接收张力轴开关信号,张力轴开关指示灯变亮,通过数字量输入输出模块反馈张力轴伺服电机的使能信号,然后按下整机启动按钮,整机启动,张力轴处于使能状态,但整机速度V=0,开始建立整机零速张力;
步骤4、进行张力建立,张力传感器反馈张力值PV经过CPU模块的PID运算,将速度指令传递给摆辊伺服电机,调节反馈张力值PV,使摆辊机构处于中位平衡状态;
步骤5、多圈电位器位置实际值对应电压PD经过CPU模块的PID运算,将转速指令传递给张力轴伺服电机,张力建立时,当多圈电位器模拟量对应的电压为0伏,即多圈电位器处于中位处;
步骤6、零速张力稳定后,根据不同材料及工艺所需的速度进行加速,设备主机速度V>0m/min时,根据步骤1中的设备主机速度V>0m/min时的P值、I值、PI限制值,使用步骤4和步骤5中的PID运算,通过计算块计算得出V>0m/min时的PID调节量,将调节量对应的转速与张力轴伺服电机9当前转速叠加,进而控制张力轴伺服电机9。
本发明的特点还在于,
步骤2具体过程为张力传感器通过张力放大器把张力信号以0-10V电压型模拟量传送给模拟量输入输出模块;多圈电位器把摆辊机构的位置信号以0-±10V电压型模拟量传送给模拟量输入输出模块,张力传感器反馈张力值为PV、多圈电位器实际位置对应的电压为PD;
步骤4具体步骤如下:
步骤4.1、在HMI人机界面上输入张力设定值SP,根据公式计算得出张力传感器反馈张力值PV:PV=Fmax×AC÷27648,Fmax为张力传感器最大张力值,AC为张力传感器实际模拟量,27648为模拟量最大值,把张力设定值SP与张力传感器反馈张力值PV接入西门子博图软件V15自带的连续性CONT_C PID计算块输入管脚,通过计算块计算得出的张力传感器的PID调节量V1PID
步骤4.2、CPU模块通过PROFINET通信方式把PID调节量V1PID转换为转速,nc=V1PID×2000÷27648,nc为调节量V1PID对应的转速,2000为伺服最大转速,把转速nc传送给摆辊伺服驱动器,进而控制摆辊伺服电机,根据调节量V1PID正负,对应转换转速nc正负,从而摆辊伺服电机进行正转或反转,进而对应造成设备上料膜张力变化,张力传感器的反馈张力值PV随之变化,最后调节反馈张力值PV,当反馈张力值PV与张力设定值SP相差±0.5N,摆辊伺服电机停止调节。
步骤5的具体步骤如下:
步骤5.1、计算得出多圈电位器位置实际值对应电压PD,PD=Aw×10÷27648,Aw为多圈电位器模拟量,10为最大模拟量所对应的最大电压,27648为模拟量最大值;将多圈电位器模拟量Aw接入西门子博图软件V15所带的连续性CONT_C PID计算块输入管脚,通过计算块计算得出多圈电位器的PID调节量V2PID
步骤5.2、CPU模块通过PROFINET通信方式把PID调节量V2PI转换为转速,nw=V2PID×2000÷27648,nw为调节量V2PID对应的转速,2000为伺服最大转速,把转速nw传送给张力轴伺服驱动器,进而控制张力轴伺服电机,根据调节量V2PID正负,对应转换的转速nw正负,从而张力轴伺服电机进行正转或者反转,进而引起设备上料膜张力变化,多圈电位器位置实际值对应电压PD随之变化,当调节至0伏,张力轴伺服电机停止调节,张力轴伺服电机与摆辊伺服电机达到动态平衡。
步骤1中输入张力值范围为2-15N,P值范围为0.8-2.5;I值范围为10-30秒;PI限制值范围为500-8000。
本发明的有益效果是:本发明一种伺服驱动张力辊的微张力控制系统,通过控制伺服摆辊电机与张力轴伺服电机速度,实现设备料膜小张力及张力稳定性能,通过CPU模块对张力轴伺服电机的张力控制,实现摆辊结构始终处于中位,张力传感器反馈张力值与设定张力值处于平衡状态,张力轴以主机速度转动,解决了现有设备在微张力情况下,收放料无法保持张力稳定的问题。本发明不仅实现了隔膜设备微张力性能的要求,保证了张力平稳,而且提高了产品质量与成品率,具有操作简便、省时等特点。
附图说明
图1是本发明一种伺服驱动张力辊的微张力控制系统的拓扑图。
图2是本发明一种伺服驱动张力辊的微张力控制系统的摆辊电机张力控制系统图;
图3是本发明一种伺服驱动张力辊的微张力控制系统的张力轴电机张力控制系统图。
图中,1.HMI人机界面,2.CPU模块,3.模拟量输入输出模块,4.数字量输入输出模块,5.摆辊伺服驱动器,6.收放料伺服驱动器,7.摆辊伺服电机,8.摆辊机构,9.张力轴伺服电机,10.减速机构,11.张力轴,12.张力传感器,13.多圈电位器。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种伺服驱动张力辊的微张力控制系统,如图1所示,包括安装导轨上的CPU模块2,CPU模块2电连接模拟量输入输出模块3、数字量输入输出模块4,CPU模块2通过以太网网线连接HMI人机界面1、摆辊伺服驱动器5及张力轴伺服驱动器6,摆辊伺服驱动器5连接摆辊伺服电机7,摆辊伺服电机7连接摆辊机构8,张力轴伺服驱动器6连接张力轴伺服电机9,张力轴伺服电机9连接减速机构10,减速机构10连接张力轴11,模拟量输入输出模块3分别连接张力传感器12与多圈电位器13。
张力传感器12安装于张力轴11两侧下方,多圈电位器13安装于摆辊机构8轴端:张力传感器12通过张力放大器把张力信号传送给模拟量输入输出模块3;多圈电位器13把摆辊机构8的位置信号传送给模拟量输入输出模块3。
CPU模块2通过数字量输入输出模块4连接继电器后,对应连接摆辊伺服电机7和张力轴伺服电机10,数字量输入输出模块4连接张力轴开关,张力轴开关信号及其电机使能反馈信号接入数字量输入输出模块4,张力轴开关连接张力轴开关指示灯。摆辊机械机构8连接编码器,编码器电连接CPU模块2。
HMI人机界面1、CPU模块2、模拟量输入输出模块3、数字量输入输出模块4组成控制机构;张力传感器12读取外部张力,多圈电位器13进行位置信号检测,从而构成张力反馈机构;摆辊伺服驱动器5、张力轴伺服驱动器6、摆辊伺服电机7、摆辊机构8、张力轴伺服电机9、减速机构10、张力轴11共同组成整个系统的执行机构。
本实施例中HMI人机界面1采用西门子人机界面;CPU模块2采用西门子S7-1500控制器;安装导轨采用西门子S7-1500;摆辊伺服驱动器5采用西门子V90系列型号摆辊伺服驱动器;摆辊伺服电机7采用1FL6系列型号摆辊伺服电机,摆辊伺服电机7自带20位多圈绝对值编码器,编码器采用1FL6系列型号;张力传感器12采用厦门微控MCT型号张力传感器。
本发明一种伺服驱动张力辊的微张力控制方法,具体控制过程如下:
步骤1、启动机构前,将应用程序存储在CPU模块2当中,根据HMI人机界面1显示张力轴11运行状态及设定参数,输入张力值;再根据不同材料及工艺,设置设备主机速度V=0时,P值、I值、PI限制值;当设备主机速度V>0时的P值、I值、PI限制值,输入参数通过PROFINET通信方式传送至CPU模块2中;
步骤1中输入张力值范围为2-15N,P值范围为0.8-2.5;I值范围为10-30秒;PI限制值范围为500-8000;HMI为人机界面1用于显示张力轴11运行状态及设定参数,CPU模块2作为整个系统的控制中枢,处理所有的逻辑动作和张力控制。
步骤2、分别通过张力传感器12采集张力波动信号,多圈电位器13采集摆辊机构位置信号;
步骤2具体过程为张力传感器12通过张力放大器把张力波动信号以0-10V电压型模拟量传送给模拟量输入输出模块3;多圈电位器13把摆辊机构8的位置信号以0-±10V电压型模拟量传送给模拟量输入输出模块3,张力传感器12反馈张力值为PV、多圈电位器13实际位置对应的电压为PD;
步骤3、打开张力轴开关,数字量输入输出模块4接收张力轴开关信号,张力轴开关指示灯变亮,通过数字量输入输出模块4反馈张力轴伺服电机9的使能信号,然后按下整机启动按钮,整机启动,张力轴11处于使能状态,但整机速度V=0m/min,开始建立整机零速张力。
步骤4、进行张力建立,张力传感器12反馈张力值PV经过CPU模块2的PID运算,将速度指令传递给摆辊伺服电机7,调节反馈张力值PV,使摆辊机构8处于中位平衡状态,如图2所示,具体步骤如下:
步骤4.1、在HMI人机界面1上输入张力设定值SP,根据公式计算得出张力传感器12反馈张力值PV:PV=Fmax×AC÷27648,Fmax为张力传感器12最大张力值,AC为张力传感器实际模拟量,27648为模拟量最大值,把张力设定值SP与张力传感器12反馈张力值PV接入西门子博图软件V15自带的连续性CONT_C PID计算块输入管脚,通过计算块计算得出张力传感器12的PID调节量V1PID
步骤4.2、CPU模块2通过PROFINET通信方式把PID调节量V1PID转换为转速,nc=V1PID×2000÷27648,nc为调节量V1PI对应的转速,2000为伺服最大转速,把转速nc传送给摆辊伺服驱动器5,进而控制摆辊伺服电机7,根据调节量V1PID正负,对应转换转速nc正负,从而摆辊伺服电机7进行正转或反转,进而对应造成设备上料膜张力变化,张力传感器12的反馈张力值PV随之变化,最后调节反馈张力值PV,当反馈张力值PV与张力设定值SP相差±0.5N,摆辊伺服电机7停止调节。
步骤5、多圈电位器13位置实际值对应电压PD经过CPU模块2的PID运算,将转速指令传递给张力轴伺服电机9,实现张力闭环控制;张力建立时,当多圈电位器13模拟量对应的电压为0伏,即多圈电位器13处于中位处,如图3所示,具体步骤如下:
步骤5.1、计算得出多圈电位器13位置实际值对应电压PD,PD=Aw×10÷27648,Aw为多圈电位器13模拟量,10为最大模拟量所对应的最大电压,27648为模拟量最大值;将多圈电位器13模拟量Aw接入西门子博图软件V15所带的连续性CONT_C PID计算块输入管脚,通过计算块计算得出多圈电位器13的PID调节量V2PID
步骤5.2、CPU模块2通过PROFINET通信方式把PID调节量V2PID转换为转速,nw=V2PI×2000÷27648,nw为调节量V2PID对应的转速,2000为伺服最大转速,把转速nw传送给张力轴伺服驱动器6,进而控制张力轴伺服电机9,根据调节量V2PID正负,对应转换的转速nw正负,从而张力轴伺服电机9进行正转或者反转,进而引起设备上料膜张力变化,多圈电位器13位置实际值对应电压PD随之变化,当调节至0伏,张力轴伺服电机9停止调节,张力轴伺服电机9与摆辊伺服电机7达到动态平衡。
步骤6、零速张力稳定后,根据不同材料及工艺所需的速度进行加速,设备主机速度V>0m/min时,根据步骤1中的设备主机速度V>0m/min时的P值、I值、PI限制值,使用步骤4和步骤5中的PID运算,通过计算块计算得出V>0m/min时的PID调节量,将调节量对应的转速与张力轴伺服电机9当前转速叠加,进而控制张力轴伺服电机9。
本发明一种伺服驱动张力辊的微张力控制方法,根据张力设定值、张力传感器反馈张力值、多圈电位器位置实际值对应电压,经过PID运算,得出调节量转换为转速,进而控制摆辊伺服电机7与张力轴伺服电机9,实现了隔膜设备微张力性能的要求,保证张力平稳,使设备张力轴实现微张力调节,提高了控制精度。

Claims (5)

1.一种伺服驱动张力辊的微张力控制方法,利用伺服驱动张力辊的微张力控制系统,包括安装导轨上的CPU模块(2),所述CPU模块(2)电连接模拟量输入输出模块(3)、数字量输入输出模块(4),所述CPU模块(2)通过以太网网线连接HMI人机界面(1)、摆辊伺服驱动器(5)及张力轴伺服驱动器(6),所述摆辊伺服驱动器(5)连接摆辊伺服电机(7),所述摆辊伺服电机(7)连接摆辊机构(8),所述张力轴伺服驱动器(6)连接张力轴伺服电机(9),张力轴伺服电机(9)连接减速机构(10),减速机构(10)连接张力轴(11),模拟量输入输出模块(3)分别连接张力传感器(12)与多圈电位器(13);
所述张力传感器(12)安装在张力轴(11)两侧下方,多圈电位器(13)安装于摆辊机构(8)轴端;
所述CPU模块(2)通过数字量输入输出模块(4)连接继电器后,对应连接摆辊伺服电机(7)和张力轴伺服电机(9),所述数字量输入输出模块(4)连接张力轴开关,张力轴开关连接张力轴开关指示灯;
其特征在于,具体控制过程如下:
步骤1、启动机构前,将应用程序存储在CPU模块(2)当中,根据HMI人机界面(1)显示张力轴(11)运行状态及设定参数,输入张力值;再根据不同材料及工艺,设置设备主机速度V=0时,P值、I值、PI限制值;当设备主机速度V>0时的P值、I值、PI限制值,输入参数通过PROFINET通信方式传送至CPU模块(2)中;
步骤2、分别通过张力传感器(12)采集张力波动信号,多圈电位器(13)采集摆辊机构位置信号;
步骤3、打开张力轴开关,数字量输入输出模块(4)接收张力轴开关信号,张力轴开关指示灯变亮,通过数字量输入输出模块(4)反馈张力轴伺服电机(9)的使能信号,然后按下整机启动按钮,整机启动,张力轴(11)处于使能状态,但整机速度V=0,开始建立整机零速张力;
步骤4、进行张力建立,张力传感器(12)反馈张力值PV经过CPU模块(2)的PID运算,将速度指令传递给摆辊伺服电机(7),调节反馈张力值PV,使摆辊机构(8)处于中位平衡状态;
步骤5、多圈电位器(13)位置实际值对应电压PD经过CPU模块(2)的PID运算,将转速指令传递给张力轴伺服电机(9),张力建立时,当多圈电位器(13)模拟量对应的电压为0伏,即多圈电位器(13)处于中位处;
步骤6、零速张力稳定后,根据不同材料及工艺所需的速度进行加速,设备主机速度V>0m/min时,使用步骤1中的设备主机速度V>0m/min时的P值、I值、PI限制值,使用步骤4和步骤5中的PID运算,通过计算块计算得出V>0m/min时的PID调节量,将调节量对应的转速与张力轴伺服电机(9)当前转速叠加,进而控制张力轴伺服电机(9)。
2.根据权利要求1所述的一种伺服驱动张力辊的微张力控制方法,其特征在于,所述步骤2具体过程为张力传感器(12)通过张力放大器把张力信号以0-10V电压型模拟量传送给模拟量输入输出模块(3);多圈电位器(13)把摆辊机构(8)的位置信号以0-±10V电压型模拟量传送给模拟量输入输出模块(3),张力传感器(12)反馈张力值为PV、多圈电位器(13)实际位置对应的电压为PD。
3.根据权利要求1所述的一种伺服驱动张力辊的微张力控制方法,其特征在于,所述步骤4具体步骤如下:
步骤4.1、在HMI人机界面(1)上输入张力设定值SP,根据公式计算得出张力传感器(12)反馈张力值PV:PV=Fmax×AC÷27648,Fmax为张力传感器(12)最大张力值,AC为张力传感器实际模拟量,27648为模拟量最大值,把张力设定值SP与张力传感器(12)反馈张力值PV接入西门子博图软件V15自带的连续性CONT_C PID计算块输入管脚,通过计算块计算得出的张力传感器(12)的PID调节量V1PID
步骤4.2、CPU模块(2)通过PROFINET通信方式把PID调节量V1PID转换为转速,nc=V1PID×2000÷27648,nc为调节量V1PID对应的转速,2000为伺服最大转速,把转速nc传送给摆辊伺服驱动器(5),进而控制摆辊伺服电机(7),根据调节量V1PID正负,对应转换转速nc正负,从而摆辊伺服电机(7)进行正转或反转,进而对应造成设备上料膜张力变化,张力传感器(12)的反馈张力值PV随之变化,最后调节反馈张力值PV,当反馈张力值PV与张力设定值SP相差±0.5N,摆辊伺服电机(7)停止调节。
4.根据权利要求1所述的一种伺服驱动张力辊的微张力控制方法,其特征在于,所述步骤5的具体步骤如下:
步骤5.1、计算得出多圈电位器(13)位置实际值对应电压PD,PD=Aw×10÷27648,Aw为多圈电位器(13)模拟量,10为最大模拟量所对应的最大电压,27648为模拟量最大值;将多圈电位器(13)模拟量Aw接入西门子博图软件V15所带的连续性CONT_C PID计算块输入管脚,通过计算块计算得出多圈电位器(13)的PID调节量V2PID
步骤5.2、CPU模块(2)通过PROFINET通信方式把PID调节量V2PID转换为转速,nw=V2PID×2000÷27648,nw为调节量V2PID对应的转速,2000为伺服最大转速,把转速nw传送给张力轴伺服驱动器(6),进而控制张力轴伺服电机(9),根据调节量V2PID正负,对应转换的转速nw正负,从而张力轴伺服电机(9)进行正转或者反转,进而引起设备上料膜张力变化,多圈电位器(13)位置实际值对应电压PD随之变化,当调节至0伏,张力轴伺服电机(9)停止调节,张力轴伺服电机(9)与摆辊伺服电机(7)达到动态平衡。
5.根据权利要求1所述的一种伺服驱动张力辊的微张力控制方法,其特征在于,所述步骤1中输入张力值范围为2-15N,P值范围为0.8-2.5;I值范围为10-30秒;PI限制值范围为500-8000。
CN202011011656.5A 2020-09-23 2020-09-23 一种伺服驱动张力辊的微张力控制系统及方法 Active CN112193900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011011656.5A CN112193900B (zh) 2020-09-23 2020-09-23 一种伺服驱动张力辊的微张力控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011011656.5A CN112193900B (zh) 2020-09-23 2020-09-23 一种伺服驱动张力辊的微张力控制系统及方法

Publications (2)

Publication Number Publication Date
CN112193900A CN112193900A (zh) 2021-01-08
CN112193900B true CN112193900B (zh) 2024-03-26

Family

ID=74015254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011011656.5A Active CN112193900B (zh) 2020-09-23 2020-09-23 一种伺服驱动张力辊的微张力控制系统及方法

Country Status (1)

Country Link
CN (1) CN112193900B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392885A (zh) * 2021-12-20 2022-04-26 西安航天华阳机电装备有限公司 Gdl脆性材料的微张力控制系统及控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4242772A (en) * 1972-02-14 1973-12-20 A. C. I. Operations Pty. Ltd Differential drive for tension rollers
JPS6197450A (ja) * 1984-10-18 1986-05-15 三木プ−リ株式会社 織機の経糸張力調整装置
DE19520955A1 (de) * 1995-06-08 1996-12-12 Roland Man Druckmasch Regelanordnung für Abwickeleinrichtungen für Bahnen
JP2003054800A (ja) * 2001-08-15 2003-02-26 Sony Corp 張力制御装置および張力制御方法
CN203439782U (zh) * 2013-08-23 2014-02-19 常州晟威机电有限公司 卷绕机的动态张力控制装置
CN103879818A (zh) * 2014-03-27 2014-06-25 深圳市新嘉拓自动化技术有限公司 伺服控制双闭环张力摆辊
CN105502059A (zh) * 2015-12-22 2016-04-20 陕西北人印刷机械有限责任公司 一种印刷机放料轴初始直径测量装置及测量方法
CN209291655U (zh) * 2018-10-24 2019-08-23 佛山市金银河智能装备股份有限公司 一种闭环张力控制机构
CN110255247A (zh) * 2019-05-22 2019-09-20 江苏大学 一种渔网机自适应张力控制机构
CN110817548A (zh) * 2019-09-30 2020-02-21 陕西北人印刷机械有限责任公司 具有多种张力控制模式的收料张力控制系统
CN110963344A (zh) * 2019-12-27 2020-04-07 辽宁工业大学 一种多轴伺服张力控制装置及其控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4242772A (en) * 1972-02-14 1973-12-20 A. C. I. Operations Pty. Ltd Differential drive for tension rollers
JPS6197450A (ja) * 1984-10-18 1986-05-15 三木プ−リ株式会社 織機の経糸張力調整装置
DE19520955A1 (de) * 1995-06-08 1996-12-12 Roland Man Druckmasch Regelanordnung für Abwickeleinrichtungen für Bahnen
JP2003054800A (ja) * 2001-08-15 2003-02-26 Sony Corp 張力制御装置および張力制御方法
CN203439782U (zh) * 2013-08-23 2014-02-19 常州晟威机电有限公司 卷绕机的动态张力控制装置
CN103879818A (zh) * 2014-03-27 2014-06-25 深圳市新嘉拓自动化技术有限公司 伺服控制双闭环张力摆辊
CN105502059A (zh) * 2015-12-22 2016-04-20 陕西北人印刷机械有限责任公司 一种印刷机放料轴初始直径测量装置及测量方法
CN209291655U (zh) * 2018-10-24 2019-08-23 佛山市金银河智能装备股份有限公司 一种闭环张力控制机构
CN110255247A (zh) * 2019-05-22 2019-09-20 江苏大学 一种渔网机自适应张力控制机构
CN110817548A (zh) * 2019-09-30 2020-02-21 陕西北人印刷机械有限责任公司 具有多种张力控制模式的收料张力控制系统
CN110963344A (zh) * 2019-12-27 2020-04-07 辽宁工业大学 一种多轴伺服张力控制装置及其控制方法

Also Published As

Publication number Publication date
CN112193900A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN112193900B (zh) 一种伺服驱动张力辊的微张力控制系统及方法
CN108227756A (zh) 一种高精度阀门控制方法
CN101694045B (zh) 磨毛机多轴传动张力控制系统及其张力控制方法
CN105034853A (zh) 一种减小电动汽车定速巡航速度波动的控制系统及方法
CN109687772A (zh) 一种多轴同步控制方法及系统
CN101924509A (zh) 一种开关磁阻电机多机同步运行的方法
CN102291539A (zh) 摄像机的光圈控制系统和控制方法
CN101423153B (zh) 恒张力中心卷取控制系统
CN103317653A (zh) 片材挤出机组张力系统控制装置及其控制方法
CN108890184B (zh) 基于分立式六轴机器人和两轴变位机的协调焊接控制方法
CN101246353A (zh) Ic材料线切割机床多电机系统速度同步自适应逆控制方法
CN103345195A (zh) 双捻机中钢帘线的独立控制方法及系统
CN114392885A (zh) Gdl脆性材料的微张力控制系统及控制方法
CN108971705A (zh) 自动送丝机
CN201997819U (zh) 低速走丝线切割机运丝系统的衡张力控制装置
CN201380634Y (zh) 壁纸印刷机压花机的送料及压花电气装置
CN209097882U (zh) 一种印刷设备的料卷卷径实时获取系统
CN207523223U (zh) 一种柔版印刷机控制系统
CN107690603A (zh) 一种数控机床及主轴电机的转速调整方法
CN214878943U (zh) 一种收料张力自动控制系统
CN202715948U (zh) 全自动等离子切割机的控制系统
CN104796060A (zh) 一种伺服驱动器的速度控制方法
CN213457750U (zh) 片材表面张力调节控制系统
CN215438991U (zh) 一种收卷装置的开环张力控制系统
CN102311009B (zh) 主动式张力调控方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant