CN112159381B - 一种aie型香豆素衍生物荧光探针及其制备方法和应用 - Google Patents

一种aie型香豆素衍生物荧光探针及其制备方法和应用 Download PDF

Info

Publication number
CN112159381B
CN112159381B CN202011047597.7A CN202011047597A CN112159381B CN 112159381 B CN112159381 B CN 112159381B CN 202011047597 A CN202011047597 A CN 202011047597A CN 112159381 B CN112159381 B CN 112159381B
Authority
CN
China
Prior art keywords
probe
fluorescence
glutathione
fluorescent probe
aie
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011047597.7A
Other languages
English (en)
Other versions
CN112159381A (zh
Inventor
江玉亮
杨新蕊
戴志晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202011047597.7A priority Critical patent/CN112159381B/zh
Publication of CN112159381A publication Critical patent/CN112159381A/zh
Application granted granted Critical
Publication of CN112159381B publication Critical patent/CN112159381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种AIE型香豆素衍生物荧光探针及其制备方法和在细胞成像中应用,属于有机小分子生物荧光探针领域。该荧光探针分子的化学名称为(Z)‑4‑(1‑氰基‑2‑(7‑(二乙基氨基)‑2‑氧代‑2H‑色烯‑3‑基)乙烯基)苯甲腈,分子式为C23H19N3O2。本发明的荧光探针表现出大的斯托克斯位移(118 nm),能有效解决因荧光自吸收而导致在生物应用方面受阻的难题。荧光分析研究表明该探针分子可用于谷胱甘肽的高灵敏检测,其检测限为0.38µM,并且可有效区别谷胱甘肽在生物体内的干扰物半胱氨酸和同型半胱氨酸。

Description

一种AIE型香豆素衍生物荧光探针及其制备方法和应用
技术领域
本发明属于有机小分子生物荧光探针技术领域,具体涉及一种AIE型香豆素衍生物荧光探针及其制备方法和在细胞成像中应用。
背景技术
近年来,荧光成像技术作为一种新兴分子成像技术发展迅速。它利用荧光探针标记特定的分子或细胞,荧光探针能够与目标分子或者离子发生特异性结合,促使反应体系的荧光信号在作用后发生改变,从而为荧光成像过程提供信号源。具有灵敏度高、空间分辨率高、生物相容性好以及实时成像等优势,可实现生物分析物的实时无损伤检测以及生物过程的动态、非入侵性可视化追踪。迄今为止,基于有机小分子的荧光探针被陆续开发,并广泛应用于生物分子检测、荧光活体成像、癌症早期诊断、药物代谢追踪,成为化学生物学和生物医学工程领域重要的观测工具,为相关疾病的诊断提供了重要信息。但由于生物体内环境复杂,荧光成像过程容易受到多种因素的干扰,因此合理设计新颖的荧光探针分子,丰富其荧光成像方式并提高成像性能,己成为荧光成像技术发展过程中的热点与难点。
谷胱甘肽(GSH)是一种含有活性巯基的三肽化合物,在生物系统内许多生理过程中起着重要生理作用。细胞内谷胱甘肽可以作为人类健康的重要生物标志物,其含量异常与多种疾病相关,如癌症、艾滋病、神经退行性疾病、生长速度延迟、肝脏损害和心血管疾病。因此,在生理条件下,对GSH进行实时、高效、准确的定量检测,在某些疾病早期诊断和生化研究中具有重要意义。半胱氨酸(Cys)和同型半胱氨酸(Hcy)是另外两种重要的生物硫醇,它们与GSH有着非常相似的结构,研究出能够将这三者区分开来的荧光探针是一项非常有挑战性、有意义的工作。目前具备这种性能的探针还很缺乏,开发此类荧光探针十分必要且迫切。
目前,荧光探针在使用中普遍存在的一个问题,当荧光官能团聚集时会发生荧光减弱或猝灭的现象(ACQ)。然而,作为探针的荧光小分子通常含有难溶于水的芳香族结构,因此它们有在水溶液中聚集的趋势;另一方面,当它们通过物理作用或者化学作用结合到生物分子上时,这些荧光分子自发地发生聚集。聚集的结果是导致发射的荧光信号大幅下降甚至消失。所以,为了避免荧光探针因为发生聚集而猝灭,在使用过程中必须严格控制荧光探针的浓度以及在生物分子上结合的探针分子的数量。这样荧光基团的浓度很低,探针的荧光强度也就大大下降,给检测带来了困难。唐本忠院士团队在研究中发现了聚集诱导发光(简称AIE)现象,一种名为硅杂环戊二烯的化合物在溶液状态下发光很弱,当向溶液中加入非溶剂后,体系变浑浊,同时荧光强度急剧增大,很好地避免了传统的聚集导致荧光猝灭现象,这使得AIE分子能很好的适应于生物体系中检测因而得到科研工作者的重视。近几年,对AIE分子的研究取得了很大的进展,如硅杂环戊二烯及其衍生物、四苯基乙烯(TPE)衍生物以及其它具有AIE现象的分子,在生物检测领域得到了广泛的应用。尽管如此,用于检测生物硫醇的AIE型荧光探针仍很缺乏,这类探针亟待开发。
发明内容
解决的技术问题:针对目前可用于谷胱甘肽检测的AIE型荧光探针缺乏的现状,本发明提供了一种AIE型香豆素衍生物荧光探针及其制备方法和在细胞成像中的应用。
技术方案:本发明提供了一种AIE型香豆素衍生物荧光探针,其结构式如式I所示:
Figure BDA0002708484970000021
该荧光探针的化学名称为(Z)-4-(1-氰基-2-(7-(二乙基氨基)-2-氧代-2H-色烯-3-基)乙烯基)苯甲腈,分子式为C23H19N3O2
本发明还提供了上述AIE型香豆素衍生物荧光探针的制备方法。
该荧光探针的制备方法如下式所示:
Figure BDA0002708484970000022
化合物Ⅱ和对氰基苯乙腈在碱性条件下反应,即可得到化合物I。
具体地,将7-(二乙基氨基)-2-氧代-2H-色烯-3-甲醛(化合物Ⅱ)溶于有机溶剂中,然后加入对氰基苯乙腈,再加入适量的乙酸铵,搅拌数小时;薄层色谱法(TLC)点板跟踪至反应结束后,抽滤后得到红色固体(Z)-4-(1-氰基-2-(7-(二乙基氨基)-2-氧代-2H-色烯-3-基)乙烯基)苯甲腈(化合物I)。
所述有机溶剂选自甲苯、乙腈、二氯乙烷、二氯甲烷、三氯甲烷、四氯化碳、正己烷、四氢呋喃、甲醇或乙醇。优选四氢呋喃。
进一步地,化合物Ⅱ通过以下反应制得:
Figure BDA0002708484970000031
具体地:在无水无氧条件下,将干燥的DMF逐滴加入POCl3中,在50℃下搅拌反应约50min后,再加入一定量的中间体7-(二乙基氨基)-2H-色烯-2-酮(化合物Ⅲ),加热至70℃回流,TLC监测进程,反应完成后冷却至室温,倒入冰水中,用NaOH调节pH至7,加入一定量的乙酸乙酯至固体全溶,分出有机相并用水洗3-4次,用无水硫酸钠干燥,将有机相旋干,经层析分离得7-(二乙基氨基)-2-氧代-2H-色烯-3-甲醛(化合物Ⅱ)。
进一步地,化合物Ⅲ通过以下反应制得:
Figure BDA0002708484970000032
具体地:将一定量的二乙氨基水杨醛溶于乙醇,加入丙二酸二乙酯和2滴哌啶,在80℃下反应约12h。减压蒸馏除去溶剂,加入适量的盐酸和冰醋酸,水解约6h。TLC跟踪进程,反应完全后,冷却,倒入冰水,用NaOH调节pH至7,加入二氯甲烷溶解固体,分出有机相并用水洗,无水硫酸钠干燥,将有机相旋干,经层析分离得7-(二乙基氨基)-2H-色烯-2-酮(化合物Ⅲ)。
本发明还提供了上述AIE型香豆素衍生物荧光探针在制备谷胱甘肽检测试剂中的应用。
本发明还提供了上述AIE型香豆素衍生物荧光探针在制备细胞成像试剂中的应用。
上述制备方法中,反应结束后的后处理方式并无特别的限定,本领域技术人员可依据物料的理化性质,结合公知常识的分离手段,采用常规的有机分离手段来实现目标产物的分离。优选的技术方案为,所述分离的方式为层析分离。所述层析分离进一步优选石油醚与乙酸乙酯的混合溶剂作为柱层析洗脱剂,更进一步优选,两步反应洗脱剂中乙酸乙酯与石油醚的体积比均为1:10。
上述制备方法中,通过TLC(薄层色谱法)板监测反应终点,反应时间无特别的限定。
本发明以克服荧光探针普遍存在的毒性高、生物相容性差、聚集荧光淬灭(ACQ)和荧光自吸等缺点为目标,设计了一种能够用于细胞内谷胱甘肽监测及成像的AIE型荧光探针ABN。首先,以二乙氨基香豆素作为探针的荧光团母体。香豆素是一种毒性较低的天然产物,其衍生物不仅具有抗肿瘤、抗高血压、抗氧化等生理活性,而且还具有荧光量子产率高、Stokes位移大、光稳定性好等优良的光学性能,以香豆素为母体可以得到毒性低且生物相容性较好的荧光探针。考虑到传统的荧光母体聚集时会产生荧光减弱或猝灭的现象(ACQ),进而导致荧光发射强度大幅下降甚至消失,严重影响其在生物成像中的应用,AIE分子能够有效地避免ACQ现象,故通过引入乙烯结构来构建AIE分子骨架。通过Knoevenagel缩合反应,烯键的一端与香豆素荧光团相连,另一端引入氰基和苯环,由此构建了荧光探针ABN。探针ABN具有毒性低、生物相容好、Stokes位移大(118nm)等优点。此外,由于烯键的存在,探针ABN能够对谷胱甘肽进行特异性识别,且能够区分与之结构相似的另外两种生物硫醇半胱氨酸和同型半胱氨酸。
有益效果:
1.本发明首次提供了一类具有AIE性能的香豆素类化合物荧光探针ABN,丰富了谷胱甘肽类荧光分子探针的种类,为有机分析和光化学提供了新型的探针分子,可广泛应用于荧光分析或检测领域。
2.新型荧光分子探针实现了对谷胱甘肽的高灵敏检测,其检测限为0.38μM。
3.新型荧光分子探针实现了对谷胱甘肽的高选择性检测,能够区分另外两种与之结构相似的生物硫醇半胱氨酸和同型半胱氨酸。
4.该荧光探针分子可以实现在HeLa细胞中对谷胱甘肽进行成像。
附图说明
图1为实施例2中ABN在不同含水量的THF-H2O混合液中的荧光图。
图2为实施例3中ABN在THF-H2O混合液中紫外及荧光图及斯托克斯位移。
图3为实施例4中ABN的THF-H2O混合液对谷胱甘肽、同型半胱氨酸及半胱氨酸检测的荧光图。
图4为实施例5中ABN的THF-H2O混合液对其他不同类型干扰物的荧光图。
图5为实施例6中ABN的THF-H2O混合液对不同浓度谷胱甘肽荧光图。
图6为实施例7中ABN的THF-H2O混合液对谷胱甘肽检测动力学图。
图7为实施例8中ABN在HeLa细胞中对谷胱甘肽的成像图。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限定本发明的保护范围。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到,未详细描述的技术均按照本领域人员熟知的标准方法进行。
实施例1
香豆素衍生物荧光探针(ABN)的合成
第1步、化合物7-(二乙基氨基)-2H-色烯-2-酮的制备
Figure BDA0002708484970000051
将二乙氨基水杨醛(0.965g,5mmol)溶于乙醇,加入丙二酸二乙酯(1.56mL,10mmol)和2滴哌啶,在80℃下回流约12h。减压蒸馏除去溶剂,加入10mL盐酸和10mL冰醋酸,水解约6h。反应完全后,冷却至室温,倒入冰水(50mL),用40%NaOH溶液调节pH至7左右,加入二氯甲烷溶解固体,分出有机相并用水洗、无水硫酸钠干燥,将有机相旋干,用乙酸乙酯:石油醚=1:10洗脱得到化合物Ⅲ。
1H NMR(400MHz,Chloroform-d)δ7.56(d,J=9.3Hz,1H),7.26(d,J=8.9Hz,1H),6.58(d,J=7.1Hz,1H),6.51(s,1H),6.05(d,J=9.3Hz,1H),3.43(q,J=7.0Hz,4H),1.23(t,J=7.0Hz,6H).
第2步、化合物7-(二乙基氨基)-2-氧代-2H-色烯-3-甲醛的制备
Figure BDA0002708484970000052
无水无氧条件下,将干燥的DMF(0.23mL,3mmol)逐滴加入POCl3(0.23mL,2.5mmol)中,在50℃下搅拌反应约50min后,再加入(0.2177g,1mmol)化合物III,加热至70℃回流,用薄层色谱法(TLC)监测进程,反应完成后冷却,倒入冰水(20mL)中,用20%NaOH溶液调节pH至≈7,加入一定量的乙酸乙酯至固体全溶,分出有机相并用水洗3-4次,用无水硫酸钠干燥,将有机相旋干,用乙酸乙酯:石油醚=1:10洗脱得化合物II。
1H NMR(400MHz,Chloroform-d)δ10.16(s,1H),8.28(s,1H),7.45(d,J=8.9Hz,1H),6.69(d,J=9.0Hz,1H),6.54(s,1H),3.50(q,J=7.2Hz,4H),1.28(t,J=7.2Hz,6H).
第3步、探针分子(Z)-4-(1-氰基-2-(7-(二乙基氨基)-2-氧代-2H-色烯-3-基)乙烯基)苯甲腈(ABN)的制备
Figure BDA0002708484970000061
称取(0.122g,0.5mmol)化合物II和(0.071g,0.5mmol)对氰基苯乙腈溶于THF(0.5mL)和EtOH(1mL)混合溶剂中,再加入乙酸铵(0.0975g,0.5mmol)提供碱性环境,室温下搅拌反应,约8h后,反应液中逐渐析出红色固体,继续搅拌数小时。反应结束后抽滤除去滤液得到探针ABN。
1H NMR(400MHz,Chloroform-d)δ8.82(s,1H),8.02(d,J=0.7Hz,1H),7.83–7.78(m,2H),7.76–7.70(m,2H),7.46(d,J=9.0Hz,1H),6.69(dd,J=9.0,2.5Hz,1H),6.53(d,J=2.5Hz,1H),3.50(q,J=7.1Hz,4H),1.28(t,J=7.1Hz,6H).13C NMR(101MHz,Chloroform-d)δ161.58,156.99,152.02,141.73,138.70,137.61,132.81,131.28,126.26,118.38,117.70,112.27,110.66,107.40,97.98,45.72,12.40.HMS:m/z calcd for C23H20N3O2[M+H]+,370.1477,found,370.1542.
实施例2
探针分子ABN在不同含水量的THF-H2O混合液中的荧光图。
测试仪器:日立F7100型分子荧光光谱仪。实验方法为:将实施例1制得的探针分子ABN溶解于THF中得到1mM的探针母液,常温保存。用探针母液分别配制成0%,10%,30%,50%,60%,70%,80%,90%含水量的THF-H2O混合液,浓度均为0.01mM。
测量时分别移取3mL不同含水量的THF-H2O混合液到1cm比色皿中先后进行荧光光谱测试,如图1所示。当含水量由0%增加到50%时,由于扭曲的分子内电荷转移(TICT),荧光强度逐渐减小;然而,当加入水达到50-80%时,由于水的诱导聚集,ABN的发射信号持续增强,表现出典型的AIE特征;当含水量为90%时,ABN容易沉淀,因此观察到相对较差的发射性能。故选用80%含水量的探针溶液用于ABN的各类性能测试。
实施例3
探针分子ABN的紫外吸收光谱及荧光光谱性质测试。
测试仪器:PE 950s型紫外光谱仪,日立F7100型分子荧光光谱仪。实验方法为:将实施例1制得的探针分子ABN溶解于THF溶液中得到1mM的探针母液,常温保存。实验测定中用THF和H2O将溶液稀释成0.01mM的标准液(fw=80%)进行测试。
测量时移取3mL探针的THF-H2O混合液到1cm比色皿中先后进行紫外吸收光谱及荧光光谱测试,如图2所示。结果表明:探针ABN最强紫外吸收峰出现在497nm左右,荧光发射峰出现在615nm左右,斯托克位移达到118nm。这种大的斯托克位移,可以有效的克服因荧光自吸收而在生命体中难以应用的缺陷,实现探针在生命体中的应用。
实施例4
探针分子ABN对谷胱甘肽、同型半胱氨酸及半胱氨酸的检测荧光图。
测试仪器:日立F7100型分子荧光光谱仪;实验方法为:将实施例1制得的探针分子ABN溶解于THF中得到1mM的探针母液,常温保存。谷胱甘肽、同型半胱氨酸及半胱氨酸用二次水配置成1mM母液。实验测定中将溶液稀释成0.01mM的标准溶液进行测试。
测量时移取三份3mL探针的THF-H2O混合液(fw=80%)到1cm比色皿中进行荧光光谱测试,分别滴加400μM的谷胱甘肽、同型半胱氨酸及半胱氨酸溶液。结果如图3所示。结果表明:探针ABN对谷胱甘肽、同型半胱氨酸及半胱氨酸表现出不同的检测效果,尤其是对谷胱甘肽呈现明显的荧光猝灭现象,这表明,在生命体系中应用时探针对谷胱甘肽表现出极好的选择性,能有效避免这两种生物硫醇的干扰。
实施例5
探针分子ABN对其他干扰离子的荧光图。
测试仪器:日立F7100型分子荧光光谱仪;实验方法为:将实施例1制得的探针分子ABN溶解于THF中得到1mM的探针母液,常温保存。谷胱甘肽、ZnSO4、AgNO3、Co(NO3)2、CuSO4、Fe2(SO4)3、PbNO3、NaNO2、NaNO3、KH2PO4、NaHSO4、Na2S、KCl、CaCl2用二次水配置成1mM母液。实验测定中将溶液稀释成0.01mM的标准溶液进行测试。
测量时移取3mL探针的THF-H2O混合液(fw=80%)到1cm比色皿中分别滴加400μM的谷胱甘肽、ZnSO4、AgNO3、Co(NO3)2、CuSO4、Fe2(SO4)3、PbNO3、NaNO2、NaNO3、KH2PO4、NaHSO4、Na2S、KCl、CaCl2进行荧光测试。结果如图4所示。结果表明:探针ABN对谷胱甘肽表现出明显的荧光猝灭现象,而对于一些生物体内常见的金属阳离子和酸根阴离子几乎没有什么影响,进一步说明探针ABN具有优异的选择性,能够应用于生物体内。
实施例6
ABN的THF-H2O溶液对谷胱甘肽定量分析图。
测试仪器:日立F7100型分子荧光光谱仪;实验方法为:将实施例1制得的探针分子ABN溶解于THF中得到1mM的探针母液,常温保存。谷胱甘肽用二次水配置成1mM母液,实验测定中将溶液稀释成0.01mM的标准溶液进行测试。
采用标准加入法测试探针分子对谷胱甘肽的荧光响应,移取3mL的探针母液(0.01mM)至比色皿中,开始每次加入1μL的谷胱甘肽检测荧光强度变化,逐渐增强后每隔2μL、5μL或10μL测一次荧光强度直至荧光强度达到最低值。如图5所示,随着谷胱甘肽含量的增加,在615nm处的荧光峰强度不断降低,当谷胱甘肽含量达到400μM时,此时荧光最弱。因此,该探针对谷胱甘肽有较高的灵敏度,可用于生物体内微量谷胱甘肽的检测。
实施例7
探针分子ABN在谷胱甘肽、同型谷胱甘肽及谷胱甘肽存在下的动力学实验图。
测试仪器:日立F7100型分子荧光光谱仪;实验方法为:将实施例1制得的探针分子ABN溶解于THF中得到1mM的探针母液,常温保存。谷胱甘肽、同型半胱氨酸及半胱氨酸用二次水配置成1mM母液。实验测定中将溶液稀释成0.01mM的标准溶液进行测试。
移取3mL的探针母液(0.01mM)至比色皿中,设置荧光激发波长为475nm,分别测试探针,探针+谷胱甘肽溶液在不同的时间(0.5分钟,1分钟,5分钟,10分钟,20分钟,30分钟,40分钟,50分钟,60分钟)荧光强度的变化,如图6所示。实验结果表明,开始探针溶液的荧光强度随时间的增加而减弱,探针+谷胱甘肽在12min内荧光强度达到最低值,后荧光强度趋于稳定,说明该探针响应迅速且稳定性较好。
实施例8
探针分子ABN在HeLa细胞中对谷胱甘肽的成像研究。
实验方法为:将实施例1制得的探针分子ABN溶解于DMSO中得到1mM的探针母液,常温保存。实验测定中用DMSO和H2O将溶液稀释成0.01mM的标准液(fw=80%)进行测试。
为了证明探针在生物系统的实际应用,在共聚焦荧光显微镜下对细胞进行了在不同pH值下的生物荧光成像实验。将HeLa细胞接到培养皿中在37℃条件下培养24h,然后将ABN标准液(10μM)加入到培养皿中,加入不同浓度的谷胱甘肽(50,200,400μM)继续孵育1小时后进行荧光成像,如图7所示。实验结果表明探针分子ABN在随着谷胱甘肽浓度增加,荧光在不断降低。这些结果表明,探针ABN可以作为检测细胞内谷胱甘肽的荧光标签进入细胞,因而具有在生物体内检测谷胱甘肽的潜力。

Claims (6)

1.一种AIE型香豆素衍生物荧光探针,其结构式如式I所示:
Figure FDA0002708484960000011
2.权利要求1所述AIE型香豆素衍生物荧光探针的制备方法,其特征在于:该荧光探针的制备方法如下式所示:
Figure FDA0002708484960000012
化合物Ⅱ和对氰基苯乙腈在碱性条件下反应,即可得到化合物I。
3.根据权利要求2所述的制备方法,其特征在于:化合物Ⅱ通过以下反应制得:
Figure FDA0002708484960000013
4.根据权利要求3所述的制备方法,其特征在于:化合物Ⅲ通过以下反应制得:
Figure FDA0002708484960000014
5.权利要求1所述的AIE型香豆素衍生物荧光探针在制备谷胱甘肽检测试剂中的应用。
6.权利要求1所述的AIE型香豆素衍生物荧光探针在制备细胞成像试剂中的应用。
CN202011047597.7A 2020-09-29 2020-09-29 一种aie型香豆素衍生物荧光探针及其制备方法和应用 Active CN112159381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011047597.7A CN112159381B (zh) 2020-09-29 2020-09-29 一种aie型香豆素衍生物荧光探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011047597.7A CN112159381B (zh) 2020-09-29 2020-09-29 一种aie型香豆素衍生物荧光探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112159381A CN112159381A (zh) 2021-01-01
CN112159381B true CN112159381B (zh) 2022-05-03

Family

ID=73860545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011047597.7A Active CN112159381B (zh) 2020-09-29 2020-09-29 一种aie型香豆素衍生物荧光探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112159381B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570701A (zh) * 2013-11-01 2014-02-12 山西大学 一种香豆素衍生物及其制备方法和应用
CN104402853A (zh) * 2014-09-30 2015-03-11 天津理工大学 一种识别谷胱甘肽的特异性荧光探针的制备方法及其应用
CN108440368A (zh) * 2018-03-14 2018-08-24 广东工业大学 一种具有aie效应的荧光探针及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570701A (zh) * 2013-11-01 2014-02-12 山西大学 一种香豆素衍生物及其制备方法和应用
CN104402853A (zh) * 2014-09-30 2015-03-11 天津理工大学 一种识别谷胱甘肽的特异性荧光探针的制备方法及其应用
CN108440368A (zh) * 2018-03-14 2018-08-24 广东工业大学 一种具有aie效应的荧光探针及其制备方法和应用

Also Published As

Publication number Publication date
CN112159381A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN110172337B (zh) 一种苯并噻唑衍生物荧光探针及其制备方法和应用
Chen et al. A novel imidazo [1, 5-α] pyridine-based fluorescent probe with a large Stokes shift for imaging hydrogen sulfide
CN108484622A (zh) 多信号荧光探针的合成及其同时区分检测Hcy、Cys和GSH的应用
CN110684014B (zh) 可用于卵巢癌的一种具有聚集诱导发射效应的水溶性荧光探针和纳米粒及其制备方法和应用
CN113087682B (zh) 苯并噻唑衍生物荧光探针、制备方法、中间体及应用
CN113563279B (zh) 一种检测硝基还原酶的双光子荧光探针及其制备方法和用途
CN111747918B (zh) 一种双黄酮衍生物荧光探针及其制备方法和在脑胶质瘤成像中应用
CN113861076A (zh) 一种aie型三苯胺衍生物荧光探针及其制备方法和其在水合肼检测中的应用
CN110627737B (zh) 一种检测锌离子的水溶性苯并恶唑类荧光探针及制备方法和应用
CN110357896B (zh) 一类化合物及制备与其在检测二价铜离子和强酸pH中的应用
CN112159381B (zh) 一种aie型香豆素衍生物荧光探针及其制备方法和应用
CN113637048A (zh) 一种γ-谷氨酰转肽酶的双光子荧光探针及其制备方法和应用
CN115215878B (zh) 一种检测毫摩尔游离钙离子的荧光探针及其合成方法
CN114736199B (zh) 一种基于亚甲基蓝的近红外荧光探针及其合成方法和应用
CN115181068B (zh) Tpi衍生物荧光探针及其在制备铜离子检测试剂中的应用
CN112457303B (zh) 一种荧光化合物及其制备方法、用途
CN108949159B (zh) 一种检测钯离子的荧光探针及其合成方法和应用
CN110467570B (zh) 一种四苯乙烯-8-羟基喹啉类化合物及其制备方法和应用
CN112645918B (zh) 一种aie型香豆素衍生物荧光探针及其在氰离子检测中的应用
CN115716803B (zh) 一种萘酰亚胺荧光探针及其在极性和粘度检测中的应用
CN110669350A (zh) 一种哌啶基bodipy类红光荧光染料及其制备方法和应用
CN114163432B (zh) 一类高选择性检测亚铁离子的荧光探针及其制备和应用
CN113735758B (zh) 一种用于动态溶酶体成像的高效双态发光荧光探针
CN108485651A (zh) 一种用于检测多巴胺和Fe3+离子的双功能荧光小分子探针
CN110804050B (zh) 硒唑类荧光染料化合物的合成及其性能研究

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant