CN112154564A - 具有固体聚合物电解质和水溶性粘结剂的电池电极 - Google Patents

具有固体聚合物电解质和水溶性粘结剂的电池电极 Download PDF

Info

Publication number
CN112154564A
CN112154564A CN201880089863.7A CN201880089863A CN112154564A CN 112154564 A CN112154564 A CN 112154564A CN 201880089863 A CN201880089863 A CN 201880089863A CN 112154564 A CN112154564 A CN 112154564A
Authority
CN
China
Prior art keywords
polymer
solid
lithium
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880089863.7A
Other languages
English (en)
Inventor
M·A·齐莫尔曼
R·莱辛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ionic Materials Inc
Original Assignee
Ionic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionic Materials Inc filed Critical Ionic Materials Inc
Publication of CN112154564A publication Critical patent/CN112154564A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明的特征在于一种可用于电化学电池中的电极。所述电极包括:电化学活性材料;导电材料;固体离子传导聚合物电解质;和粘结剂;其中,所述粘结剂分散在水溶液中。本发明的特征还在于一种制造包括所述电极的电池的方法。

Description

具有固体聚合物电解质和水溶性粘结剂的电池电极
与联邦支持的研究或开发有关的声明
不适用
背景技术
制备电池电极、尤其是锂离子电池的方法通常需要粘结剂,使得既可以保持电极一体化,又能确保与相对应的集流体表面的粘附。粘结剂与适当的溶剂一起用于电极形成过程中。与诸如也称为聚偏二氟乙烯的聚偏氟乙烯的粘结剂一起使用的是非水性溶剂。含水的水性粘结剂毒性较小,但水会通过例如从溶质中解离电解质盐来破坏电极。因此,在先技术使用水性粘结剂时通常需要将水溶液与电解质隔离的过程,和/或需要在从电极中排出或除去水溶液后添加补充性电解质的额外的过程步骤。
发明内容
已令人惊讶地发现,美国申请13/861,170(被授权为US9,819,053)和美国申请15/148,085所述的固体离子传导聚合物电解质可以在不需要添加电解质的先前必须步骤的情形下使用水溶性粘结剂。美国申请13/861,170(被授权为US9,819,053)和美国申请15/148,085均全文并入本文中,除了任何定义、主题免责声明或否认外,并且除了所包含的材料与本文明确公开的内容不一致的程度外,在此情形下,以本公开内容中的语言为准。授权专利US9,819,053和美国申请15/148,085分别以附件A和附件B包含在本说明书中,附件A和附件B位于本申请中所列出的权利要求之前。
在一个方面,本发明的特征在于一种可用于(useful in)电化学电池中的电极。该电极包括电化学活性材料;导电材料;固体离子传导聚合物电解质;以及粘结剂;其中,该粘结剂分散在水溶液中。
包括可用于电化学电池中的电极的本发明的其它方面可包括一个或多个以下实施方案:
在一个实施方案中,粘结剂可溶解于水溶液中。
在另一个实施方案中,粘结剂部分可部分溶解于水溶液中。
在又一个实施方案中,电极还包括锂。
在一个实施方案中,电化学活性材料包括石墨。
在另一个实施方案中,电化学活性材料的量为电极的70-90重量%。
在又一个实施方案中,电极还包括与导电材料电连通的导电集流体。
在一个实施方案中,电极还包括可溶于水溶液中的第二粘结剂。
在另一个实施方案中,固体离子传导聚合物电解质的量为电极的52-15重量%。
在又一个实施方案中,固体离子传导聚合物电解质的离子传导率为至少1×10-4S/cm。
在一个实施方案中,固体离子传导聚合物电解质的结晶度为至少30%。
在另一个实施方案中,固体离子传导聚合物电解质的阴极迁移数(cathodictransference number)大于0.4且小于1.0。
在又另一个实施方案中,固体离子传导聚合物电解质为玻璃态。
在一个实施方案中,电化学活性材料、导电材料、固体离子传导聚合物电解质和粘结剂包括多个分散的互混的颗粒。
在又一个实施方案中,电极还包括导电集流体;且该电极粘附到该导电集流体上。
在备选的实施方案中,电化学活性材料、导电材料、固体离子传导聚合物电解质和粘结剂包括多个分散的互混的颗粒,从而形成混合物;且该混合物通过水性浆料粘附到导电集流体上。
在另一方面,本发明的特征在于一种电池结构的制造方法。该方法包括选择导电集流体和电极的步骤;其中该电极包含电化学活性材料、导电材料、固体离子传导聚合物电解质以及粘结剂;将该电化学活性材料、导电材料、固体离子传导聚合物电解质和粘结剂在水溶液中混合以产生浆料;将该浆料与该导电集流体相邻而置;以及干燥浆料;其中,该电极粘附到导电集流体上。
本领域技术人员通过参考以下的说明书,包括附件A、B和C、权利要求书和附图,可以进一步理解和明白这些和其它方面、特征、优点和目标。
附图说明
图1是根据本发明的示例性实施方案的电化学电池的示意图;
图2是实施例1中所述的电化学电池的放电曲线;
图3是实施例1中所述的电化学电池在锂嵌入和脱嵌期间的循环测试图;
图4是实施例2中所述的比较电化学电池的放电曲线;以及
图5是实施例2中所述的电化学电池的循环测试图。
发明详述
参考图1,在代表性横截面中示出了电化学电池10。该电化学电池具有第一电极20,其附着至第一导电集流体30。电化学电池还包括第二电极50,其以类似方式附着至第二导电集流体60。电解质层40介于该第一和第二电极之间。电解质层40起到介电分离器的作用,并使得可以在电极之间实现离子传导。集流体30和60中每一个均包括从分别从各自集流体30和60延伸出的接片(tab)25和65,从而使得垫片的至少一部分可以从电池外壳(未示出)延伸出。每个垫片25和65因此可用作电池的正极或负极的电引线。
电化学电池及其相关电极的其它设计信息包含在以下实例和描述中以及PCT申请US2016/035628中,其以全文引用的方式并入本文中,除了任何定义、主题免责声明或否认外,且除了所包含的材料与本文中明确表达的公开内容不一致的程度外,在此情形下,以本公开内容中的语言为准。PCT申请US2016/035628的副本也以附件C的形式包含在本说明书中。
第一电极20和第二电极50中每一个均包含电化学活性材料,其形成电化学耦合,当电池处于负载状态下时,该电化学耦合会产生电子。尽管电化学电池及其电极的构造取决于电化学耦合,但一方面,本发明的特征在于电极具有为本领域普通技术人员已知的基本或典型的设计。除了电化学活性材料外,电极组分通常还包括电解质、导电材料和粘结剂。液体电解质或非固体电解质如作为非限制性实例的凝胶、或具有非固体状态的电解质通常在现有技术中用作电化学电池的离子传导介质。在一方面,本发明的特征在于一种电化学电池,其包括固体离子传导聚合物电解质。该固体离子传导聚合物电解质可用作阳极电解质以及用作阴极电解质。
在一个非限制性示例性实施方案中,该固体离子传导聚合物电解质可包括多个颗粒。这些颗粒可以以阵列形式布置成膜的形状,例如在非限制实例中,该膜为平面膜。固体离子传导聚合物电解质可插入在电极之间,从而在实现电极之间离子传导率的同时,还为电化学电池提供必需的介质阻挡。固体离子传导聚合物电解质的颗粒可分散在整个电极中,无论这些颗粒是用作阳极电解质和/或阴极电解质。这些颗粒可散布于(intersperse)电化学活性材料、粘结剂和导电材料的粒子并将其包封。电解质包括至少一种能够实现电池所需的离子传导率的盐。该盐包含至少一种阴离子和阳离子。在一非限制性示例性实施方案中,本发明的特征在于一种锂电池,其中阳离子的扩散率和离子传导率优选大于阴离子的扩散率和离子传导率。
本发明包括一种锂金属电池,其通过固体离子传导聚合物材料能够在高电压下高效的运作。
以下提供的术语解释是为了更详细地描述本发明的方面、实施方案和目的。除非另有解释或定义,本文所用全部技术和科学术语都与本发明所属领域的普通技术人员通常理解的意义相同。为了便于查阅本公开内容的各方面和/或实施方案,提供以下专用术语的解释:
术语“去极化剂”是指电化学活性物的同义词,即,在电化学反应和电化学活性材料的电荷传递步骤中,改变其氧化态或参与化学键形成和断裂的物质。当电极具有一种以上的电活性物质时,其可以称为共去极化剂。
术语“热塑性”是指塑料材料或聚合物的特性,其中该塑料材料或聚合物在高于特定温度时变为可逆地揉曲(pliable)和可模制,该特定温度通常在塑料材料或聚合物的熔化温度附近或为该熔化温度,且其中所述塑料材料或聚合物在低于熔化温度时可逆地固化。
术语“固体电解质”和/或“固相电解质”是指不含溶剂的聚合物和/或陶瓷化合物,包括结晶、半结晶和/或无定型化合物和/或玻璃态化合物。出于本申请、包括其权利要求书的目的,术语“固体电解质”和/或“固相电解质”并不是指或包括凝胶化的或湿的聚合物、溶剂和/或离子传导率取决于液体、液相和/或液相材料的其它材料。
术语“固体”和/或“固相和/或固相材料和/或材料是固相”可互换使用,指的是无限期地维持特定相的能力,其中“固体”可区别于且不同于液体或液相或液相材料或液相中的材料。“固体”的原子结构可以是结晶或无定型的。“固体”可与复合结构中的组分混合或包括该组分。出于本申请包括其权利要求书的目的,“固体”离子传导或传输材料使得可以在整个“固体”材料中实现离子传导,而非借助于任何溶剂、凝胶、液体、液相或液相材料,除非另有说明。
术语“聚合物”是指包括基于碳的大分子的有机化合物。每个大分子可含有一种或多种类型的重复单元,也称为单体和/或单体残基,如本领域普通技术人员所理解的那样。“聚合物”的特征在于重量轻、可延展、通常或一般不导电且在相对低的温度下熔融。聚合物可以通过注塑、吹塑、或其它模制工艺、挤出、压制、冲压、三维打印、机加工以及本领域普通技术人员已知的其它塑料或聚合物成型工艺来制成。聚合物在低于其玻璃化转变温度或Tg的温度下具有玻璃态。玻璃化转变温度随聚合物链的柔顺性变化。在高于玻璃化转变温度下,在聚合物的系统中存在足够的振动能和/或热能,从而产生足够的自由体积,以允许聚合物大分子的链段序列作为单元一起移动。然而,当处于玻璃态时,聚合物没有链段的移动。
术语“陶瓷”区别于术语“聚合物”,是指无机非金属材料;陶瓷通常包括由与氧、氮或碳共价连接的金属组成的化合物。“陶瓷”的特点在于又脆又硬且不导电。
术语“玻璃化转变温度”是随着聚合物材料冷却而落在介于过冷却液态的温度和玻璃态温度之间的温度或温度范围,其在一些但不是全部聚合物中可观察到、确定或预估。玻璃化转变的热力学测量可通过测量聚合物的物理性质如体积、焓或熵以及随温度变化的其它衍生性质进行。从所选择的性质(体积或焓)出现突变的曲线中或者通过在转变温度下斜率(热容或热膨胀系数)发生变化观察到玻璃化转变温度。在将聚合物从高于Tg冷却到低于Tg时,聚合物分子移动变慢,直至聚合物达到其玻璃态。
聚合物可以包括结晶、半结晶和/或无定型相。关于聚合物的术语“结晶度百分比”是指聚合物的结晶相相对于聚合物的无定型相和结晶相均包含在内的聚合物总量的百分比或量。结晶度百分比可以通过聚合物的X射线衍射以及分析聚合物的无定型相与结晶相的相对面积来计算。
术语“聚合物膜”通常是指聚合物的较薄的部分。出于本申请的目的,术语“聚合物膜”应理解为厚度等于或小于300微米的聚合物的一部分。离子传导率不同于电导率。离子传导率取决于离子扩散率,且离子传导率的性能与Nernst-Einstein方程相关。离子传导率和离子扩散率都是对离子迁移率的测量。如果在材料中离子的扩散率为正,即大于0,则离子视为可移动的,且/或离子的移动带来正的离子传导率。离子迁移率的测量通常在室温下、即在大约21℃进行,除非另有说明。离子迁移率受温度的影响。因此,在低温下很难检测到离子迁移率。在确定相对低的离子迁移率中,设备检测下限可能是一个影响因素。当测量的离子迁移率为至少1×10-14m2/s且优选至少1×10-13m2/s时,则该离子在材料中被视为可移动的。
术语“固体聚合物离子传导和/或传输材料”是指包括聚合物和传导离子的固体材料,如进一步将要描述的。
本发明的一方面包括由至少三种显著不同的组分合成固体离子传导聚合物材料的方法:基础聚合物、掺杂剂和离子化合物。可针对材料的特定应用而选择合成的组分和方法。基础聚合物、掺杂剂和离子化合物的选择可基于材料期望的性能而变化。例如,可以通过优化期望的物理特性(例如离子传导率)来确定期望的合成组分和合成方法。
合成方法也可随最终材料(例如膜、颗粒等)的特定组分和期望形式而变化。然而,该方法包括的基本步骤如下:初始时将至少两种组分混合,在任选的第二混合步骤中添加第三组分,以及加热该组分/反应物,从而在加热步骤中合成固体离子传导聚合物材料。在本发明的一个方面中,所得混合物可任选地形成为具有期望尺寸的膜。若在第一步骤中产生的混合物中不存在掺杂剂,则其可以随后添加到混合物中,同时施加热量和任选存在的压力(正压或真空)。三种组分可以全部存在,并将其混合并加热以在单个步骤中完成固体离子传导聚合物材料的合成。然而,也可以在与任何混合分开的步骤中进行该加热步骤,或者可以在混合正进行的同时完成该加热步骤。无论混合物的形式(例如薄膜、颗粒等)如何,都可以实施加热步骤。在合成方法的一个方面中,将全部三种组分混合,然后挤出成膜。将膜加热以完成合成。
在合成固体离子传导聚合物材料时,可以视觉观察到出现颜色变化,因为反应物的颜色相对较浅,而固体离子传导聚合物材料的颜色相对较深或为黑色。据信,此颜色变化是由于形成电荷转移复合物而出现的,且其会逐步或快速出现,这取决于合成方法。
合成方法的一个方面包括将基础聚合物、离子化合物和掺杂剂混合在一起、接着加热该混合物的步骤。加热步骤可以在掺杂剂存在下进行,其中该掺杂剂可以为气相。混合步骤可以在挤出机、混合器、研磨机或其它典型的塑料加工设备中进行。加热步骤可以持续数小时(例如二十四(24)小时),且颜色变化是合成完成或部分完成的可靠指示。额外的合成后加热(颜色变化)似乎不对材料产生负面影响。
在合成方法的一个方面中,可首先混合基础聚合物和离子化合物。然后将掺杂剂与聚合物-离子化合物的混合物混合并加热。可在混合步骤期间给混合物施加加热,或者可在混合步骤之后给混合物施加加热。
在合成方法的另一方面中,可首先混合基础混合物和掺杂剂,然后加热。该加热步骤可在混合之后或在混合期间进行。加热步骤产生颜色变化,该颜色变化指示电荷转移复合物的形成以及在掺杂剂与基础聚合物之间发生反应。然后将离子化合物与反应后的聚合物掺杂剂材料混合,以完成固体离子传导聚合物材料的形成。
典型的添加掺杂剂的方法为本领域技术人员众所周知,其可以包括汽相掺杂包含基础聚合物和离子化合物的膜,以及本领域技术人员已知的其它掺杂方法。通过掺杂,固体聚合物材料变得具有了离子传导性。一般相信,掺杂起到激活固体聚合物材料的离子组分的作用,这样一来,这些离子组分就是扩散离子。
在初始混合步骤、第二混合步骤或加热之后的混合步骤期间,可以将其它非反应性组分添加到上述混合物中。这样的其它组分包括但不限于:去极化剂或电化学活性材料,例如阳极或阴极活性材料;导电材料,例如碳;流变剂,例如粘结剂或挤出助剂(例如乙烯丙烯二烯单体“EPDM”)、催化剂以及其它可用于实现混合物的期望的物理性质的组分。
在合成固体离子传导聚合物材料中可用作反应物的聚合物为电子给体或可被电子受体氧化的聚合物。结晶度指数大于30%以及大于50%的半结晶聚合物是适合的反应聚合物。完全结晶的聚合物材料如液晶聚合物(“LCP”)也可用作反应物聚合物。LCP是完全结晶的,因此其结晶度指数在这里定义为100%。未掺杂的共轭聚合物如聚苯硫醚(“PPS”)也是适合的聚合物反应物。
聚合物通常是不导电的。例如,原生PPS的电导率为10-20S/cm。不导电聚合物是适合的反应聚合物。
一方面,可用作反应物的聚合物可以具有在每个重复单体基团(也称为单体残基)的骨架中的芳香族或杂环组分,以及并入杂环中或位于沿骨架与芳香环相邻的位置中的杂原子。杂原子可以直接位于骨架上或与直接位于骨架上的碳原子键合。在其中杂原子位于骨架上或与位于骨架上的碳原子键合的任一情形下,该骨架原子位于与芳香环相邻的骨架上。在本发明的该方面中使用的聚合物的非限制性实例可选自包括以下的组:PPS、聚(对苯醚)(“PPO”)、LCP、聚醚醚酮(“PEEK”)、聚邻苯二甲酰胺(“PPA”)、聚吡咯、聚苯胺和聚砜。也可使用包括所列聚合物的单体或单体残基的共聚物以及这些聚合物的混合物。例如,对羟基苯甲酸的共聚物可以是适合的液晶聚合物的基础聚合物。
表1详述了在合成固体离子传导聚合物材料中可用的反应物聚合物的非限制性实施例,以及单体或单体残基结构和一些物理性质信息。表1包括了非限制性实例,其中聚合物可采取能影响其物理性质的多种形式。
表1
Figure GDA0002800534540000091
在合成固体离子传导聚合物材料中可用作反应物的掺杂剂为电子受体或氧化剂。据信,掺杂剂释放离子以提供离子传输和移动。据信,掺杂剂释放离子产生与电荷转移复合物类似的场所(site)或允许或许可离子传导的聚合物中的场所。可在本发明中使用的掺杂剂的非限制性实例包括醌类,例如:2,3-二氰基-5,6-二氯二氰基醌(C8CI2N2O2),也称为“DDQ”,以及四氯-1,4-苯醌(C6Cl4O2),也称为氯醌,四氰乙烯(C6N4),也称为TCNE,三氧化硫(“SO3”),臭氧(三氧或O3),氧气(O2,包括空气),过渡金属氧化物,包括二氧化锰(“MnO2”),或任何适合的电子受体等,及其组合。在合成加热步骤的温度下对温度稳定的掺杂剂是有用的或优选的,醌类和既是温度稳定的也是强氧化剂的其它掺杂剂非常有用且甚至更佳。表2提供了掺杂剂的非限制性列表,以及其化学式和结构。
表2
Figure GDA0002800534540000101
在合成固体离子传导聚合物材料中可用作反应物的离子化合物是在合成固体离子传导聚合物材料期间释放期望的锂离子的化合物。该离子化合物与掺杂剂不同之处在于离子化合物和掺杂剂都是必需的。非限制性实例包括:Li2O、LiOH、LiNO3、LiTFSI(LiC2F6NO4S2或双三氟甲磺酸亚胺锂)、LiFSI(F2LiNO4S2或双氟磺酰亚胺锂)、LiBOB(双(草酸)硼酸锂或C4BLiO8)、三氟甲磺酸锂(LiCF3O3S)、LiPF6(六氟磷酸锂)、LiBF4(四氟硼酸锂)、LiAsF6(六氟砷酸锂)和其它锂盐,及它们的组合。这些化合物的水合形式(例如一水合物)可用于简化化合物的处理。无机化合物、氯化物和氢氧化物是适合的离子化合物,因为它们在合成期间解离以产生至少一种阴离子型和/或阳离子型扩散离子。任何能解离产生至少一种阴离子型和/或阳离子型扩散离子的离子化合物同样可以是适合的。产生多个阴离子型和/或阳离子型扩散离子的多离子化合物也是可用的,并可以是优选的。在合成中所包括的特定的离子化合物取决于材料期望的效用。例如,在其中可期望具有锂阳离子的方面中,可转化成锂和氢氧根离子的氢氧化锂或氧化锂是适合的。既释放锂阴极又释放扩散阴离子的含锂化合物可用于合成方法中。这样的锂离子化合物的非限制性实例包括在有机溶剂中用作锂盐的那些。
材料的纯度与防止不期望的副反应和最大化合成反应的效率以产生高导电性材料有关。通常具有高纯度的掺杂剂、基础聚合物和离子化合物的实质上的纯反应物是有用的,且纯度大于98%的更有用,甚至更高纯度也是有用的,例如:99.6%的LiOH,>98%的DDQ,以及>99%的氯醌。
在本发明的方面中,当阳极嵌入(intercalation)材料用作阳极电化学活性材料时,可用的阳极材料包括典型的阳极嵌入材料,其包括:掺杂或未经掺杂的锂钛氧化物(LTO)、硅(Si)、锗(Ge)以及锡(Sn)阳极;以及其它元素,例如掺杂或未经掺杂的锑(Sb)、铅(Pb)、钴(Co)、铁(Fe)、钛(Ti)、镍(Ni)、镁(Mg)、铝(Al)、镓(Ga)、锗(Ge)、磷(P)、砷(As)、铋(Bi)以及锌(Zn);上述物质的氧化物、氮化物、磷化物以及氢化物;以及碳(C),包括纳米结构化碳、石墨、石墨烯和包括碳的其它材料,及其混合物。在该方面中,阳极嵌入材料可以与固体离子传导聚合物材料混合并分散在其中,从而使得固体离子传导聚合物在嵌入和脱嵌(锂化/脱锂化)期间都能起到从嵌入材料离子传导入和传导出锂离子的作用。
再参考图1,阴极集流体60和/或阳极集流体30可包括铝、铜、或其上可设置或布置相应阴极50或阳极20的其它导电膜。在替代性实施方案中,无论阴极集流体60和/或阳极集流体30都可具有平面形式。
可用于本发明中的典型的电化学活性阴极化合物包括但不限于:NCA-锂镍钴铝氧化物(LiNiCoAlO2);NCM(NMC)-锂镍钴锰氧化物(LiNiCoMnO2);LFP-锂铁磷酸盐(LiFePO4);LMO-锂锰氧化物(LiMn2O4);LCo-锂钴氧化物(LiCoO2);含镍、钴或锰的锂氧化物或磷酸盐,以及LiTiS2,LiNiO2和其它分层材料,其它尖晶石,其它橄榄石和羟磷锂铁石(tavorite),以及它们的组合。
在本发明的一个方面中,电化学活性阴极化合物可以是在固态氧化还原反应中与锂反应的嵌入材料或阴极材料。这样的转化阴极材料可以包括:金属卤化物,包括但不限于金属氟化物,例如FeF2、BiF3、CuF2和NiF2,以及金属氯化物,包括但不限于FeCl3、FeCl2、CoCl2、NiCl2、CuCl2和AgCl;硫(S);硒(Se);碲(Te);碘(I);氧(O);以及相关材料,例如但不限于黄铁矿(FeS2)和Li2S。
固体聚合物电解质在高电压下(相对于阳极电化学活性材料超过5.0V)是稳定的。因此,本发明的一个方面涉及通过实现尽可能高的电压电池来增加能量密度。在此方面,高电压阴极化合物是优选的。具有高浓度镍原子的某些NCM或NMC材料可提供这样的高电压。在一个方面,镍的原子百分比大于钴或锰时的NCM例如NCM523、NCM712、NCM721、NCM811、NCM532、NCM622和NCM523以及其它变体可用于提供相对于阳极电化学活性材料更高的电压。
导电材料对于在电化学活性粒子和与相关联的集流体之间建立电连通以支持电极内和至电极和来自电极的电传导是必需的。这种导电材料通常包含颗粒碳和各种石墨以及可用于实现此目的的碳,例如炭黑、天然石墨、人造石墨、石墨烯、其它含碳的导电材料、导电聚合物、金属颗粒,以及上述组分中的至少两种的组合。
粘结剂用于保持电极完整性并粘附到集流体上。和导电材料和电解质一样,粘结剂不具有电化学活性。因此,添加的粘结剂越少,可添加的电化学活性材料就越多-从而增加能量密度和电池容量。可溶于水溶液中的粘结剂基本上在水基溶剂中都是可溶的,且可包括羧甲基纤维素或“CMC”,苯乙烯-丁二烯橡胶或“SBR”,类似的水溶性粘结剂及其混合物。
除了SBR和CMC外,可分散或溶于水溶液中的其它粘结剂包括:聚四氟乙烯(PTFE)、乙烯丙烯二烯烃(EPDM)橡胶和其它橡胶、聚苯乙烯磺酸盐(PEDOT-PSS)、聚丙烯酸(PAA)、聚丙烯酸甲酯(PMA)、聚乙烯醇(PVA)、聚乙酸乙烯酯(PVAc)、聚丙烯腈(PAN)、聚异戊二烯(PIpr)、聚苯胺(PANi)、聚乙烯(PE)、聚酰亚胺(PI)、聚苯乙烯(PS)、聚氨酯、聚乙烯缩丁醛(PVB)、聚乙烯吡咯烷酮(PVP),及其变体和组合。可分散或溶于水溶液中的其它天然粘结剂包括:直链淀粉、酪蛋白、环糊精(β羰基)、纤维素(天然)、淀粉、海藻酸盐、壳聚糖、树胶类(例如加冷胶、瓜尔胶、黄原胶、刺梧桐胶、塔拉胶、黄蓍胶和阿拉伯胶)、琼脂、果胶和角叉菜胶。
在本发明的一个方面中,可以对这些天然粘结剂进行化学和/或物理改性。可使用一种或多种天然和/或改性粘结剂的组合。粘结剂可以分散在水溶液中,使得粘结剂颗粒通过分散以实现电极的一致性,和/或维持电极与各自电极导线之间的电导率。进一步,可溶于水溶液中的粘结剂可用与本发明中。在一个方面中,本发明的特征在于如需要可交联的粘结剂,例如PAA与CMC,且交联的粘结剂混合物可包括第三种和其它额外的粘结剂以提供期望的机械优点。在其它方面中,本发明的特征在于可溶于水基溶剂中且分散良好的粘结剂,和/或部分可溶或以其它方式分散的粘结剂。
制备电化学电池的方法也取决于电池的构造、电化学耦合、电池的其它组分或成分,以及电池尺寸。电化学活性材料需要与固体聚合物电解质离子导通,且与导电材料电连通。
在一个方面,本发明的特征在于每个电极组分中的多个颗粒,其经互混并分散使得所述颗粒紧密混合。粘结剂必须添加到混合物中。通常,可以在混合步骤中向溶液中添加非水溶性粘结剂,例如PVDF。
然而,如下文进一步所述,非水性粘结剂可能与某些电极成分或组分不相容。这样的非水性粘结剂会导致电极与集流体之间较差的电连通。如果在这样的应用中用水性粘结剂代替非水性粘结剂,则水溶液会使电解质降解。因此,在这样的应用中,在干燥或加热步骤中在除去水溶液后再添加电解质。然而,现有技术的固体电解质与水性粘结剂可能会互不相容。现有技术的固体电解质不能在干燥步骤之后添加,因为电极是浇铸成型的,额外的混合会产生未粘在一起(incoherent)的电极。在干燥前在电极混合物中加入现有技术的固体电解质如PEO盐复合物会导致电解质会在暴露于水溶液期间降解。具体而言,在电解质中所含的盐可与水反应,导致无反应性或较低性能的反应物。
在一个方面中,已令人惊奇地发现,本发明的固体聚合物电解质可与水溶性粘结剂一起使用,不会造成任何性能降低,同时产生与相关联的集流具有优良电连通的粘在一起的电极。以下实施例中将描述额外的具体细节。
具体实施方式
实施例1(电化学电池比较例)
通常地根据上文提供并结合图1的电化学电池的描述,构造具有锂离子石墨嵌入活性材料的电化学电池。其组分和重量百分比的具体细节在表3中提供。炭黑包括购自Cabot的LiTX50。天然石墨嵌入材料包括购自Targray的SPGPT803。粘结剂由聚偏二氟乙烯或PVDF与N-甲基-2-吡咯烷酮或“NMP”溶剂的非水性浆料组成。将所得浆料粘附到铜箔集流器上,并构造纽扣电池。给电池进行循环充放电,并图绘电压随时间的变化。图2示出了经多次循环所得的放电曲线。在锂嵌入和脱嵌期间计算每次循环的石墨容量,如图3所示。图2和3证实在大约10个循环后有显著的容量衰减,导致较差的性能。
实施例2
通常地根据上文提供的并结合图1的电化学电池的描述,构造具有锂离子石墨嵌入活性材料的电化学电池。其组分和重量百分比的具体细节在表3中提供。炭黑包括购自Cabot的LiTX50。天然石墨嵌入材料包括购自Targray的SPGPT803。粘结剂由60/40重量百分比的羧甲基纤维素或CMC与丁苯橡胶或SBR的混合物以及水性浆料组成。除了粘结剂和相关溶液之外,按照与比较例1相同的程序构造电化学电池。将所得浆料粘附到铜箔集流体上并构造纽扣电池。图4示出了经多次循环所得的放电曲线。在锂嵌入和脱嵌期间计算每次循环的石墨容量,如图5所示。图4和5证实了经过多次循环后极少甚至没有容量损失的可重复循环。
表3
Figure GDA0002800534540000141
图2和3所示为来自实施例1中所描述的电池循环的图形表示。图2中描述了电压随时间的变化,在大约头四次循环后,每次循环的电压峰值随着频率下降出现。在每一循环下的下降面积也表示降低的容量,其在图3中得到证实,图3描绘了在充电(嵌入)和放电(脱嵌)期间电池的容量。具体地说,每次循环都用图形描绘了所测得的活性阳极材料以mAh/g计的容量。同样,在每次循环中,阳极都损失了显著的容量。
据信,阳极损失了与阳极集流体的粘附性,从而增加了电阻。此电阻降低了电压和相关联的容量。粘附性损失类似于在每次循环中软管被逐步夹持关闭,随着流动面积的减少,越来越少的流体能够流动。用非水性浆料和非水溶性粘结剂制成的阳极电极无法提供足够的粘附性。
在实施例2中,目标是改善集流体粘附性,从而防止比较例1的电池中所出现的电流限制。初始使实施例2的电池保持16小时,在这段时间OCV非常稳定。然后以C/7充放电使电池循环充放电。参考图4,实施例2电池的第一次循环效率为76.2%,其嵌入(石墨)容量平均约为364-374mAh/g。图5示出了在头十个循环的充电(嵌入)和放电(脱嵌)期间电池的容量。未显示出容量衰减,证实有99.6%的循环效率。
据信,固体离子传导聚合物电解质可防止水使电解质降解。因此,水性粘结剂和固体离子传导聚合物电解质的组合提供了卓越的电极性能,同时使得能够消除昂贵的电极制造步骤。
Figure GDA0002800534540000161
关于联邦发起的研究或开发的声明
(不适用)
背景技术
锂离子(和其它)电池通常使用对人和环境有害并且可能遭受火灾或爆炸的液体电解质。液体电解质电池被气密地密封在增加了包装电池的重量和体积的钢或其它坚固包装材料中。一种新的创新是袋式电池,其已经用于轻质电池中,但是尚未被广泛接受。
传统的液体电解质还会遭受下缺陷:在电极/电解质界面处形成固体界面层,导致电池最终失效。常规的锂离子电池也可以在几小时数量级上表现出缓慢的充电时间。另外,由于电池内的化学反应达到完全,并且由于腐蚀和枝晶形成而限制了可再充电性,所以电池遭受有限数量的再充电。液体电解质也限制了最大能量密度。电解质在约4.2伏开始分解。对电池功率的新的工业要求通常是4.8伏和更高,这是现有的液体电解质锂离子电池所不能达到的。在尖晶石结构和层状氧化物结构中都有发展,由于液体电解质的限制,层状氧化物结构还没有被展开。而且,具有液体电解质的锂离子电池在液体电解质的可燃性方面存在安全问题。
在具有液体电解质的常规锂离子电池中,也需要在液体电解质中设置隔板。隔板是多孔结构的,其允许离子流过,并阻止电子通过它。液体电解质电池通常需要排气孔来释放壳体中的压力,另外,这种传统电池通常包括安全电路,以使潜在危险的过电流和过温度最小化。图1和2示出了这些常规锂离子电池中的原理图和一般反应。
发明概述
根据本发明,提供了一种具有固体聚合物电解质的锂离子电池。该固体电解质通过消除对笨重和庞大的金属气密封装和保护电路的需要,能够实现更轻的重量和更安全的结构。该新型固体聚合物电池可以比相同容量的液体电解质电池具有更小的尺寸,更轻的重量和更高的能量密度。由于电解质材料是不易燃的,固体聚合物电池还从较不复杂的制造工艺、较低的成本和降低的安全隐患中受益。该新型电池还将提供大于4.2伏的电池电压。固体电解质可以通过挤出(和共挤出)、模塑和其它技术形成各种形状,从而可以为电池提供不同的形状因数。可以制成特定的形状以装配到被供电的装置或设备中的不同形状的外壳中。另外,该新型电池不需要像液体电解质电池中的那样在电解质和电极之间设置隔板,也不需要排气孔。该新型电池的重量明显小于具有相似功率容量的常规结构的电池。在一些实施方案中,所述新型电池的重量可以小于常规电池重量的一半。
所述电解质材料是固体离子导电聚合物,其优选具有为离子迁移提供高密度位点的半结晶或结晶结构。所述聚合物结构可以自身折叠回来。这将允许新的电池格局。
根据本发明的一个方面,所述电解质是离子聚合物膜的形式。电极材料直接施加到电解质的每个表面上,箔电荷收集器或端子则被施加到每个电极表面上。可以在端子上施加轻质保护性聚合物覆盖物,以完成基于膜的结构。该薄膜电池是柔性的,并且可以卷成或折叠成适合安装要求的预期形状。
根据本发明的另一方面,电解质是离子聚合物单丝(中空)的形式。将电极材料和电荷收集器直接施加(共挤出)到电解质的每个表面上,并且将端子施加到每个电极表面上。可以在端子上施加轻质保护性聚合物覆盖物以完成该结构。这种形式的电池是薄的、柔性的,并且可以卷绕成预期的形状以适合安装要求,包括非常小的应用。
根据本发明的另一方面,固体电解质可以模塑成所需的形状。阳极和阴极电极材料分别设置在电解质的相对表面上以形成电池单元。在每个电池单元的阳极和阴极电极上提供电端子,用于与其它电池单元互连以提供多电池单元电池或用于连接到使用装置。
在本发明的其它方面,公开了制造这种电池的方法。
在本发明的所有上述方面中,电极材料(阴极和阳极)可以与新型电解质材料的形式结合,以进一步促进两个电极之间的离子运动。这类似于传统锂离子电池中浸入到每个电极材料中的传统液体电解质。
附图说明
当结合附图阅读时,就可以更好地理解前面的概述以及下面对本发明的描述。为了举例说明本发明,在附图中示出了示例性的结构。然而,本发明不限于这里公开的具体方法和手段。
图1图中示出了根据现有技术的常规锂离子电池的示意图。
图2示出了根据现有技术的常规锂离子电池中的电极处的反应。
图3示例性地说明了本发明的方法,该方法包括使用挤出聚合物制造固态电池的步骤。
图4示例性地说明了根据本发明的挤出方法。
图5示例性地示出了根据本发明的实施方案的示意性表示。
图6示出了根据现有技术的具有聚环氧乙烷的固体聚合物电池的示意图。
图7示出了示出了根据现有技术的聚环氧乙烷的玻璃化转变温度和熔化温度的动态扫描量热图。
图8显示了根据现有技术的传统无定形聚环氧乙烷的离子电导率与温度的关系。
图9示出了无定形和结晶聚合物的示意图。
图10示例性地示出了本发明结晶聚合物的所得式。
图11示例性地示出了半结晶聚合物的动态扫描量热曲线。
图12示例性地说明了研究用于本发明的配制物。
图13示例说明2,3-二氰基-5,6-二氯二氰基醌(DDQ)的化学图。
图14示例性地说明了根据本发明的固体电解质聚合物的可能的导电机理。
图15示例性地说明了与液体电解质和聚环氧乙烷锂盐化合物相比,根据本发明的离子导电聚合物的电导率曲线。
图16示例性地说明了根据本发明的离子传导膜的机械性能。
图17示例性地显示了对根据本发明的聚合物进行的UL94可燃性测试。
图18示例性地示出了根据本发明的离子导电聚合物的伏特-电流-锂金属的曲线图。
图19示例性地示出了根据本发明的挤出的离子导电电解质和电极部件的示意图。
图20示例性地示出了根据本发明的固态电池,其中电极和电解质结合在一起。
图21示例性地示出了具有新的和柔性形式的根据本发明的最终固态电池。
发明详述
本发明人已经开发了一种在室温下是导电的并且可用于任何电池应用中的不易燃的固体聚合物电解质。该材料的新型导电机理提高了能量密度10倍,降低了电池成本达50%。
用于离子导电的现有固态聚合物是基于与聚环氧乙烷(PEO)共混的碱金属。PEO的三个主要限制是其温度限制、商业应用中的安全问题及其可制造性。
PEO的有限的温度范围
根据现有技术的PEO仅在材料的玻璃化转变温度以上(通常高于50℃)导电;低于该温度时,它处于玻璃态,缺乏导电性。高于该温度时,PEO以粘弹性状态存在,离子可以通过链迁移性传导通过该粘弹性状态。因此,目前在实验室和商业应用中使用的PEO与其它材料的共混物都需要高温(>50℃)以达到使聚合物具有反应性所需的状态。这种高温限制了PEO可用于其中的应用种类,甚至具有用于热失控的必要安全措施。
PEO的可燃性
根据现有技术的PEO由于其挥发性和高操作温度而是易燃的。目前,使用PEO作为电解质的电池需要围绕其的密封包装以防止热失控。这增加了昂贵的热管理系统,增加了终端用户的安全风险,这将会阻止终端用户采用,并且产生了电池管理系统必须围绕其设计的刚性的庞大的结构。
PEO电池的可制造性
商业PEO制造商目前在制造过程中将聚合物喷涂到电极上。这种批量规模的方法效率低,并且产生了如下的最终产品,该最终产品在集成到最终应用中时是坚硬的、厚的和昂贵的。而且,尽管PEO已经存在超过20年,但是它仍然不是商业生产的。
液体电解质体现出与现有技术中使用的PEO相同的许多问题:高成本、安全问题、成本和可制造性挑战、差的机械性能和常常引起的性能降低。本发明的固体聚合物途径解决了与液体电解质相关的问题,并解决了PEO材料的局限性。
本发明在其聚合物性能特征上提供了三个关键的优点:(1)具有扩展的温度范围。在实验室规模的测试中,结晶聚合物设计在室温下和在宽温度范围内都表现出高的离子电导率。(2)其是不易燃的。聚合物自熄,通过了UL-V0级的可燃性试验。在室温下操作的能力和不易燃的特性证明了不需要昂贵的热管理系统的变革性的安全性改进。(3)提供低成本的批量生产。不是将聚合物喷涂到电极上,所述聚合物材料可以通过卷对卷工艺挤出成薄膜,这是塑料制造商的行业标准。在薄膜被挤出之后,可以用电极和电荷收集器材料涂覆该薄膜,以“从内到外”地构造电池。这使得能够在不需要气密包装的情况下就实现薄的、柔性的形状因素,从而以低成本容易地集成到车辆和存储应用中。
本发明的固体聚合物电解质基于一种变革性的材料,该变革性材料产生了一种新的离子传导机理,该机理为离子传输提供了更高密度的位点,并允许更高电压通过电解质,没有热失控或源自锂化而损伤离子输送位点的危险。该特性使得能够在薄膜应用中为较高电压的阴极和阳极材料提供耐用的电解质,从而为车辆和固定存储应用中的电池提供较高的能量密度。通过不仅在室温而且在宽温度范围内都是导电的、机械坚固的耐化学物质和湿气的且不易燃的电解质来运行高电压的能力将允许集成高性能电极,而不需要当今工业所采用的昂贵的热和安全机理。
使用本发明的聚合物电解质制备的电池的特征在于能量密度比目前市售的电解质提高10倍的改进,性能范围在-40℃至150℃,电导率降低却最小。所述聚合物电解质可以通过生产厚度为6微米的工作聚合物的方法挤出,这使得这些特性能够在批量规模的商业制造条件下以薄膜形式存在。该聚合物电解质允许开发用于固体电解质生产的新的、高生产量的、低成本的生产线,并且可以集成到包括锂和锌电池制造的各种生产线中。此外,聚合物电解质不限于用于电池中,而是可以用于包括电解质材料的任何装置或组合物中。例如,聚合物电解质材料可用于化学分离过程,例如用于电致变色器件、电化学传感器和燃料电池膜中的离子分离。
图3示出了一种使用根据本发明的挤出聚合物制造固态电池的方法。将该材料配制成粒料,然后通过模口挤出,制得不同厚度的薄膜。可以使用几种技术将电极施加到膜上,例如溅射或浆料中的常规浇铸。
图4显示了一种制造根据本发明的离子聚合物膜的方法,该方法包括将膜加热到约295℃的温度,然后将膜流延到使塑料冻结的冷却辊上。该膜可以很薄,在10微米厚或更薄的范围内。图5示出了根据本发明的实施方案的体系结构的示意性表示。
先前制造聚合物电解质的尝试是基于特定的离子导电材料,其机理是在1973年发现的。该材料是聚环氧乙烷(PEO),离子传导机理基于“链迁移率”概念,这要求聚合物的温度高于玻璃化转变温度。图6示出了根据现有技术的具有聚环氧乙烷的固体聚合物电池的示意图。包括在图7中的是显示PEO的玻璃化转变温度(Tg)和熔化温度(TM)的动态扫描量热法(DSC)图。
用于离子传输的机理涉及无定形链在Tg上方的“运动”。高于该温度,聚合物非常“柔软”,并且其机械性能非常低。为了在锂离子电池中应用,使用传统的锂离子盐作为添加剂,例如LiPF6、LiBP4或LiClO4。锂盐是常规锂离子电池中诸如腐蚀、可靠性和高成本等问题的来源。图8图中示出了根据现有技术的传统无定形聚合物(PEO)的离子电导率与温度的关系。图8表明传统的无定形聚合物(PEO)在室温下不具有有意义的电导率。
根据本发明的固体聚合物电解质具有以下特征:室温下的离子传导机理,宽的温度范围,离子从高密度的原子位点“跳跃”,以及提供离子(锂或其它)的新手段。
本发明使用“结晶或半结晶聚合物”,如图9中示例性显示的,其典型地具有高于30%的结晶度值,并且具有高于200℃的玻璃化转变温度,和高于250℃的熔化温度。加入到其中的是含有合适离子的化合物,这些离子是稳定形式的,在薄膜形成之后可以被改性。图10显示了结晶聚合物的分子结构。该聚合物的单体单元的分子量为108.16g/mol。
用于离子源的典型化合物包括但不限于Li2O、LiOH和ZnO。其它例子是TiO2、Al2O2等。另外可以包括其它添加剂以进一步提高电导率或电流密度,例如碳纳米管等。在薄膜形成之后,可以使用掺杂过程,使用电子受体。或者,掺杂剂可以与初始成分“预混合”,并且无需后处理而挤出。电子受体的目的是两个方面:释放离子用于传输迁移,并在聚合物内产生极性高密度位点,以允许离子导电性。注意:在电导率和离子电导率之间有明显的区别。
可用于聚合物的典型材料包括液晶聚合物和聚苯硫醚(PPS),或结晶度指数大于30%的任何半结晶聚合物,或其它典型的氧受体。图11示例性地示出了半结晶聚合物的动态扫描量热曲线。图12的表1举例说明了所研究的示例性配制物。
电子受体可以在蒸气掺杂工艺中提供。它们也可以与其它成分预混合。适合使用的典型电子受体包括但不限于:2,3-二氰基-5,6-二氯二氰基醌(DDQ)(C8Cl2N2O2),如图13中举例说明的,四氰基乙烯(TCNE)(C6N4)和三氧化硫。优选的掺杂剂是DDQ,并且掺杂优选在热和真空存在下进行。
图14显示了根据本发明的固体电解质聚合物的可能的导电机理。作为掺杂过程的结果,在聚合物中建立电荷载体络合物。
挤出膜被制备为厚度0.0003”至0.005”。已经进行了表面电导率测量,结果报告于图15中。在图15中,将根据本发明的离子导电聚合物的电导率(Δ)与三氟甲烷磺酸盐PEO(□)和液体电解质Celgard/(EC:PC/LiPF6)(○)的电导率进行比较。根据本发明的离子聚合物的电导率追随液体电解质的电导率,并且在较低温度下远超过三氟甲烷磺酸盐PEO的电导率。
图16显示了使用ISPM IPC-TM-650测试方法手册2.4.18.3评价的本发明离子导电膜的机械性能。在图16的拉伸强度-伸长率曲线中,“韧性失效”模式表明该材料可以是非常坚固的。
聚合物的可燃性使用UL94火焰试验测试。对于额定UL94-V0级的聚合物,它必须在10秒内“自熄”并且“不滴落”。对电解质的这一性能进行测试,经确定它在2秒内自动熄灭,不滴落,因此容易地通过了V-0等级。图17显示结果的图片。
除了离子电导率、阻燃性、高温性能和良好的机械性能之外,聚合物材料必须不受锂金属或电极材料的其它活性物质的化学反应或侵蚀。传统的聚合物对锂侵蚀的测试是通过使用循环伏安法来进行的。这是将聚合物夹在锂金属阳极和阻挡不锈钢电极之间的测试。施加电压,并将其从低值(约2伏)扫描到大于4伏的高值。测量电流输出以确定是否存在聚合物/锂金属发生的任何显著反应。高输出电流将指示不希望的化学反应。图18显示了该研究的结果,并表明该离子导电聚合物稳定到至少6伏。结果显示有良好的高电压稳定性。
根据本发明的固体聚合物电解质能够实现以下性能:A)在室温和宽温度范围(至少-10℃至+60℃)下的高离子电导率;B)不易燃性;C)可挤出成薄膜,从而允许卷-卷加工和一种新的制造方法;D)与锂金属和其它活性材料的相容性,本发明将允许制造真正的固态电池。本发明允许新一代具有以下性能的电池:
o没有安全问题;
o新的形状因素;
o能量密度大大增加;以及
o能量存储成本的较大改进。
图19、20和21显示了固态电池的几个元件,它们分别是:A)挤出的电解质;B)挤出的阳极和阴极;和C)允许新的形状因素和挠性的最终固态电池。
虽然已经结合优选实施方式对本发明进行了描述,但是在阅读了上述说明书之后,本领域普通技术人员将能够实现对这里所述内容的各种改变、等同物替换和其它改变。因此,这里的纸件专利所给予的保护仅限于所附权利要求及其等同物中所包含的定义。
Figure GDA0002800534540000251
Figure GDA0002800534540000261
Figure GDA0002800534540000271
Figure GDA0002800534540000281
Figure GDA0002800534540000291
Figure GDA0002800534540000301
Figure GDA0002800534540000311
Figure GDA0002800534540000321
Figure GDA0002800534540000331
Figure GDA0002800534540000341
Figure GDA0002800534540000351
Figure GDA0002800534540000361
Figure GDA0002800534540000371
Figure GDA0002800534540000381
Figure GDA0002800534540000391
固体离子传导性聚合物材料
技术领域
本发明总体上涉及聚合物化学,特别地涉及固体聚合物电解质及其合成方法。
背景技术
电池的历史是缓慢进步和逐渐改进的历史。历史上,电池性能、成本和安全性一直是相互矛盾的目标,需要进行权衡,从而限制了最终应用(如电网级存储(grid-levelstorage)和移动电源(mobile power))的可行性。对转换电池的需求已经达到了国家利益的水平,推动了人们做出巨大努力以提供具有更高能量密度和更低成本的安全的电化学能量存储。
Alessandro Volta发明了变成被称为“伏打电堆”的第一个真正的电池。其由多对的锌盘和铜盘组成,所述锌盘和铜盘彼此一个叠一个地堆叠在一起,由浸在作为电解质的盐水中的一层布或纸板隔开。这一发现虽然并不切实可行,但却引起了对电化学电池和电解质作用的理解。
自Volta以来,发明人已经作出了液体电解质的改进,其中所述液体电解质基于填充有盐、碱或酸在水或有机溶剂中的浓溶液的多孔隔膜。这些液体电解质通常具有腐蚀性和/或可燃性,并且在许多情况下,与电极材料在热力学上不稳定,导致性能限制和安全隐患。这些挑战使得固态电解质在电池开发中极具吸引力。固体电解质可以提供显著的益处,例如不渗漏电解质、更具柔性的几何形状、能量密度更高的电极以及改进的安全性。
陶瓷和玻璃是第一批被发现并开发具有离子电导率的固体材料。接下来还有其它材料,但是所有这些材料都具有足够高的离子电导率仅在非常高的温度下才可获得的特征。例如,日本丰田已经宣布采用新“结晶态超离子晶体”的开发工作,其是一种玻璃态陶瓷Li10GeP2S12。但是,这种材料只有在高于140℃才具有高的电导率,而陶瓷则具有可制备性和脆性的常见问题。陶瓷的制备挑战对于将材料加入电池电极来说会是特别令人望而却步的。
对聚合物电解质的最初关注由Peter V.Wright教授在1975年的下述发现引起,其发现了聚环氧乙烷(PEO)的络合物可以传导金属离子。不久之后,Michel Armand教授认识到PEO锂盐络合物在电池应用中的潜在用途。PEO和锂盐的组合已经发展了多年。这种材料的实例是P(EO)n LiBETI络合物。在过去的三十年中,已经有许多尝试来改善聚环氧乙烷(PEO)-(CH2CH2O)n-的电导率。在这些基于PEO的材料中,阳离子迁移率受聚合物链段运动支配。PEO的这种链段运动实际上是类似液体的机理,但是链缠结和部分结晶可以给电解质一些固体的本体性质(bulk property)。然而,链段运动对于PEO成为离子传导性的是必不可少的。
增塑聚合物-盐络合物通过将液体增塑剂以使固体聚合物和液体电解质之间存在折衷的方式添加到PEO中而制备。由于链段运动增加,室温电导率(ambient conductivity)的数值得到大幅度提高,但这是以膜的机械完整性劣化为代价的而且存在聚合物电解质对金属电极的腐蚀反应性增加。
凝胶电解质通过将大量液体溶剂/液体增塑剂掺入能够形成具有聚合物主体结构的凝胶的聚合物基质中来获得。液体溶剂保留在聚合物的基质中,并通过原本不导电的固体聚合物形成液体导电路径。凝胶电解质可以提供高的室温电导率,但是存在与增塑聚合物电解质所提及的类似的缺点。
橡胶状电解质实际上是“盐掺聚合物(polymer-in-salt)”体系;与“聚合物掺盐(salt-in-polymer)”不同,“盐掺聚合物”体系中大量盐与少量聚合物(即聚环氧乙烷(PEO)、聚环氧丙烷(PPO)等)混合。这些材料的玻璃化转变温度可以较低以在室温下保持橡胶状态或粘弹性状态,其转而通过增强链段运动提供高电导率。然而,络合的/溶解的盐可能具有结晶趋势,因此妨碍了其在实际电化学装置中的使用。
复合聚合物电解质简单地通过将一小部分微/纳米尺寸无机(陶瓷)/有机填料颗粒分散到常规聚合物主体中来制备。聚合物充当第一相,而填充材料被分散在第二相中。作为分散的结果,可以提高离子电导率、机械稳定性和界面活性。离子电导率归因于在填料的存在下聚合物结晶度水平的降低以及相应的链段运动增加。
聚电解质包含与聚合物骨架共价键合的带电基团,这使得带相反电荷的离子非常易迁移。带电基团通过链段运动而是柔性的,其中所述链段运动是阳离子扩散率所需的。
其它聚合物电解质包括Rod-Coil Block聚酰亚胺(NASA研究)和各种聚合物/液体共混物(离子液体/PVDF-HFP)。遗憾的是,室温下的低电导率把所有这些已知的聚合物电解质排除在实际应用之外,因为它们需要链段运动来实现离子电导率。由于典型的聚合物电解质离子电导率依赖于高于材料的玻璃化转变温度(Tg)的链段运动,因此制备可用的固体聚合物电解质的所有尝试都曾集中在抑制结晶相和/或降低玻璃态转变为能够进行链段运动的状态(即粘弹性状态或橡胶状态)的温度。
在存在结晶相和非晶相的聚合物-盐络合物中,离子传输发生在非晶相中。Vogel-Tamman-Fulcher(VTF)方程描述了离子通过聚合物扩散的行为。VTF方程基于以下假设,即离子通过短聚合物链段的半随机运动来传输。这种链段运动的起始是随着温度升高到高于玻璃化转变温度Tg而出现的,并且随着温度在粘弹性状态中升高而变得更快。认为链段运动通过破坏聚合物上的离子相对的(relative)多个配位位点的溶剂化并提供离子可能扩散进入的空间或自由体积来促进离子运动。聚合物链段运动对于离子传输是必需的事实通常要求此种络合物集中在具有低玻璃化转变温度的非晶材料上。
发明内容
根据一个方面,提供了一种固体离子传导性(ionically conductive)聚合物材料,其具有大于30%的结晶度;熔化温度;玻璃态;以及至少一种阳离子扩散离子和至少一种阴离子扩散离子(both at least one cationic and anionic diffusing ion),其中各扩散离子在所述玻璃态下是可迁移的。该材料可以进一步包含多个(a plurality of)电荷转移络合物,和
多个(a plurality of)单体,其中各电荷转移络合物位于单体上。
该材料可以还具有在室温下小于1.0×105Ω.cm2的面积比电阻(area specificresistance)。
在一个方面中,提供了一种固体半结晶离子传导性聚合物材料,其具有:多个单体;多个电荷转移络合物,其中各电荷转移络合物位于单体上;并且其中所述材料的面积比电阻在室温下小于1.0×105Ω.cm2。该材料可具有大于30%的结晶度;在低于材料熔化温度的温度下存在的玻璃态;以及阳离子扩散离子和阴离子扩散离子,由此各扩散离子在所述玻璃态下是可迁移的。
根据固体离子传导性聚合物材料的其它方面,该材料的其它方面可以包括以下特征中的一个或多个:
电荷转移络合物通过聚合物和电子受体的反应形成;
该材料具有玻璃态,并且包含至少一种阳离子扩散离子和至少一种阴离子扩散离子,其中各扩散离子在所述玻璃态下是可迁移的;
该材料包含至少三种扩散离子;
该材料包含多于一种阴离子扩散离子;
该材料的熔化温度大于250℃;
该材料的离子电导率(ionic conductivity)在室温下大于1.0x 10-5S/cm;
该材料包含单一阳离子扩散离子,其中所述阳离子扩散离子在室温下的扩散率大于1.0x 10-12m2/s;
该材料包含单一阴离子扩散离子,其中所述阴离子扩散离子在室温下的扩散率大于1.0x 10-12m2/s;
该材料,其中至少一种阳离子扩散离子包括碱金属、碱土金属、过渡金属或后过渡金属(post transition metal);
该材料包含至少一个阴离子扩散离子/单体;
该材料包含至少一个阳离子扩散离子/单体;
该材料包含至少1摩尔阳离子扩散离子/升材料;
该材料的电荷转移络合物通过聚合物、电子受体和离子化合物的反应形成,其中各阳离子扩散离子和阴离子扩散离子是所述离子化合物的反应产物;
该材料由至少一种离子化合物形成,其中该离子化合物包含各阳离子扩散离子和阴离子扩散离子;
该材料是热塑性的;
该材料的阳离子扩散离子包括锂;
该材料的至少一种阳离子扩散离子和至少一种阴离子扩散离子具有扩散率,其中阳离子扩散率大于阴离子扩散率;
该材料的阳离子迁移数大于0.5且小于1.0;
该材料的阳离子扩散离子浓度大于3摩尔阳离子/升材料;
该材料的阳离子扩散离子包括锂;
该材料的扩散阳离子是单价的;
扩散阳离子的价数大于1;
该材料包含多于1个扩散阴离子/单体;
该材料的扩散阴离子是氢氧根离子;
该材料的扩散阴离子是单价的;
该材料的扩散阴离子和扩散阳离子是单价的;
该材料的至少一种阳离子扩散离子和至少一种阴离子扩散离子具有扩散率,其中阴离子扩散率大于阳离子扩散率;
该材料的阳离子迁移数等于或小于0.5且大于零;
该材料的至少一种阳离子扩散离子的扩散率大于1.0x 10-12m2/s;
该材料的至少一种阴离子扩散离子的扩散率大于1.0x 10-12m2/s;
该材料的至少一种阴离子扩散离子和至少一种阳离子扩散离子的扩散率大于1.0x 10-12m2/s;
该材料的各单体包含位于所述单体的骨架中的芳香族环结构或杂环结构;
该材料进一步包含掺入所述环结构中或位于与所述环结构相邻的骨架上的杂原子;
该材料包含的杂原子选自硫、氧或氮;
该材料的杂原子位于所述单体的与所述环结构相邻的骨架上;
该材料的杂原子是硫。
该材料是π共轭的;
该材料的至少一个阴离子扩散离子/单体,并且其中至少一个单体包含锂离子;
该材料包含多个单体,其中所述单体的分子量大于100克/摩尔;
该材料是亲水的;
该材料的离子电导率是各向同性的;
该材料在室温下的离子电导率大于1x 10-4S/cm;
该材料在80℃的离子电导率大于1x 10-3S/cm;
该材料在-40℃的离子电导率大于1x 10-5S/cm;
该材料的阳离子扩散离子包括锂,并且其中在室温下锂离子的扩散率大于1.0x10-13m2/s;
该材料是不易燃的;
当与第二材料混合时,该材料是不起反应的,其中所述第二材料选自电化学活性材料、导电材料、流变改性材料和稳定材料;
该材料呈薄膜状;
该材料的杨氏模量等于或大于3.0MPa;
该材料在掺杂电子受体后变为离子传导性的;
该材料在离子化合物的存在下在掺杂电子受体后变为离子传导性的,该离子化合物包含阳离子扩散离子和阴离子扩散离子,或者可通过所述电子受体的氧化作用转化成阳离子扩散离子和阴离子扩散离子;
该材料由基础聚合物、电子受体和离子化合物的反应产物形成;
该材料的基础聚合物是共轭聚合物;
该材料的基础聚合物是PPS或液晶聚合物;
该材料的离子化合物反应物是氧化物、氯化物、氢氧化物或盐;
该材料的电荷转移络合物通过电子受体和聚合物的反应形成;和
该材料的反应物电子受体是醌或氧。
在一个方面中,提供了固体离子传导性大分子和包含该大分子的材料,其包含:
多个单体,其中各单体包含芳香族环结构或杂环结构;
掺入所述环结构中或者位置与所述环结构相邻的杂原子;
阳离子扩散离子和阴离子扩散离子,其中所述阳离子扩散离子和所述阴离子扩散离子都被掺入所述大分子的结构中;
其中所述阳离子扩散离子和所述阴离子扩散离子均可以沿着所述大分子扩散;
其中当阳离子扩散离子或阴离子扩散离子沿着所述大分子扩散时,聚合物材料中不存在链段运动。
此外,该方面可以包括以下特征中的一个或多个:
该材料的离子电导率大于1x 10-4S/cm;
各单体的分子量大于100克/摩尔;
该材料的至少一种阳离子扩散离子包括碱金属、碱土金属、过渡金属或后过渡金属。
一个方面是一种制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的基础聚合物、电子受体和离子化合物混合以产生第一混合物;加热所述第一混合物以产生所述固体离子传导性聚合物材料。
另一方面是一种制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的聚合物和包含离子的化合物混合以产生第一混合物;用电子受体掺杂所述第一混合物以产生第二混合物;以及加热所述第二混合物。
另一方面是一种制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的聚合物和电子受体混合以产生第一混合物;加热所述第一混合物以产生包含电荷转移络合物的中间材料;将所述中间材料与包含离子的化合物混合以产生所述固体离子传导性聚合物材料。
制备固体离子传导性聚合物材料的方法的其它方面可以包括以下特征中的一种或多种:
退火步骤,其中在所述退火步骤中基础聚合物的结晶度增大;
该基础聚合物包含多个单体,并且其中单体与电子受体的摩尔比等于或大于1:1;
该基础聚合物具有玻璃化转变温度,并且其中所述基础聚合物的玻璃化转变温度大于80℃;
在混合步骤中该基础聚合物与离子化合物的重量比小于5:1;
在加热步骤中对混合物施加正压;
在加热步骤中混合物发生颜色变化;
在加热步骤中形成电荷转移络合物;
将固体离子传导性聚合物材料与第二材料混合的另外的混合步骤;
挤出步骤,其中将所述固体离子传导性聚合物材料挤出;和
离子传导步骤,其中所述固体离子传导性聚合物材料传输至少一种离子。
另外的方面包括:包含前述方面的材料和电化学活性材料的电化学活性材料复合材料;
包含前述方面的材料的电极;
包含前述方面的材料的电池;
包含前述方面的材料的燃料电池;
包含前述方面的材料的电解质;
包含前述方面的材料的用于传导离子的装置;
包括前述方面的材料的用于传导离子的方法;和
包括前述方面的材料的用于分离离子的方法;
在另一个方面中,提供了一种新的离子传导机理,其能够在聚合物的结晶相和非晶玻璃态两者中进行离子传导,这能够得到在室温下具有液体的电导率的固体聚合物材料;
能够产生包含该聚合物和电化学活性化合物以提高容量和循环寿命的复合阳极和阴极;
能够使用来源丰富和低成本的活性材料;且
能够实施使用低成本、高体积挤出和其它塑料加工技术的新电池制备方法。
本领域技术人员将通过参考以下说明书、权利要求书和附图进一步理解和领会这些和其它方面、特征、优点和目的。
附图说明
在附图中:
图1是使用包含固体离子传导性聚合物材料的LCO阴极的锂离子电池的循环测试的曲线图;
图2是实施例6的放电曲线图;
图3A、3B和3C是实施例9中描述的X射线衍射图;
图4是实施例10中描述的DSC曲线;
图5是比较例13中描述的测量电导率相对温度的图;
图6是比较例13中描述的测量电导率相对温度的曲线图;
图7是实施例14中描述的材料的样品的测量电导率的图;
图8是实施例16中描述的材料的样品的测量扩散率相对温度的图;
图9是实施例17中描述的比较材料的NMR扩散率曲线图;
图10是实施例18中描述的基础聚合物反应物的NMR谱。
图11是实施例18中描述的材料的NMR谱。
图12是实施例18中描述的材料的NMR谱。
图13是实施例18中描述的电子受体的NMR谱。
图14A是实施例18中描述的材料的NMR谱。
图14B是实施例18中描述的材料的NMR谱。
图15是实施例19中描述的材料的NMR谱。
图16是使用如实施例19中描述的材料的电池的图示。
图17是实施例20中描述的三个电池的放电曲线。
图18是实施例21中描述的电池的放电曲线。
图19是实施例22中描述的电池的放电曲线。
具体实施方式
本专利申请要求2015年5月8日提交的美国临时专利申请No.62/158,841的优先权,其全部公开内容通过援引加入的方式纳入本文。
提供以下对术语的解释以更好地详细描述将在本节中阐述的方面、实施方案和对象。除非另外解释或限定,否则本文使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常理解相同的含义。为了便于阅读本公开的各种实施方案,提供了对特定术语的以下解释:
去极化剂是电化学活性物质的同义词,即在电化学反应和电化学活性物质的电荷转移步骤中改变其氧化态、或者参与化学键的形成或断裂的物质。当电极具有多于一种电活性物质时,它们可以被称为共去极化剂(codepolarizer)。
热塑性是塑料材料或聚合物在特定温度(常常在其熔化温度附近或为其熔化温度)以上变得易弯曲或可模压并在冷却时凝固的特征。
固体电解质包括无溶剂聚合物和陶瓷化合物(结晶的和玻璃状的)。
“固体”的特征是能够无限长的一段时间保持其形状,并与液相材料区别开来且不同。固体的原子结构可以是结晶的或非晶的。固体可以与复合结构中的组分混合或为复合结构中的组分。然而,为了本申请及其权利要求的目的,除非另外说明,否则固体材料要求该材料为通过固体而非通过任何溶剂、凝胶或液相离子传导性的。为了本申请及其权利要求的目的,将依赖于液体获得离子电导率的凝胶(或湿)聚合物和其它材料定义为不是固体电解质,因为它们依赖于液相获得其离子电导率。
聚合物通常是有机的并且由碳基大分子构成,其中所述碳基大分子中的每一种都具有一种或多种重复单元或单体。聚合物重量轻、可延展、通常不导电,且在相对较低的温度下熔化。聚合物可以通过注塑成型工艺、吹塑成型工艺和其它成型工艺、挤出、压制、冲压、三维印刷、机械加工和其它塑料工艺制成产品。聚合物通常在低于玻璃化转变温度Tg的温度下具有玻璃态。这种玻璃化温度是链柔性的函数;并且当系统中有足够的振动(热)能量时,这种玻璃化温度会出现以产生足够的自由体积,以使聚合物大分子的链段序列可以作为单位一起移动。然而,在聚合物的玻璃态下,没有聚合物的链段运动。
聚合物不同于被定义为无机非金属材料的陶瓷;其通常是由与氧、氮或碳共价键合的金属构成的、脆性的、坚固的且不导电的化合物。
在一些聚合物中发生的玻璃化转变是在冷却聚合物材料时过冷液态与玻璃态之间的中点温度。玻璃化转变的热力学测量是通过测量聚合物的物理性质(例如,体积、焓或熵以及其它衍生性质)与温度的函数来完成的。玻璃化转变温度在这样的曲线上作为选定性质(焓的体积)的破坏观察到或由在转变温度下的斜率变化(热容量或热膨胀系数)观察到。在将聚合物从高于Tg冷却至低于Tg时,聚合物分子的迁移速度减慢直至聚合物达到其玻璃态。
由于聚合物可包含非晶相和结晶相两者,所以聚合物结晶度是该结晶相的量相对于聚合物的量,并以百分比表示。结晶度百分比可以经由聚合物的X射线衍射通过分析非晶相和结晶相的相对面积来计算。
聚合物薄膜通常被描述为聚合物的薄部分,但应理解为等于或小于300微米厚。
重要的是,注意离子电导率与电导率(electrical conductivity)不同。离子电导率取决于离子扩散率,这两个性质通过Nerst Einstein方程而相关。离子电导率和离子扩散率都是离子迁移率的量度。如果离子在材料中的扩散率为正值(大于零),或者其有助于正电导率,则所述离子在所述材料中是可迁移的。除非另有说明,所有这些离子迁移率测量均在室温(约21℃)下进行。由于离子迁移率受温度影响,因而其可能难以在低温下检测。设备检测限度可能是确定小迁移率量中的一个因素。迁移性可以理解为离子扩散率为至少1x10-14m2/s,优选至少1x10-13m2/s,这两者均使得离子在材料中是可迁移的。
固体聚合物离子传导性材料是包含聚合物并传导离子的固体,如下文进一步描述。
本发明的一个方面包括由至少三种不同组分合成固体离子传导性聚合物材料的方法:聚合物、掺杂剂和离子化合物。为材料的特定应用而选择合成的组分和方法。聚合物、掺杂剂和离子化合物的选择也可以基于材料的所需性能而变化。例如,所需的合成的组分和方法可以通过优化所需的物理特性(例如离子电导率)来确定。
合成:
合成方法也可以根据具体组分和最终材料的所需形式(例如薄膜、颗粒等)而变化。然而,该方法包括以下基本步骤:首先混合组分中的至少两种,在任选存在的第二混合步骤中加入第三组分,以及加热组分/反应物以在加热步骤中合成固体离子传导性聚合物材料。在本发明的一个方面中,所得混合物可以任选地形成为所需尺寸的薄膜。如果第一步骤生成的混合物中不存在掺杂剂,则可以随后将其加入到混合物中,同时加热和任选存在的施加压力(正压或真空)。所有三种组分都可以存在并将其混合加热,以一步完成固体离子传导性聚合物材料的合成。但是,这个加热步骤可以在与任何混合分开的步骤中完成,或者可以在混合进行时完成。加热步骤可以与混合物的形式(例如薄膜、颗粒等)无关地进行。在合成方法的一个方面中,将所有三种组分混合,然后挤出成薄膜。将该薄膜进行加热以完成合成。
当合成固体离子传导性聚合物材料时,由于反应物颜色是相对浅的颜色,而固体离子传导性聚合物材料是相对深的颜色或黑色,所以发生可以目视观察到的颜色变化。据信,当正在形成电荷转移络合物时,发生这种颜色变化;并且这种颜色变化可以根据合成方法逐渐或快速发生。
合成方法的一个方面是将基础聚合物、离子化合物和掺杂剂混合在一起,并在第二步中加热混合物。由于掺杂剂可以处于气相中,因而加热步骤可以在掺杂剂的存在下实施。混合步骤可以在挤出机、搅拌机、研磨机或塑料加工的典型其它设备中实施。加热步骤可以持续数小时(例如二十四(24)小时),并且颜色变化是合成完全或部分完成的可靠指示。合成后的额外加热似乎不会对材料产生负面影响。
在合成方法的一个方面中,可以首先混合基础聚合物和离子化合物。然后将掺杂剂与聚合物-离子化合物混合物混合并加热。可以在第二混合步骤期间或在混合步骤之后对混合物加热。
在合成方法的另一个方面中,首先将基础聚合物和掺杂剂混合,然后加热。这个加热步骤可以在混合之后或者在此期间施加,并且产生颜色变化,从而指示电荷转移络合物的形成以及掺杂剂和基础聚合物之间的反应。然后将离子化合物混合到反应的聚合物掺杂剂材料中以完成固体离子传导性聚合物材料的形成。
添加掺杂剂的典型方法是本领域技术人员已知的,并且可以包括含有聚合物和离子化合物的薄膜的气相掺杂(vapor doping)以及本领域技术人员已知的其它掺杂方法。在掺杂时,固体聚合物材料变为离子传导性的;据信掺杂起到激活固体聚合物材料的离子组分的作用,因此所述离子组分为扩散离子。
可以将其它非反应性组分在最初混合步骤、第二混合步骤或加热后的混合步骤期间加入到上述混合物中。这样的其它组分包括但不限于:去极化剂或电化学活性材料如阳极或阴极活性材料,导电材料如碳,流变剂如粘合剂或挤出助剂(例如乙烯丙烯二烯单体“EPDM”),催化剂和可用于实现混合物的所需物理性质的其它组分。
在固体离子传导性聚合物材料的合成中可用作反应物的聚合物是可以被电子受体氧化的电子给体或聚合物。结晶度指数大于30%和大于50%的半结晶聚合物是合适的反应物聚合物。完全结晶的聚合物材料如液晶聚合物(“LCP”)也可用作反应物聚合物。LCP是完全结晶的,因此其结晶度指数被定义为100%。无掺杂的共轭聚合物和诸如聚苯硫醚(“PPS”)等聚合物也是合适的聚合物反应物。
聚合物通常不导电。例如,原生PPS具有10-20S cm-1的电导率。非导电聚合物是合适的反应物聚合物。
在一个方面中,可用作反应物的聚合物可以具有在每个重复单体基团的骨架中的芳香族或杂环组分,并且掺入所述杂环中或者沿所述骨架位于与芳香环相邻的位置的杂原子。杂原子可以直接位于骨架上或与直接位于骨架上的碳原子键合。在杂原子位于骨架上或与位于骨架上的碳原子键合这两种情况下,骨架原子位于与芳香环相邻的骨架上。用于本发明的这一方面中的聚合物的非限制性实例可以选自PPS、聚对苯醚(“PPO”)、LCP、聚醚醚酮(“PEEK”)、聚邻苯二甲酰胺(“PPA”)、聚吡咯、聚苯胺和聚砜。还可以使用包括列出的聚合物的单体的共聚物和这些聚合物的混合物。例如,对羟基苯甲酸的共聚物可以是合适的液晶聚合物基础聚合物。表1详细描述了可用于本发明中的反应物聚合物的非限制性实例以及单体结构和一些物理性质信息,这些信息应被认为是非限制性的,因为聚合物可以采取可影响其物理性质的多种形式。
表1
Figure GDA0002800534540000521
Figure GDA0002800534540000531
在固体离子传导性聚合物材料的合成中可用作反应物的掺杂剂是电子受体或氧化剂。据信,掺杂剂起到释放离子以获得离子传输和迁移率的作用,并且据信起到生成类似于电荷转移络合物的位点或聚合物内允许离子电导率的位点的作用。可用的掺杂剂的非限制性实例是:醌,例如还被称为“DDQ”的2,3-二氰基-5,6-二氯二氰醌(C8Cl2N2O2)和还被称为氯醌的四氯-1,4-苯醌(C6Cl4O2);还被称为TCNE的四氰基乙烯(C6N4);三氧化硫(“SO3”);臭氧(三氧或O3);氧气(O2,包括空气);过渡金属氧化物(包括二氧化锰(“MnO2”));或任何合适的电子受体等;及它们的组合。在合成加热步骤的温度下温度稳定的那些掺杂剂是可用的,并且温度稳定的醌和其它掺杂剂以及强氧化剂醌是最可用的。表2提供了掺杂剂的非限制性列表以及它们的化学图表。
表2
Figure GDA0002800534540000541
在固体离子传导性聚合物材料的合成中可用作反应物的离子化合物是在固体离子传导性聚合物材料的合成期间释放所需离子的化合物。离子化合物不同于掺杂剂之处在于,需要离子化合物和掺杂剂两者。非限制性实例包括Li2O、LiOH、ZnO、TiO2、Al3O2、NaOH、KOH、LiNO3、Na2O、MgO、CaCl2、MgCl2、AlCl3、LiTFSI(双三氟甲烷磺酰亚胺锂)、LiFSI(双(氟磺酰基)酰亚胺锂)、双(草酸根合)硼酸理(LiB(C2O4)2“LiBOB”)和其它锂盐及它们的组合。这些化合物的水合形式(例如一水合物(monhydride))可用于简化化合物的处理。无机氧化物、氯化物和氢氧化物是合适的离子化合物,因为它们在合成期间解离产生至少一种阴离子扩散离子和阳离子扩散离子。任何解离产生至少一种阴离子扩散离子和阳离子扩散离子的这种离子化合物同样是合适的。多种离子化合物也可以是可用的,导致多种阴离子扩散离子和阳离子扩散离子可以是优选的。合成中包含的具体离子化合物取决于材料所需的用途。例如,在需要具有锂阳离子的应用中,可转化为锂离子和氢氧根离子的氢氧化锂或氧化锂将是合适的。任何在合成期间释放锂阴极和扩散阴离子的含锂化合物也将是合适的。这样的锂离子化合物的非限制性实例包括在有机溶剂中用作锂盐的那些。类似地,在需要铝或其它特定阳离子的那些体系中,铝或其它特定的离子化合物在合成期间反应以释放特定的所需离子和扩散阴离子。如将进一步证明的,以可产生所需的阳离子扩散物质和阴离子扩散物质的形式包括碱金属、碱土金属、过渡金属和后过渡金属的离子化合物适合作为合成反应物离子化合物。
材料的纯度是潜在重要的,以防止任何不期望的副反应,并使合成反应的有效性最大化以产生高电导率材料。具有一般高纯度的掺杂剂、基础聚合物和离子化合物的实质上纯的反应物是优选的,并且更优选纯度大于98%,最优选甚至更高纯度,例如LiOH:99.6%,DDQ:>98%,氯醌:>99%。
为了进一步描述固体离子传导性聚合物材料的用途和上述合成本发明的固体离子传导性聚合物材料的方法的通用性,描述了几类可用于多重电化学应用并通过其应用而区分开的固体离子传导性聚合物材料:
锂离子电池
在这个方面中,反应或基础聚合物的特征在于半结晶或完全结晶,且具有的结晶度值为30%~100%、优选50%~100%。基础聚合物的玻璃化转变温度高于80℃,优选高于120℃,更优选高于150℃,最优选高于200℃。基础聚合物的熔化温度高于250℃,优选高于280℃,更优选高于320℃。本发明的基础聚合物的单体单元的分子量在100~200gm/mol范围内并且可以大于200gm/mol。可以用于基础聚合物的典型材料包括液晶聚合物和还被称为PPS的聚苯硫醚,或结晶度指数大于30%、优选大于50%的半结晶聚合物。
在这个方面中,掺杂剂是电子受体,例如DDQ、TCNE、氯醌和三氧化硫(SO3)。可以将电子受体与所有其它成分“预先混合”并且在没有后处理的情况下挤出,或者可以使用掺杂工序例如气相掺杂以在将其它成分混合(例如在挤出机中)并形成薄膜之后将电子受体添加到组合物中。
用于本发明的这个方面中的包括离子源或“离子化合物”的典型化合物包括但不限于Li2O、LiOH、ZnO、TiO2、Al3O2、LiTFSI和其它锂离子化合物及它们的组合。离子化合物含有合适的稳定形式的离子,其经修饰以在固体离子传导性聚合物材料的合成期间释放离子。
实施例1
将PPS和氯醌粉末以4.2:1的摩尔比(基础聚合物单体与掺杂剂之比大于1:1)混合。然后将混合物在氩气或空气中、高温(高达350℃)、大气压下加热24小时。观察到颜色变化,从而确认在聚合物-掺杂剂反应混合物中产生了电荷转移络合物。然后将反应混合物重新研磨至1~40微米的小平均粒度。然后将LiTFSI与反应混合物混合以产生合成的固体离子传导性聚合物材料。
实施例2
制备含有来自实施例1的合成材料的钴酸锂(LiCoO2)(“LCO”)阴极。阴极使用70重量%LCO的高负载量,其中所述LCO与固体离子传导性聚合物材料和导电碳混合。使用锂金属阳极、多孔聚丙烯隔膜以及由LiPF6盐和碳酸酯基溶剂组成的标准Li离子液体电解质制备电池。将电池在干手套箱中装配并循环测试。
在这些电池中使用的LCO的以克数计的重量的容量显示在图1中。可以看出,当充电至4.3V时,容量稳定,并且与在充电期间从阴极移除的0.5当量Li的目标一致。该电池还被循环至4.5V的更高充电电压,其利用来自阴极的更高百分比的锂;并得到>140mAh/g的高容量。在4.5V充电测试中观察到的容量随循环次数的轻微下降与在该高电压下液体电解质的分解(即不稳定)一致。总体而言,含有本发明材料的LCO阴极的性能有利地与浆料涂覆的LCO阴极相当。
碱性电池
具有氢氧根离子迁移率的固体离子传导性聚合物材料的基础聚合物优选是结晶或半结晶聚合物,其结晶度值通常高于30%并且至多为并包括100%,优选为50%~100%。本发明这个方面的基础聚合物的玻璃化转变温度高于80℃,优选高于120℃,更优选高于150℃,最优选高于200℃。基础聚合物的熔化温度高于250℃,优选高于280℃,更优选高于300℃。
具有氢氧根离子迁移率的固体离子传导性聚合物材料的掺杂剂是电子受体或氧化剂。用于本发明这一方面中的典型掺杂剂是DDQ、氯醌、TCNE、SO3、氧气(包括空气)、MnO2和其它金属氧化物等。
包含具有氢氧根离子迁移率的固体离子传导性聚合物材料的离子源的化合物包括盐、氢氧化物、氧化物或者含有氢氧根离子或可转化成此类材料的其它材料,包括但不限于LiOH、NaOH、KOH、Li2O、LiNO3等。
实施例3
将PPS聚合物分别以67重量%~33重量%的比例与离子化合物LiOH一水合物混合,并使用喷射研磨混合。通过气相掺杂将DDQ掺杂剂以1摩尔DDQ/4.2摩尔PPS单体的量加入到所得混合物中。将混合物在中等压力(500~1000PSI)下于190~200℃热处理30分钟。
复合MnO2阴极
在涉及制备固体离子传导性聚合物材料-MnO2复合阴极的本发明的这个方面中,基础聚合物可以是结晶度指数大于30%的半结晶或全结晶聚合物,并且可以选自共轭聚合物或可以容易地用选定的掺杂剂氧化的聚合物。用于本发明这一方面中的基础聚合物的非限制性实例包括PPS、PPO、PEEK、PPA等。
在这个方面中,掺杂剂是电子受体或氧化剂。掺杂剂的非限制性实例是DDQ、氯醌、四氰基乙烯(也被称为TCNE)、SO3、臭氧、氧气、空气、过渡金属氧化物(包括MnO2)或任何合适的电子受体等。
在这个方面中,包含离子源的化合物是盐、氢氧化物、氧化物或者含有氢氧根离子或可转化成此类材料的其它材料,包括但不限于LiOH、NaOH、KOH、Li2O、LiNO3等。
实施例4
将PPS聚合物和LiOH一水合物分别以67%~33%(重量)的比例一起加入,并且使用喷射研磨进行混合。将另外的碱性电池阴极组分另外混合:MnO2、Bi2O3和导电碳。MnO2含量为50~80重量%,Bi2O3为0~30重量%,炭黑含量为3~25重量%,聚合物/LiOH含量为10~30重量%。
加热混合物以合成包含固体离子传导性聚合物材料的碱性电池阴极,其可用于常规的锌-二氧化锰碱性电池中。
实施例5
通过使用实施例4的阴极和市售的无纺布隔膜(NKK)、Zn箔阳极和作为电解质的6MLiOH溶液,制备锌-二氧化锰碱性电池。
使用Bio-Logic VSP 15测试系统,将电池在0.5mA/cm2的恒电流条件下放电。发现MnO2的比容量为303mAh/g或接近理论1e-放电。
金属空气电池
在这个方面中,固体离子传导性聚合物材料用于金属空气电池中,并且包含基础聚合物、含有离子源的化合物和掺杂剂。聚合物可以选自PPS、LCP、聚吡咯、聚苯胺和聚砜以及其它基础聚合物。
掺杂剂可以是电子受体或含有能够引发与聚合物的氧化反应的功能性电子受体基团的化合物。典型的掺杂剂是DDQ、氯醌、TCNE、SO3、臭氧和过渡金属氧化物,包括MnO2。包含离子源的材料可以是盐、氢氧化物、氧化物或者含有氢氧根离子或可以转化为此种材料的其它材料的形式,包括但不限于LiOH、NaOH、KOH、Li2O、LiNO3等。
实施例6
使用实施例3中合成的材料,以通过将固体离子传导性聚合物材料与各种碳混合来制备空气电极,其中所述碳具体地为:来自Ashbury的TIMCAL SUPER C45导电炭黑(C45)、Timcal SFG6(合成石墨)、A5303炭黑,和来自Ashbury的天然脉状石墨(natural veingraphite)Nano 99(N99)。碳含量在15~25重量%之间变化。
将阴极冲孔以适合2032纽扣电池。使用锌箔作为阳极。用40%的KOH水溶液浸渍无纺布隔膜。在面向阴极的纽扣顶部钻两个孔。通过使用MTI纽扣电池测试仪,将电池在0.5mA恒电流、室温下放电。
表3汇总了阴极参数和测试结果。放电曲线如图2所示。具有使用本发明材料的本实施例的空气阴极的电池表现出Zn-空气电池的典型放电行为,而没有任何传统催化剂(过渡金属基的)添加到混合物中。除了从空气阴极向阳极传导氢氧根离子之外,该材料还起到催化由在阴极表面存在的氧气形成氢氧根离子的作用。如该实施例所示,本发明的材料具有催化功能。
表3.
Figure GDA0002800534540000591
其它离子化合物
可以通过本发明的材料传导许多阴离子和阳离子。可以选择合成中使用的离子化合物,从而使得合成材料中包含所需的扩散离子。
实施例7
材料样品通过将LCP聚合物[SRT900?]离子化合物以各种比例混合制成。使用DDQ作为掺杂剂。聚合物单体与掺杂剂的摩尔比为4.2:1。结果列于表4中。将混合物在中等压力(500~1000psi)下于190~200℃热处理30分钟。
将样品夹在不锈钢电极之间并放置在测试夹具中。通过使用Bio-Logic VSP测试系统,记录800KHz~100Hz范围内的AC阻抗以确定电解质电导率。
结果显示在下表3中。观察到的高离子电导率表明固体聚合物材料可以传导多种离子,包括锂离子Li+、钾离子K+、钠离子Na+、钙离子Ca2+、镁离子Mg2+、铝离子Al3+、氢氧根OH-和氯离子Cl-
表4
Figure GDA0002800534540000601
可以使用任何可以被掺杂剂解离的离子化合物,只要离解的离子是使用该材料的可适用的电化学应用中所想要的即可。来源于离子化合物的阴离子和阳离子由此由该材料而离子传导。离子化合物包括氧化物、氯化物、氢氧化物和其它盐。在这个实施例中,金属(或其它阳离子)氧化物产生金属阳离子(或其它阳离子)和氢氧根离子。
传导锂阳离子之外的多种离子的能力为本发明的材料提供了新的应用。基于钠的和基于钾的能量储存系统被认为是锂离子的替代品,这主要由低成本和相对丰富的原材料驱动。钙、镁和铝电导率是多价嵌入(intercalation)体系所必需的,从而潜在地能够增加能量密度,而超出锂离子电池的性能。还有可能利用这种材料来制备具有金属阳极的电源,其比锂更稳定、更安全并且成本更低。
实施例8:
另外的固体离子传导性聚合物材料以及其反应物和相关的离子电导率(EIS方法)列于表5中,其中所述聚合物材料通过使用实施例1的合成方法制备。
表5
Figure GDA0002800534540000611
另外的固体离子传导性聚合物材料以及其反应物和相关的离子电导率(EIS方法)列于表6中,其中所述聚合物材料通过使用实施例3的合成方法制备。
表6
Figure GDA0002800534540000612
Figure GDA0002800534540000621
表6中列出的LCP来源于Solvay,商品名为Xydar,是具有不同熔化温度的LCP品种。
固体离子传导性聚合物材料的物理性质:
固体离子传导性聚合物材料的物理性质可以基于所使用的反应物而变化。具体的离子迁移率以及阴离子扩散离子和阳离子扩散离子来源于材料合成;然而,相对于反应物聚合物,其它物理性质似乎没有显著改变。
实施例9
结晶度
使用来自实施例3的反应物PPS、DDQ和LiOH来比较反应物聚合物和合成的固体离子传导性聚合物材料的相对物理性质。
在第一步中,将PPS反应物和LiOH一水合物混合并通过X射线衍射(“XRD”)分析。在图3A中,该非晶聚合物混合物的XRD显示了对应于LiOH一水合物的在30~34度之间的峰。否则,XRD显示该聚合物是非晶的并且没有任何显著的结晶度。
将混合物挤出并拉成薄膜。在此步骤中通过挤出机对PPS聚合物进行加热将(加热并保持在低于熔点的适当温度,然后缓慢冷却)非晶PPS材料退火,同时将材料挤出成薄膜,从而产生或增加结晶度。在图3B中,显示出明显的结晶聚合物峰,其也可用于将PPS材料的结晶度定量为约60%。LiOH一水合物的峰保留。
然后用DDQ掺杂剂对薄膜混合物进行气相掺杂以产生本发明的固体离子传导性聚合物材料,并且相应的XRD示于图3C中。在掺杂期间观察到颜色变化,因为材料在掺杂后变黑。这种颜色变化表明:正在形成离子电荷转移络合物,聚合物和掺杂剂反应物已经在离子化合物的存在下反应,并且该材料已经被激活变为离子传导性的。聚合物峰保留,表明材料的结晶度保持在约60%并因此不变。然而,LiOH一水合物峰已经消失,并且不被其它任何峰所取代。得出的结论是,离子化合物已经被解离成其组分阳离子和阴离子,且这些离子现在是材料结构的一部分。
玻璃化转变和熔点温度
实施例10
尽管存在许多用于确定块状或薄膜聚合物样品的熔化温度和Tg的技术,但是差示扫描量热法(“DSC”,在ASTM D7426(2013)中描述的)提供了用于确定聚合物材料的比热容变化的快速测试方法。玻璃化转变温度表现为比热容的阶跃变化。
参考图4,其显示了来自实施例1的合成材料的DSC曲线图。材料[PPS-氯醌-LiTFSI]的熔点通过DSC获得,并确定其与反应物聚合物PPS没有不同:Tm为约300℃。基础聚合物玻璃化转变温度Tg为80~100℃,然而在DSC曲线中没有出现Tg拐点;据信在合成时,固体离子传导性聚合物材料失去其在PPS基础聚合物中明显的粘弹性状态,并且玻璃态延伸到低于材料熔化温度的温度范围以下。据信,图中在130℃的倾斜是离子化合物的后生现象(artifact)。
离子电导率
测量本发明的固体离子传导性聚合物材料的离子电导率并相对于常规电解质进行比较。发现本发明的材料在玻璃态时在环境条件下是离子传导的,而反应物聚合物是离子绝缘的(insulative)。由于材料处于玻璃态,不能存在任何相关的链段运动,因此锂阳离子和阴离子的扩散必须通过其中不需要链段运动的不同离子传导机理来实现。
具体地说,将实施例1中所述的本发明的固体离子传导性聚合物材料的薄膜以0.0003英寸(7.6微米)以上的厚度挤出。通过使用本领域普通技术人员已知的AC电化学阻抗谱(EIS)的标准测试,测量薄膜的离子表面电导率。将固体离子传导性聚合物材料薄膜的样品夹在不锈钢阻塞电极(blocking electrode)之间并放置在测试夹具中。通过使用Bio-Logic VSP测试系统,记录在800KHz~100Hz范围内的AC阻抗以确定材料离子电导率。通过使用Bio-Logic,将材料薄膜放置在合适的夹具中来测量面内和贯通面(through plane)的离子电导率。测得贯通面电导率为3.1x 10-4S/cm,面内电导率为3.5x10-4 S/cm。这些测量结果相似得足以将材料认为是离子电导率各向同性的。
使用来自实施例1的材料制备厚度约150微米的薄膜。电子电导率通过恒电位实验直接测量。将薄膜置于不锈钢阻塞电极之间,并在电极间保持0.25V的电压。在180纳安的电流下测量电流,从而在室温下产生2.3x106Ω.cm2的电子电导率。该电子电导率(面积比电阻)低,在室温下低于1.0x 10 5Ω.cm2,这对于电解质是足够的。
对来自实施例1的材料进行热重量分析以确定该材料的含水量。在将材料储存在干燥气氛手套箱中后,进行热重量分析,显示材料含有<5ppm的水。用作固体离子传导性聚合物材料的反应物的某些盐(例如作为离子化合物的LiOH)吸收大气水分,因此可使材料具有亲水性。
实施例12
测试实施例3的合成材料的模量。由该特定固体聚合物材料制成的电解质的杨氏模量范围是3.3~4.0GPa。然而,本申请所列材料的杨氏模量范围要大得多,其范围为3.0MPa到4GPa。合成材料保持热塑性,可以使用塑料加工技术进行重整(reform)。将实施例3的材料加热至超过其熔点,然后冷却。然后将材料重整为薄膜。因此,材料显示出具有高模量和热塑性。
比较例13
实施例1中报道的离子电导率测量的结果在图5和图6中示出。将本发明的固体离子传导性聚合物材料薄膜的电导率(Δ)与三氟甲磺酸酯PEO的电导率(□)以及由Li盐溶质和碳酸亚乙酯-碳酸亚丙酯“EC:PC”组合溶剂构成的液体电解质(使用Celgard隔膜)的电导率(O)相比较。
参见图5,其显示了固体聚合物离子传导性材料的测量电导率与温度的函数。还显示了具有Celgard隔膜的液体电解质EC:PC+LiPF6盐的测量离子电导率和PEO-LiTFSI电解质的测量离子电导率。固体离子传导性聚合物材料在室温下的电导率比PEO-LiTFSI电解质高约2.5个数量级,并且与在类似条件下测量的常规液体电解质/隔膜体系的电导率相当。如由温度激活的Vogel-Tamman-Fulcher行为所述,固体离子传导性聚合物材料的电导率的温度依赖性在高于其玻璃化转变温度时未显示出急剧增加,这与链迁移率有关。因此,作为聚合物电解质材料中的离子传导机理的链段运动不会发生,因为材料在处于其玻璃态时显示出明显的离子电导率。此外,这表明本发明的聚合物材料具有与液体电解质相似的离子电导率水平。
在图6中,将固体离子传导性聚合物材料的离子电导率与常规液体电解质、比较例的锂磷氧氮“LIPON”和相关DOE目标的电导率和温度进行比较。参见图5B,固体离子传导性聚合物材料的离子电导率在室温(约21℃)下大于1x 10-04S/cm,在约-30℃下大于1x 10- 04S/cm(并且大于1x 10-05S/cm),在约80℃时大于1x 10-03S/cm。
实施例14
可以将离子电导率通过调整材料配方来优化。图7显示了通过调节聚合物材料配方(例如改变基础聚合物、掺杂剂或离子化合物)得到的离子电导率的改善和优化。
扩散率
除了离子电导率之外,扩散率是任何电解质和离子传导性材料的重要固有品质。
实施例15
对实施例3中产生的材料进行扩散率测量。
使用基本NMR技术以明确地将Li+识别为固体离子传导性聚合物材料中的自由流动离子。NMR是元素特异性的(例如H、Li、C、F、P和Co),并且对局部结构的小变化灵敏的。
具体而言,锂和氢氧根离子的扩散率通过脉冲梯度自旋回波(“PGSE”)锂NMR法进行评估。使用Varian-S Direct Drive 300(7.1T)光谱仪进行PGSE-NMR测量。使用魔角旋转技术来平均化化学位移各向异性和偶极相互作用。脉冲梯度自旋受激回波脉冲序列用于自扩散(扩散率)测量。通过分别使用1H和7Li核测量各个材料样品中阳离子和阴离子的自扩散系数。NMR测定的自扩散系数是类似于布朗运动的随机热致平移运动的量度,其中没有外部定向驱动力。然而,自扩散通过Nerst Einstein方程与离子迁移率和离子电导率密切相关,因此是表征电池电解质时重要的测量参数。当同时具有离子电导率和扩散数据时,可以确定限制电解质的性能的离子对或更高的聚集效应的存在。这些测试得出的结论是,固体聚合物离子传导性材料在室温下具有5.7x10-11m2/s的Li+扩散率,从而使其高于90℃的PEO/LiTFSI并且比Li10GeP2S12(在高温下测量的)高至少一个数量级。因此,固体离子传导性聚合物材料可以用作具有传导多种离子并且在室温下为电池和其它应用提供足够高的离子电导率的独特能力的新固体电解质,其中所述多种离子可以扩散、可迁移。
室温下OH-离子的扩散率为4.1x10-11m2/s。因此,固体离子传导性聚合物材料具有对于固体OH-导体而言的非常高的扩散速率。相应的阳离子迁移数(在下面方程(1)中定义的)为0.58,其也是显著较高的且不同于现有技术的固体电解质。
实施例16
对实施例1中产生的材料[PPS-DDQ-LiTFSI]进行扩散率测量。使用实施例15中阐述的技术测量自扩散。室温下材料的阳离子扩散率D(7Li)为0.23x10-9m2/s,室温下的阴离子扩散率D(1H)为0.45x10-9m2/s。
为了确定会降低材料电导率的离子缔合程度,通过使用测量的扩散测量结果经由Nernst-Einstein方程计算材料的电导率,确定相关的计算电导率远大于测量电导率。差异平均为至少一个数量级(或10倍)。因此,认为通过改善离子解离可以提高电导率,并且计算电导率可以被认为在电导率范围内。
可以通过方程(1)由扩散系数数据估算阳离子迁移数目:
t+~D+/(D++D-)(1)
其中D+和D-分别指Li阳离子和TFSI阴离子的扩散率。由以上数据,相比于相应的PEO电解质中的t+为约0.2(液态碳酸盐电解质也具有约0.2的t+值),固体离子传导性聚合物材料中获得约0.7的t+值。高阳离子迁移数这一性质对电池性能有重要的影响。理想情况下,优选的是t+值为1.0,这意味着Li离子承载全部电流。阴离子迁移率导致可能会限制电池性能的电极极化效应。在两种离子均可迁移的材料中,尽管很少获得,但高度寻求的是t+值为0.5以上。并不认为0.7的计算迁移数已在任何液体或PEO基电解质中观察到。虽然离子缔合可能影响计算,但电化学结果证实迁移数范围为0.65~0.75。
据信由于锂阳离子扩散较高,t+取决于阴离子扩散。由于阳离子扩散大于相应的阴离子扩散,所以阳离子迁移数总是高于0.5;并且由于阴离子是迁移的,阳离子迁移数也必须小于1.0。据信作为离子化合物的锂盐的调查将产生大于0.5且小于1.0的这个范围的阳离子迁移数。作为比较例,已经报道了一些陶瓷具有高扩散数,但是这样的陶瓷仅传输单一离子,因此当D-为零时,阳离子迁移数减少到1.0。
虽然迁移数是由NMR得出的扩散率测量结果计算出来的,但计算迁移的替代方法可以通过直接方法如Bruce和Vincent方法来实现。使用Bruce和Vincent方法以计算固体离子传导性聚合物材料的迁移数,并且发现其与NMR得出的测量结果有良好的相关性。
参见图8,其显示了在较大的温度范围内对固体离子传导性聚合物材料进行扩散测量的结果,并与含有LiTFSI作为离子源的PEO相比较。最重要的结论是:(i)在可以测量两种化合物的温度下,固体聚合物离子传导性材料中的Li扩散比PEO LiTFSI聚合物电解质中高几乎两个数量级;(ii)固体聚合物离子传导性材料中的扩散系数在下降至至少-45℃下是可测量的,该温度为在任何固体材料中测量的锂扩散的非常低的温度;具体地,锂离子扩散率大于1x 10-13m2/s。固体离子传导性聚合物材料在低温下的这种优异的离子传导性能超过了典型的液体电池电解质的性能。还值得注意的是,NMR谱温度依赖性表明离子运动与聚合物无关,因为其不依赖于聚合物链段运动,而是在其玻璃态下实现显著的离子扩散。因此,证实了存在具有大于30%的结晶度、玻璃态以及至少一种阳离子扩散离子和至少一种阴离子扩散离子的固体离子传导性聚合物材料,其中至少一种扩散离子(在这个方面中,两种扩散离子)在玻璃态下是可迁移的。
比较例17
LiPON的阳离子扩散率取自“Structural Characterization and Li dynamicsin new Li3PS4 ceramic ion conductor by solid-state and pulsed-field gradientNMR”,Mallory Govet,Steve Greenbaum,Chengdu Liang和Gayari Saju,Chemistry ofMetals(2014)。使用类似于实施例15和16中所提出的实验方法,并且在图9中示出扩散率曲线。确定LiPON的100℃阳离子扩散率D(7Li)为0.54x10-12m2/s。该扩散率比环境温度(21℃)下本发明材料的扩散率小约80倍。
材料的化学结构
进行实验以确定关于固体离子传导性聚合物材料的化学结构的信息。
实施例18
在本实施例中,研究了实施例3中合成的材料及其反应物组分PPS、DDQ以及LiOH一水合物。
首先分析反应物或基础聚合物PPS:参见图10,相对于四甲基硅烷(“TMS”)光谱标准,PPS的质子(1H)NMR谱被以6.8ppm为中心的单峰表征。如由聚合物结构所预期的那样,这是芳香族氢的清楚指示。PPS聚合物的质子固态MAS NMR谱在300MHz仪器上获取。星号表示自旋边带,插图显示扩大的解析。
参见图11,固体离子传导性聚合物材料的1H NMR谱(顶部),其中光谱解卷积成OH型质子(中间)和芳香族质子(底部)。光谱证实了芳香族氢和氢氧根。材料的质子固态MASNMR谱在500MHz仪器上获取。星号表示自旋边带,插图显示扩大的解析。光谱解卷积成OH-和基础聚合物质子在插图中显示为额外的实验光谱。由于NMR光谱是定量的(只要注意不要使信号饱和),谱峰的直接积分可给出特定相中核的比例。这种积分的结果表明,该材料在每个重复芳香族基团中具有多于一个可迁移的OH离子,并且每个聚合物重复单元(单体)含有约两个LiOH分子,这是非常高的离子浓度。窄OH信号显示OH离子的高迁移率。
额外的结构信息通过碳13固态MAS NMR可获得,所述碳13固态MAS NMR由~1%天然丰度的13C实现。利用交叉极化(CP),由此附近的质子与13C核同时共振,从而将核磁化转移到“稀有”自旋上以提高检测灵敏度。在图12中,PPS聚合物谱在两种直接极化下描绘:其中所有碳参与信号的(底部),和其中只有那些直接键合到氢上的碳参与的CP(顶部)。因此,差谱(中间)对应于与硫键合的碳。
参见图13,其显示了通过直接极化在500MHz仪器上获得的电子受体化合物的13C谱MAS NMR谱,其中具有所提出的电子受体DDQ的谱指认。由于该分子中不存在氢,因此在直接检测下获得了光谱。由于非常长的自旋晶格弛豫时间(可能超过1分钟),信噪比相当低。对于各个峰的指认在图3中示出。与预期的四个峰(对应于四个化学不等效的碳)不同,出现六个不同的峰表明可能存在异构体。
通过直接极化在500MHz仪器上获取的固体离子传导性聚合物材料的13C固态MASNMR谱显示在图14A中,其表明主峰(由芳香族碳主导)从PPS位移到离子传导性材料。插图中间的CP谱表明PPS聚合物与LiOH的OH基团强烈地相互作用。在图14B中比较了该材料和DDQ电子受体的扩大比例光谱,表明在材料中存在使反应物的原始光谱特征模糊的化学反应。
该NMR分析清楚地表明,三种不同的反应物已反应形成本发明的固体离子传导性聚合物材料。已经形成新材料,其不仅是其组成部分的混合物。这三种组分之间存在反应,固体聚合物离子传导性材料是反应产物。特别地,基础聚合物和合成材料之间的13C NMR峰存在位移。此外,与OH缔合的氢的1H共振和13C共振的同时辐射的效果表明,离子已经被结合到结构中,因此所有三种不同的组分已经反应并且是新合成材料的一部分。
实施例19
实施例3的材料中的阳离子(例如锂离子)浓度的定量可以通过将材料插入到内部同轴管中并使其由位移试剂络合物(例如多磷酸锂镝(Dy,lithium Dysprosiumpolyphosphate))的外部参比溶液包围而实现。参见图15,锂阳离子共振中的位移由可对样品中的锂进行定量的顺磁性Dy引起。在测量的样品中,发现锂阳离子浓度为约3摩尔/升材料([Li]~3摩尔/升)。这种大浓度的阳离子使得固体离子传导性材料在室温和宽温度范围内具有非常高的离子电导率。
材料稳定性
液体电解质和其它聚合物电解质可能遭受锂稳定性问题。它们与锂的相互作用导致锂和电解质之间的反应,这对电池寿命是不利的。当与其它电池组分(例如包括嵌入材料的电化学活性材料、导电添加剂、流变剂和其它添加剂)一起使用时,电解质还需要是相容的且不起反应的。另外,在高于4.0伏的高电压下,典型的电解质可以简单地分解,这又导致电池寿命变差。由此,锂“稳定性”是聚合物电解质的要求。具体而言,聚合物电解质是不起反应的,并且在高于4.0V、4.5V和5.0V的电压下传输锂金属时不分解。
参见图16,其显示了薄膜电池结构10。阳极包括具有相关联的集电器(未示出)的锂金属10或锂离子电池的典型阳极嵌入材料。如果选择嵌入材料,则将固体离子传导性聚合物材料与其混合。阴极30包括阴极集电器(未示出)和电化学活性材料或嵌入材料。再次将固体离子传导性聚合物材料与导电材料一起混合。固体离子传导性聚合物材料的薄膜用作隔膜/电解质40并被插入在阳极和阴极之间。
实施例20
固体离子传导性聚合物材料表现出与各种当前锂离子化学物质的相容性。参见图17,其示出了如图16所示构造并根据相关的阴极电化学活性材料标记的电池的性能。具体而言,电池由LiFePO4、LiMn2O4和LiCoO2阴极以及锂金属阳极构成。用与阴极中的电化学活性材料混合的本发明材料构成的电池(其中所述本发明材料用作将锂离子导入/导出阳极和阴极的电解质)显示出适当的放电性能。
通过在所有电池结构中或在此种结构(阳极、阴极、隔膜和电解质)之一中使用固体聚合物材料作为电解质,可以在不使用任何液体电解质的情况下实现新的性能水平。可以将材料在电极的至少一个中与电化学活性材料或嵌入材料混合。电池的电化学反应中所需的离子通过电解质传导。材料可以是适合用于电池中的颗粒、浆液、薄膜或其它形式。作为薄膜,可将材料插入电极之间或电极与集电器之间,将其放置封装集电器或电极,或将其放置在需要离子电导率的任何地方。如图16所示,电池的所有三个主要组件都可以使用固体聚合物材料制成。在图16所示的方面中,薄膜状电极和插入的隔膜或电解质可以是独立的结构,也可以通过热熔接或将热塑性薄膜整合在一起的其它方式而彼此附接。
实施例21
用由实施例1的材料封装的LCO制备阴极。将阴极与锂金属阳极配对,并且将材料的薄膜插入在阳极和阴极之间,如图16的结构中所描绘的。然后通过多个循环对组合电池进行充电和放电。图18显示了所得的多个循环的放电曲线。
充电-放电曲线示出几乎没有极化,效率为至少99%。这个结果证明了聚合物作为阴极内的离子传输介质的功能性以及其作为固态电池中的电解质的能力。同样重要的是当在四(4.0)伏特至4.3伏特以及至5.0伏特的电压下操作时电解质的电压稳定性,与锂金属的稳定性,以及以超过100mAh/g(特别是至少133.5mAh/g锂)率传输锂的稳定性。
实施例22
将LiS电池构造为包括在图16中描述的构造中制备的锂金属阳极和硫阴极。实施例1的材料用于制备电池中。传统上,锂-硫体系已经努力克服硫化反应化学中间体在这种电池典型的液体电解质中溶解所引起的低循环寿命问题。
固体聚合物材料通过将反应中间体捕获在固体体系中来限制反应中间体的溶解,从而起到了实现Li-S体系的作用。固体聚合物材料可以传输锂离子,同时阻止多硫离子(polysulfide ion)到达阳极。固体聚合物材料限制了硫颗粒的溶解和硫离子的传输,从而使更多的硫参与反应并提高了阴极的容量。相对于包含仅含有硫和碳的标准阴极的电池,这种改进的容量示于图19中。同样重要的是要注意该数据是在室温下得到的。固体聚合物材料不能实现液体电解质和一些常见聚合物电解质的典型的“无差别扩散”,而是仅能够使合成期间掺入到材料中的离子扩散。因此,硫化物不能扩散,而是很类似于除扩散阴离子和扩散阳离子以外的任何其它离子为非离子传导性的。因此,该材料可以充当离子隔膜,因为其可以被设计为仅使所选择的离子能够进行离子迁移。
固体聚合物电解质
如所描述的,固体离子传导性聚合物材料用作固体电解质。作为固体电解质,其不需要隔膜,但是固体电解质需要许多相同的隔膜特性。
隔膜是放置在电池的阳极和阴极之间的离子渗透膜。隔膜的主要功能是保持两个电极分开以防止电短路,同时还能够传输在电化学电池中通过电流期间闭合电路所需的离子电荷载体。所有电池都需要这种分离和离子传输操作。
当电池反复完全充电和放电时,固体电解质在强反应性环境下也必须对电极材料化学稳定。电池正常使用和不正常使用时,隔膜不应降解。特别重要的是在充电和放电期间遇到的电压范围内的电压稳定性。
固体电解质必须很薄以促进电池的能量密度和功率密度。但是,固体电解质必须作为隔膜工作,且不能太薄以至于不利于机械强度和安全性。厚度应该是一致的,以支持多个充电循环。标准宽度通常为约25.4μm-(1.0mil)且小于30μm。固体电解质的厚度可以通过纸浆和造纸工业技术协会的T411 om-83方法测量。并且,其已被以5~150微米的厚度挤出。
聚合物隔膜通常将电解质的电阻增加四至五倍,并且来自均匀渗透率的偏差产生不均匀的电流密度分布,这导致树枝状物的形成。这两个问题都可以通过使用产生离子电导率的均一性并具有各向同性离子电导率的固体电解质来消除。
固体电解质必须坚固得足以承受电池组装期间任何绕组操作的张力、或者电池的弯曲或其它使用不当。机械强度通常以机器(卷绕)方向和横向上的抗拉强度来定义,以抗撕裂性和刺穿强度来定义。这些参数是以杨氏模量来定义的,其中所述杨氏模量是应力与应变的比值。由固体聚合物材料制成的电解质的杨氏模量范围为3.0MPa~4.0GPa,并且如果需要,其可以通过使用添加剂如玻璃纤维或碳纤维来设计得更高。
固体电解质必须在很宽的温度范围内保持稳定而不卷曲或起皱,放置得完全平坦。虽然本发明的固体电解质的离子传输性质随着温度而变化,但是即使在暴露于极热的情况下,结构完整性也保持稳定,这将在下面更充分地描述。
因此,由于满足上述列出的各项要求,该固体离子传导性聚合物材料满足隔膜和固体聚合物电解质的要求。具体地,固体聚合物电解质具有以下特性:大于3.0MPa的杨氏模量,小于50微米的厚度,各向同性的离子电导率,在低至-45℃的温度下的多种离子的扩散率,在高电压下与锂金属、电化学活性材料和导电添加剂的稳定性(不反应的),热塑性和可模压性。
实施例23
根据UL94-V0可燃性测试的参数测试固体聚合物材料的可燃性。发现固体聚合物材料实际上是不易燃的,其在两秒内自熄灭。根据UL94-V0标准,为了被认为是不易燃的,材料需要在不到十秒的时间内自熄灭。
本申请和本详细说明书在此包含以下申请的整个说明书,包括权利要求书、摘要和附图:2015年5月8日递交的美国临时专利申请Ser.No.62/158,841;2014年12月3日提交的美国专利申请Ser.No.14/559,430;2013年12月3日递交的美国临时专利申请Ser.No.61/911,049;2013年4月11日提交的Ser.No.13/861,170;和2012年4月11日提交的美国临时专利申请Ser.No.61/622,705。
尽管已经根据本发明的某些优选实施方案详细描述了本发明,但是本领域技术人员在不脱离本发明精神的情况下可以实现其中的许多修改和变化。因此,申请人的目的仅受限于所附权利要求的范围,而不通过描述在此所示的实施方案的细节和手段受限。
应该理解的是,在不脱离本发明的构思的情况下,可以对上述结构进行变化和修改,并且应当理解的是,这些构思意欲被所附权利要求所涵盖,除非这些权利要求中另有明文规定。
Figure GDA0002800534540000741
Figure GDA0002800534540000751
Figure GDA0002800534540000761
Figure GDA0002800534540000771
Figure GDA0002800534540000781
Figure GDA0002800534540000791
Figure GDA0002800534540000801
Figure GDA0002800534540000811
Figure GDA0002800534540000821
Figure GDA0002800534540000831
Figure GDA0002800534540000841
Figure GDA0002800534540000851
Figure GDA0002800534540000861
Figure GDA0002800534540000871
Figure GDA0002800534540000881
Figure GDA0002800534540000891
Figure GDA0002800534540000901
Figure GDA0002800534540000911
Figure GDA0002800534540000921
Figure GDA0002800534540000931
Figure GDA0002800534540000941
Figure GDA0002800534540000951
Figure GDA0002800534540000961
Figure GDA0002800534540000971
Figure GDA0002800534540000981
Figure GDA0002800534540000991
Figure GDA0002800534540001001
Figure GDA0002800534540001011
Figure GDA0002800534540001021
Figure GDA0002800534540001031
具有固体聚合物电解质的锂金属电池
技术领域
一个或多个实施方案涉及包含固体聚合物电解质的电极、其制造方法以及含有它的锂电池(lithium battery)。
背景技术
锂二次电池通过产生低于约4.0伏的放电电压来提供能量密度。然而,在更高的电压下,用于这些电池中的典型电解质可能分解并限制电池的寿命。迄今为止已开发的电解质不提供这样高的充电状态和令人满意的水平的电解质稳定性。
用于锂二次电池中的典型电解质还限制了此类电池的有用性能的温度范围。已经证实在包括室温和以下的宽广的温度范围内具有高电导率的固体离子传导性聚合物材料可在宽广的温度范围内提供高性能。
目前现有技术的锂离子电极制作工艺涉及几个步骤:混合、浆料涂覆、干燥、压延和电极精整。这些步骤中的一些可通过使用挤出电极法来消除,所述挤出电极法将固体聚合物电解质引入锂电池电极中。
本实施方案克服了上述问题,并提供了额外的优点。
发明内容
根据一个方面,一种电池,其包括:阳极,其具有第一电化学活性材料;阴极,其具有第二电化学活性材料和第一电解质两者;第二电解质,其插置在所述阳极和所述阴极之间;其中所述第一电解质和所述第二电解质中的至少一种包括固体聚合物电解质;其中所述固体聚合物电解质包括至少一种阳离子扩散离子和至少一种阴离子扩散离子两者,其中至少一种阳离子扩散离子包括锂。
在所述方面,所述电池的所述固体聚合物电解质还包括:大于30%的结晶度;熔融温度;玻璃态;其中至少一种扩散离子在所述玻璃态下是可移动的。
电池的其它方面可包括以下的一个或多个:
所述电池,其中所述固体聚合物电解质还包含多种电荷转移复合物(complex)。
所述电池,其中所述固体聚合物电解质包括多种单体,并且其中每种电荷转移复合物定位于一种单体上。
所述电池,其中所述固体聚合物电解质的电子电导率为在室温下小于1×10-8S/cm。
所述电池,其中所述固体聚合物电解质包括:多种单体;多种电荷转移复合物,其中每种电荷转移复合物定位于一种单体上;其中所述固体聚合物电解质的电子电导率为在室温下小于1×10-8S/cm。
所述电池,其中所述固体聚合物电解质的结晶度为大于30%。
所述电池,其中所述固体聚合物电解质具有在低于所述固体聚合物电解质的熔融温度的温度下存在的玻璃态。
所述电池,其中所述固体聚合物电解质还包含阳离子扩散离子和阴离子扩散离子两者,由此至少一种扩散离子在所述固体聚合物电解质的玻璃态下是可移动的,并且其中所述固体聚合物电解质的结晶度大于30%。
所述电池,其中所述固体聚合物电解质的熔融温度大于250℃。
所述电池,其中所述固体聚合物电解质是热塑性的。
所述电池,其中所述固体聚合物电解质的离子传导率(ionic conductivity)是各向同性的。
所述电池,其中所述固体聚合物电解质是不可燃的。
所述电池,其中所述固体聚合物电解质的杨氏模量为等于或大于3.0MPa。
所述电池,其中所述固体聚合物电解质具有玻璃态,以及至少一种阳离子扩散离子和至少一种阴离子扩散离子,其中每种扩散离子在所述玻璃态下是可移动的。
所述电池,其中所述固体聚合物电解质的离子传导率为在室温下大于1.0×10-5S/cm。
所述电池,其中所述固体聚合物电解质包括单一的阳离子扩散离子,其中所述单一的阴离子扩散离子包括锂,并且其中所述阳离子扩散离子的扩散率为在室温下大于1.0×10-12m2/s。
所述电池,其中所述固体聚合物电解质包括单一的阴离子扩散离子,其中所述阴离子扩散离子的扩散率为在室温下大于1.0×10-12m2/s。
所述电池,其中所述至少阳离子扩散离子的一种具有大于1.0×10-12m2/s的扩散率。
所述电池,其中所述至少一种阴离子扩散离子的一种具有大于1.0×10-12m2/s的扩散率。
所述电池,其中所述至少一种阴离子扩散离子和至少一种阳离子扩散离子两者中的一种具有大于1.0×10-12m2/s的扩散率。
所述电池,其中所述固体聚合物电解质具有在室温下大于1×10-4S/cm的离子传导率。
所述电池,其中所述固体聚合物电解质具有在80℃下大于1×10-3S/cm的离子传导率。
所述电池,其中所述固体聚合物电解质具有在-40℃下大于1×10-5S/cm的离子传导率。
所述电池,其中锂的浓度为大于3摩尔锂/升固体聚合物电解质。
所述电池,其中至少一种阳离子扩散离子和至少一种阴离子扩散离子各自具有扩散率,其中阳离子的扩散率大于阴离子的扩散率。
所述电池,其中所述固体聚合物电解质的阳离子迁移数大于0.5且小于1.0。
所述电池,其中至少一种扩散阴离子是单价的。
所述电池,其中至少一种阴离子扩散离子包括氟或硼。
所述电池,其中所述固体聚合物电解质包括多种单体,并且其中每种单体存在至少一种阴离子扩散离子。
所述电池,其中所述固体聚合物电解质包括多种单体,并且其中每种单体存在至少一种阳离子扩散离子。
所述电池,其中每升固体聚合物电解质存在至少1摩尔所述锂。
所述电池,其中所述固体聚合物电解质包括多种单体,其中每种单体包含定位于所述单体的骨架中的芳族环或杂环结构。
所述电池,其中所述固体聚合物电解质还包含引入所述环结构中的杂原子或定位于邻近所述环结构的骨架上的杂原子。
所述电池,其中所述杂原子选自由硫、氧或氮组成的组。
所述电池,其中所述杂原子定位于所述单体的邻近所述环结构的骨架上。
所述电池,其中所述杂原子是硫。
所述电池,其中所述固体聚合物电解质是π-共轭的。
所述电池,其中所述固体聚合物电解质包括多种单体,其中每种单体的分子量大于100克/摩尔。
所述电池,其中所述电荷转移复合物通过聚合物、电子受体和离子化合物的反应形成,其中每种阳离子扩散离子和阴离子扩散离子是所述离子化合物的反应产物。
所述电池,其中所述固体聚合物电解质由至少一种离子化合物形成,其中所述离子化合物各自包含至少一种阳离子扩散离子和至少一种阴离子扩散离子。
所述电池,其中所述电荷转移复合物由聚合物和电子受体的反应形成。
所述电池,其中所述固体聚合物电解质在离子化合物的存在下被电子受体掺杂后变为离子传导性的,所述离子化合物含有阳离子扩散离子和阴离子扩散离子两者,或者可通过与所述电子受体的反应而转化为阳离子扩散离子和阴离子扩散离子两者。
所述电池,其中所述固体聚合物电解质由基础(base)聚合物、电子受体和离子化合物的反应产物形成。
所述电池,其中所述基础聚合物是共轭的聚合物。
所述电池,其中所述基础聚合物是PPS或液晶聚合物。
所述电池,其中所述第一电解质和所述第二电解质两者均包括所述固体聚合物电解质,其中所述第二电解质的电子电导率为在室温下小于1×10-8S/cm。
所述电池,其中所述第一电解质和所述第二电解质两者均包括固体聚合物电解质。
所述电池,其中所述阳极包含第三电解质,并且其中所述第三电解质包括所述固体聚合物电解质。
所述电池,其中所述第二电解质包括所述固体聚合物电解质并形成为膜,其中所述膜的厚度为200至15微米。
所述电池,其中所述第二电化学活性材料包括插层材料。
所述电池,其中所述第二电化学活性材料包括包含镍、钴或锰、或这些元素中的两种或全部三种的组合的锂氧化物。
所述电池,其中所述第二电化学活性材料具有相对于锂金属大于4.2伏的电化学电势。
所述电池,其中所述阴极具有相对于锂金属大于4.2伏的电极电势。
所述电池,其中所述第二电化学活性材料与导电材料和所述固体聚合物电解质相互混合。
所述电池,其中所述导电材料包括碳。
所述电池,其中所述阴极包含70-90重量%的第二电化学活性材料。
所述电池,其中所述阴极包含4-15重量%的固体聚合物电解质。
所述电池,其中所述阴极包含2-10重量%的导电材料。
所述电池,其中所述导电材料包括碳。
所述电池,其中所述阴极由浆料形成。
所述电池,其中所述阴极被定位在阴极集电器上。
所述电池,其中所述第二电化学活性材料包括含有镍、钴或锰的锂氧化物或锂磷酸盐。
所述电池,其中所述第二电化学活性材料包括锂插层材料,其中所述锂插层材料包含锂。
所述电池,其中所述锂插层材料包括锂镍钴铝氧化物;锂镍钴锰氧化物;磷酸锂铁;锂锰氧化物;磷酸锂钴或锂锰镍氧化物、锂钴氧化物、LiTiS2、LiNiO2或其组合。
所述电池,其中所述第二电化学活性材料包括在固态氧化还原反应中与锂反应的电化学活性阴极化合物。
所述电池,其中所述电化学活性阴极材料包括金属卤化物;硫;硒;碲;碘;FeS2或Li2S。
所述电池,其中所述锂插层材料包括锂镍钴锰氧化物,其中所述锂镍钴锰氧化物中的镍的原子浓度大于钴或锰的原子浓度。
所述电池,其中所述阴极的厚度为约15至115微米。
所述电池,其中所述阴极涂层密度在1.2至3.6g/cc范围内。
所述电池,其中所述第一电化学活性材料包括插层材料。
所述电池,其中所述阳极还包含所述固体聚合物电解质,其中将所述第一电化学活性材料与所述固体聚合物电解质混合。
所述电池,其中所述第一电化学活性材料包括锂金属。
所述电池,其中在阳极中的锂金属的厚度为20微米或更小。
所述电池,其还包括与所述阳极离子连通的阳极集电器,其中当所述电池被充电时,锂沉积在所述阳极集电器上。
所述电池,其中沉积在阳极集电器上的锂的密度大于0.4g/cc。
所述电池,其还包括与所述阳极离子连通的阳极集电器,其中所述电解质被定位在邻近所述阳极集电器处。
所述电池,其中所述第一电化学活性材料包括硅、锡、锑、铅、钴、铁、钛、镍、镁、铝、镓、锗、磷、砷、铋、锌、碳和其混合物。
所述电池,其中所述第二电化学活性材料包括插层材料,其中所述第一电化学活性材料包括锂金属。
所述电池,其中所述电池的充电电压大于4.1伏。
所述电池,其中所述电池的充电电压大于4.5伏。
所述电池,其中所述电池的充电电压大于5.0伏。
所述电池,其中锂在室温下以大于0.5mA/cm2的速率在所述阳极和所述阴极之间循环。
所述电池,其中锂在室温下以大于1.0mA/cm2的速率在所述阳极和所述阴极之间循环。
所述电池,其中所述锂在所述阳极和阴极之间循环大于150次。
所述电池,其中锂在室温下以大于3.0mAh/cm2的速率在所述阳极和所述阴极之间循环大于10次。
所述电池,其中锂以大于18.0mAh/cm2的速率在所述阳极和所述阴极之间循环。
所述电池,其中锂在室温下以大于0.25mAh/cm2的速率在所述阳极和所述阴极之间循环大于150次。
所述电池,其还包括阳极集电器,其中当所述电池被充电时,锂被镀到所述阳极集电器上,其中镀到所述阳极集电器上的锂的密度大于0.4g/cc。
所述电池,其中所述锂的循环效率大于99%。
所述电池,其中所述第二电解质包括所述固体聚合物电解质,并且形成为膜,其中所述第一电解质包括所述固体聚合物电解质,由此使所述第二电解质连接至所述阴极。
所述电池,其中所述第二电解质包括所述固体聚合物电解质,并且形成为膜,其中所述阳极包含第三电解质,其中所述第三电解质包括所述固体聚合物电解质,由此使所述第二电解质连接至所述阳极。
在一个方面,一种制造电池的方法,其包括以下步骤:混合聚合物与电子受体以产生第一混合物;加热所述第一混合物以形成包含多种电荷转移复合物的反应产物;混合至少一种包含锂的离子化合物与所述反应产物,以形成固体离子传导性聚合物材料。
制造电池的方法的其它方面可包括以下的一个或多个:
所述方法,其还包括混合插层材料与所述固体离子传导性聚合物材料以形成阴极。
所述方法,其中所述阴极形成步骤还包括混合导电材料与所述插层材料和所述固体离子传导性聚合物材料。
所述方法,其中所述阴极形成步骤还包括压延步骤,其中使得所述阴极的密度增加。
所述方法,其中使所述固体离子传导性聚合物材料形成为膜,以形成固体聚合物电解质。
所述方法,其中所述掺杂剂是醌。
所述方法,其中所述聚合物是PPS、共轭聚合物或液晶聚合物。
所述方法,其中所述离子化合物是含有锂的盐、氢氧化物、氧化物或其它材料。
所述方法,其中所述离子化合物包括氧化锂、氢氧化锂、硝酸锂、双三氟甲烷磺酰亚胺锂、双(氟磺酰基)酰亚胺锂、双(草酸根)硼酸锂、三氟甲烷磺酸锂、六氟磷酸锂、四氟硼酸锂或六氟砷酸锂,和其组合。
所述方法,其中在所述加热步骤中,将所述第一混合物加热至250至450℃的温度。
所述方法,其中所述阴极被定位在邻近导电阴极集电器处,以形成阴极组件。
所述方法,其中使所述固体离子传导性聚合物材料形成为膜,以形成固体聚合物电解质。
所述方法,其还包括导电阳极集电器和外壳,并且还包括组装步骤,其中所述固体聚合物电解质被定位在所述阳极集电器和所述阴极组件之间,以形成电池组件,并且所述电池组件被置于所述外壳内。
所述方法,其中所述电池还包括阳极和阴极,其中所述固体离子传导性聚合物材料形成为膜,以形成固体聚合物电解质,还包括将所述膜连接至所述阳极、所述阴极或所述阳极和所述阴极两者。
所述方法,其中在所述连接步骤中,将所述膜与所述阳极、所述阴极或所述阳极和所述阴极两者共挤出。
通过参考以下说明书、权利要求书和附图,本领域技术人员可以进一步理解和了解本发明的这些和其它特征、优点和目的。
附图简述
在以下附图中:
图1是电池横截面的图示;
图2是实施例2中所描述的在两种不同电压下循环的电池的容量-电压(CV)曲线图;
图3是实施例4中所描述的电池的循环图;
图4是实施例4中所描述的电池的循环图;
图5是实施例5中所描述的电池的循环伏安图;
图6是实施例6中所描述的比较电池的循环伏安图;
图7是实施例7中所描述的测试固定装置(fixture)横截面的图示;
图8是实施例7中所描述的电池的循环图;
图9是实施例8中所描述的电池的电化学阻抗谱(EIS)图;并且
图10是实施例9中所描述的电池的电压相对于时间的图。
具体实施方式
本申请要求享有2015年6月4日提交的美国临时专利申请号62/170,963的权益,后者在此通过引用结合在此;还通过引用并入2015年5月8日提交的美国临时专利申请号62/158,841;2014年12月3日提交的美国专利申请14/559,430;2013年12月3日提交的美国临时专利申请号61/911,049;2013年4月11日提交的美国专利申请号13/861,170;和2012年4月11日提交的美国临时专利申请号61/622,705。
本发明包括能够通过固体离子传导性聚合物材料在高电压下有效操作的锂金属电池。
提供以下术语解释以更好地详述将在本部分中陈述的方面、实施方案和目的的描述。除非另外解释或定义,否则本文使用的所有技术术语和科学术语的含义都与本公开内容所属领域的普通技术人员通常所理解的含义相同。为了促进对本公开内容的各个实施方案的检查,提供了对特定术语的以下解释:
去极化剂(depolarizer)是电化学活性物质的同义词,即在电化学反应和电化学活性材料的电荷转移步骤中改变其氧化态,或参与化学键的形成或断裂的物质。当电极具有超过一种电活性物质时,它们可被称为共去极化剂(codepolarizer)。
热塑性是塑性材料或聚合物在高于特定温度变得柔韧或可模制,并在冷却时固化的特性,所述特定温度经常在其熔融温度附近或就在熔融温度下。
固体电解质包括无溶剂聚合物和陶瓷化合物(结晶的和玻璃)。
“固体”的特征在于能够在无限长的时期内保持其形状,并且与液相中的材料区分开来和不同。固体的原子结构可以是结晶的或无定形的。固体可与复合结构中的组分混合或是复合结构中的组分。然而,出于本申请和其权利要求书的目的,除非另有描述,否则固体材料要求该材料是通过固体而不是通过任何溶剂、凝胶或液相而离子传导的。出于本申请和其权利要求书的目的,依赖于用于离子电导性的液体的胶凝化(或湿)聚合物和其它材料定义为不是固体电解质,因为它们依赖于液相以实现它们的离子电导性。
聚合物通常是有机的并且包含基于碳的大分子,所述大分子中的每一种都具有一种或多种类型的重复单元或单体。聚合物是轻质的,可延展的,通常非导电的,并且在相对低的温度下熔化。聚合物可通过注塑、吹塑和其它成型工艺、挤出、压制、冲压、三维打印、机械加工以及其它塑性工艺而制成产品。聚合物通常在低于玻璃化转变温度Tg的温度下具有玻璃态。玻璃化温度随链的柔韧性而变化,并且发生在系统中有足够的振动(热)能以产生充足的自由体积,从而允许聚合物大分子的片段序列作为单元而一起运动时。然而,在聚合物的玻璃态下,没有所述聚合物的链段运动。
聚合物与定义为无机非金属材料的陶瓷是相区别的;陶瓷通常是由共价键合至氧、氮或碳的金属组成的脆性的、强且和不导电的化合物。
在一些聚合物中发生的玻璃化转变是在聚合物材料冷却时过冷液态和玻璃态之间的中点温度。玻璃化转变的热力学测量是通过测量聚合物的物理性质如作为温度函数的体积、焓或熵和其它衍生性质来完成的。在所选性质(焓的总量)的突变(break)或来自转变温度下斜率(热容或热膨胀系数)的变化的这样的曲线上观察到的玻璃化转变温度。通过将聚合物从高于Tg冷却至低于Tg,聚合物分子的移动性(mobility)降低,直至聚合物达到其玻璃态。
由于聚合物可包含无定形相和结晶相两者,因此聚合物的结晶度是该结晶相相对于聚合物量的量,其表示为百分数。可经由聚合物的x射线衍射、通过分析无定形相和结晶相的相对面积来计算结晶度百分数。
聚合物膜通常被描述为聚合物的薄部分,但应理解为其等于或小于300微米厚。
重要的是要注意,离子传导率不同于电子电导率。离子传导率取决于离子的扩散率,并且所述性质与能斯特-爱因斯坦方程有关。离子传导率和离子扩散率都是离子迁移率的量度。如果离子在离子材料中的扩散为正(大于零),或者其有助于正的电导率,则离子在所述材料中是可移动的。除非另有说明,否则所有此类离子迁移率测量均在室温(约21℃)下进行。由于离子迁移率受温度影响,因此可能难以在低温下检测。设备检测极限可以是决定小迁移量的一个因素。所述迁移率可理解为至少1×10-14m2/s且优选至少1×10-13m2/s的离子扩散率,这两者均表明离子在材料中是可移动的。
固体聚合物离子传导性材料是包含聚合物并传导离子的固体,如将进一步描述的。
一个方面包括由以下至少三种不同组分合成离子传导性固体聚合物材料的方法:聚合物、掺杂剂和离子化合物。针对材料的具体应用来选择所述组分和合成方法。聚合物、掺杂剂和离子化合物的选择还可基于材料的期望性能而变化。例如,可通过优化期望的物理特性(例如离子传导率)来确定期望的组分和合成方法。
合成:
合成方法还可取决于具体组分和最终材料的期望形式(例如膜、微粒等)而变化。然而,所述方法包括以下基本步骤:首先混合至少两种组分、在任选的第二混合步骤中添加第三组分,和在加热步骤中加热组分/反应物以合成固体离子传导性聚合物材料。在本发明的一个方面,可使所得混合物任选地形成为期望大小的膜。如果在第一步骤中产生的混合物中不存在掺杂剂,则可随后在施加热和任选存在的压力(正压或真空)的同时将其添加至该混合物中。所有三种组分均可存在并混合且加热,以在单个步骤中完成固体离子传导性聚合物材料的合成。然而,该加热步骤可在与任何混合分开的步骤中完成,或者可在混合完成的同时完成。可进行加热步骤,而不考虑混合物的形式(例如膜、微粒等)。在所述合成方法的一个方面,将所有三种组分混合,然后挤出成膜。加热该膜以完成合成。
当合成固体离子传导性聚合物材料时,发生可目视观察到的颜色变化,因为反应物颜色是相对浅的颜色,而固体离子传导性聚合物材料是相对深色或黑色的。相信这种颜色变化在电荷转移复合物正在形成时发生,并且可取决于合成方法而逐渐地或快速地发生。
所述合成方法的一个方面是将基础聚合物、离子化合物和掺杂剂混合在一起,并在第二步骤中加热该混合物。由于掺杂剂可在气相中,因此加热步骤可在掺杂剂存在下进行。混合步骤可在挤出机、混炼机、磨机或塑料加工的典型其它设备中进行。加热步骤可持续几个小时(例如二十四(24)个小时),并且颜色变化是合成完成或部分完成的可靠指示。合成后(颜色变化)的另外加热似乎并不负面地影响所述材料。
在所述合成方法的一个方面,可首先混合基础聚合物和离子化合物。然后将掺杂剂与聚合物-离子化合物混合物混合并加热。可在第二混合物步骤期间或在混合步骤之后将加热施加至混合物。
在所述合成方法的另一方面,首先混合基础聚合物和掺杂剂,然后加热。该加热步骤可在混合之后或在混合期间施加,并产生指示电荷转移复合物的形成以及掺杂剂和基础聚合物之间的反应的颜色变化。然后将离子化合物混合至反应的聚合物掺杂剂材料中,以完成固体离子传导性聚合物材料的形成。
添加掺杂剂的典型方法是本领域技术人员已知的,并且可包括含有基础聚合物和离子化合物的膜的蒸气掺杂,以及本领域技术人员已知的其它掺杂方法。借助于掺杂,固体聚合物材料变为离子传导性的,相信所述掺杂用于活化固体聚合物材料的离子组分,以便它们是扩散离子。
在初始混合步骤、二次混合步骤或加热之后的混合步骤期间,可将其它非反应性组分添加至上述混合物中。此类其它组分包括但不限于去极化剂或电化学活性材料如阳极或阴极活性材料、导电材料如碳、流变剂如粘结剂或挤出助剂(例如,乙烯丙烯二烯单体“EPDM”)、催化剂和用于实现混合物的期望物理性质的其它组分。
可在固体离子传导性聚合物材料的合成中用作反应物的聚合物是电子供体或可被电子受体氧化的聚合物。结晶度指数大于30%和大于50%的半结晶聚合物是适合的反应物聚合物。完全结晶的聚合物材料如液晶聚合物(“LCP”)也可用作反应物聚合物。LCP是完全结晶的,因此它们的结晶度指数在此被定义为100%。未掺杂的共轭聚合物和聚合物如聚苯硫醚(“PPS”)也是适合的聚合物反应物。
聚合物通常是不导电的。例如,原生PPS具有10-20S cm-1的电导率(electricalconductivity)。非导电聚合物是适合的反应物聚合物。
在一个方面,可用作反应物的聚合物可在每个重复单体基团的骨架中具有芳族环或杂环组分,和引入所述杂环中或沿所述骨架定位于邻近所述芳环的位置处的杂原子。所述杂原子可直接位于骨架上或键合至直接位于所述骨架上的碳原子。在杂原子位于骨架上或键合至位于骨架上的碳原子的两种情况下,骨架原子定位于邻近芳环处的骨架上。用于本发明的这一方面的聚合物的非限制性实例可选自包括以下的组:PPS、聚(对苯醚)(“PPO”)、LCP、聚醚醚酮(“PEEK”)、聚邻苯二甲酰胺(Polyphthalamide“PPA”)、聚吡咯、聚苯胺和聚砜。还可使用包含所列聚合物的单体的共聚物和这些聚合物的混合物。例如,对羟基苯甲酸的共聚物可以是适当的液晶聚合物基础聚合物。
表1详述了用于合成固体离子传导性聚合物材料的反应物聚合物的非限制性实例以及单体结构和一些物理性质信息,其也应当被认为是非限制性的,因为聚合物可呈现可影响其物理性质的多种形式。
表1
Figure GDA0002800534540001171
可在固体离子传导性聚合物材料的合成中用作反应物的掺杂剂是电子受体或氧化剂。相信所述掺杂剂的作用是释放用于离子传输和迁移的离子,并且相信其用于产生类似于电荷转移复合物的位点或在聚合物内的位点,以使离子能够传导。可用的掺杂剂的非限制性实例是醌,如:2,3-二氰基-5,6-二氯二氰基醌(C8Cl2N2O2)(也称为“DDQ”),和四氯-1,4-苯醌(C6Cl4O2)(也称为氯醌)、四氰基乙烯(C6N4)(也称为TCNE)、三氧化硫(“SO3”)、臭氧(三氧或O3)、氧气(O2,包括空气)、过渡金属氧化物(包括二氧化锰(“MnO2”)),或任何适合的电子受体等,以及它们的组合。在合成加热步骤的温度下温度稳定的掺杂剂是有用的,并且醌以及既是温度稳定的、也是强氧化剂醌的其它掺杂剂是非常有用的。表2提供了掺杂剂以及它们的化学图的非限制性列表。
表2
Figure GDA0002800534540001181
可在固体离子传导性聚合物材料的合成中用作反应物的离子化合物是在固体离子传导性聚合物材料的合成期间释放期望的锂离子的化合物。离子化合物与掺杂剂不同之处在于离子化合物和掺杂剂两者都是需要的。非限制性实例包括Li2O、LiOH、LiNO3、LiTFSI(双三氟甲烷磺酰亚胺锂)、LiFSI(双(氟磺酰基)亚胺锂)、双(草酸根)硼酸锂(LiB(C2O4)2“LiBOB”)、三氟甲磺酸锂(LiCF3O3S)、LiPF6(六氟磷酸锂)、LiBF4(四氟硼酸锂)、LiAsF6(六氟砷酸锂)和其它锂盐及其组合。这些化合物的水合形式(例如单氢化物)可用于简化化合物的处置。无机氧化物、氯化物和氢氧化物是适合的离子化合物,因为它们在合成期间解离以产生至少一种阴离子扩散离子和至少一种阳离子扩散离子。解离以产生至少一种阴离子扩散离子和至少一种阳离子扩散离子的任何这样的离子化合物同样可以是适合的。多种离子化合物也可以是有用的,这导致可优选多种阴离子扩散离子和阳离子扩散离子。包含在合成中的具体的离子化合物取决于材料所期望的实用性。例如,在期望具有锂阳离子的一个方面,可转化为锂离子和氢氧根离子的氢氧化锂或氧化锂将是会适当的。如同在合成期间释放锂阴极和扩散阴离子两者的任何含锂化合物一样。此类锂离子化合物的非限制性组包括在有机溶剂中用作锂盐的那些。
材料的纯度是潜在重要的,以防止任何非预期的副反应,并使合成反应的有效性最大化,以产生高传导性材料。具有通常高纯度的掺杂剂、基础聚合物和离子化合物的基本上纯的反应物是有用的,并且大于98%的纯度更有用,而甚至更高的纯度(例如,LiOH:99.6%,DDQ:>98%,和氯醌:>99%)也是有用的。
为了进一步描述固体离子传导性聚合物材料的实用性和固体离子传导性聚合物材料的上述合成方法的多样性,描述了固体离子传导性聚合物材料在锂金属电化学应用的某些方面的用途:
参见图1,其以横截面视图显示了一个方面的电池10。所述电池包括阴极20和阳极30。阴极邻近阴极集电器40处定位或连接至阴极集电器40,所述阴极集电器40可用于将电子传导至阴极。阳极30类似地邻近阳极集电器50处定位或连接至阳极集电器50,所述阳极集电器50也用于将电子从阳极传导至外部负载。插置在阳极30和阴极20之间的是固体聚合物电解质60,其既用作防止阳极和阴极之间的导电和内部短路的电介质层,同时也在阳极和阴极之间离子性传导离子。
所描述的电池部件(component)类似于典型的电池部件,然而,在锂单电池(cell)方面进一步描述了固体聚合物电解质和其与每个电池部件的组合。
阳极集电器50是导电的并且邻近固体聚合物电解质膜60定位。插置在阳极集电器和固体聚合物电解质之间的是阳极,其可包含多种典型的锂插层材料中的任一种或锂金属。在充电时,固体聚合物电解质用于在一个方面将锂金属传导至阳极,以及传导至锂插层材料,或者如果使用锂金属,则传导至阳极集电器。在锂金属阳极的方面,过量的锂可被添加至单电池中,并维持在阳极集电器(anode collector)处,并且可在单电池充电时用作沉积表面。
在使用阳极插层材料作为阳极电化学活性材料时的方面,有用的阳极材料包括典型的阳极插层材料,其包括:掺杂和未掺杂的锂钛氧化物(LTO)、硅(Si)、锗(Ge)和锡(Sn);以及掺杂和未掺杂的其它元素,如锑(Sb)、铅(Pb)、钴(Co)、铁(Fe)、钛(Ti)、镍(Ni)、镁(Mg)、铝(Al)、镓(Ga)、锗(Ge)、磷(P)、砷(As)、铋(Bi)和锌(Zn);上述元素的氧化物、氮化物、磷化物和氢化物;以及碳(C),包括纳米结构化的碳、石墨、石墨烯,和包含碳的其它材料,以及它们的混合物。在这一方面,阳极插层材料可与固体离子传导性聚合物材料混合,并分散在固体离子传导性聚合物材料内,以使得固体离子传导性聚合物材料可用于在插层和脱出(deintercalation)(或锂化/脱锂化)期间将锂离子经离子传导至插层材料和从插层材料离子传导出。
在使用锂金属时的方面,锂可与阴极材料一起添加,作为锂箔添加至阳极中,分散在固体离子传导性聚合物材料中,或添加至两种电池部件中。
固体聚合物电解质用于将锂金属传输至阳极和从阳极传输出,因此必须被定位于电池内,从而使其能够这样做。因此,固体聚合物电解质可以膜层定位于平面或凝胶卷型(jellyroll)电池构造中、定位于围绕阳极集电器的旋卷物(convolute),或使固体聚合物电解质能够进行其锂离子传导的任何其它形状。固体聚合物电解质的厚度可在期望的均匀厚度范围内,如200至25微米或更薄。为了促进固体聚合物电解质的挤出,可添加影响期望的挤出性质所需的量的流变助剂或挤出助剂,如EPDM(乙烯-丙烯-二烯单体)。
阴极集电器40也是阴极20可定位或放置在其上的典型的铝或其它导电膜。
可使用的典型电化学活性阴极化合物包括但不限于:NCA-锂镍钴铝氧化物(LiNiCoAlO2);NCM(NMC)-锂镍钴锰氧化物(LiNiCoMnO2);LFP-磷酸锂铁(LiFePO4);LMO-锂锰氧化物(LiMn2O4);LCO-锂钴氧化物(LiCoO2);含有镍、钴或锰的锂氧化物或锂磷酸盐,以及LiTiS2、LiNiO2和其它层化材料、其它尖晶石、其它橄榄石和水磷锂铁石(tavorite)及它们的组合。在一个方面,电化学活性阴极化合物可以是插层材料,或在固态氧化还原反应中与锂反应的阴极材料。此类转化阴极材料包括:金属卤化物,包括但不限于金属氟化物,如FeF2、BiF3、CuF2和NiF2;以及金属氯化物,包括但不限于FeCl3、FeCl2、CoCl2、NiCl2、CuCl2和AgCl;硫(S);硒(Se);碲(Te);碘(I);氧(O);和相关材料,例如但不限于黄铁矿(FES2)和Li2S。当固体聚合物电解质在高电压(相对于阳极电化学活性材料超过5.0V)下稳定时,一方面是通过使得能够实现尽可能高的电压电池来增加能量密度,因此在这一方面高压阴极化合物是优选的。某些NCM或NMC材料可在高浓度的镍原子下提供这样高的电压。在一个方面,镍的原子百分比大于钴或锰的原子百分比的NCM如NCM523、NCM712、NCM721、NCM811、NCM532和NCM523可用于提供相对于阳极电化学活性材料而言更高的电压。
实施例
这里描述了电池制品和其部件,并且在下面的实施例中说明了制备和使用它们的方式。
实施例1
将PPS和氯醌粉末以4.2:1的摩尔比(基础聚合物单体与掺杂剂的比率大于1:1)混合。然后将混合物在氩气或空气中在最高350℃的温度下在大气压下加热约二十四(24)小时。观察到颜色变化,确认在聚合物-掺杂剂反应混合物中产生了电荷转移复合物。然后将反应混合物重新研磨至1-40微米的小的平均粒径。然后将LiTFSI粉末(总混合物的12wt.%)与反应混合物混合,以产生合成的固体离子传导性聚合物材料。在这一方面用作固体聚合物电解质的固体离子传导性聚合物材料在由此使用时被称为固体聚合物电解质。
固体聚合物电解质可用于电池中的多个位置,包括用于电极中,或者用作插置在电极之间的独立的电介质的非电化学活性电解质。当这样使用时,固体聚合物电解质可以是在所有电池应用中相同的材料,并且在锂电池的方面,如果要使锂的离子迁移率最大化,则所述固体聚合物电解质的这种性质和属性允许所述固体聚合物电解质能够在阳极、阴极中以及作为插置在阳极和阴极电极之间的独立电介质的非电化学活性电解质很好地起作用。然而,在一个方面,固体聚合物电解质可变化以适应在应用中可能期望的不同性质。在一个非限制性实例中,可将电子传导性材料添加至固体聚合物电解质中或者在其合成期间整合至固体聚合物电解质中,由此增加固体聚合物电解质的电导率,并使其适用于电极中,以及降低和或消除在这种电极中对于另外的导电添加剂的需要。如果这样使用,则这种配制物将不适合用作插置在阳极电极和阴极电极之间的独立电介质的非电化学活性电解质,因为它是导电的,并且将起到使电池短路的作用。
此外,在阳极、阴极中以及作为插置在阳极电极和阴极电极之间的独立电介质的非电化学活性电解质使用固体聚合物电解质使得电池设计者能够利用所述固体聚合物电解质的热塑性性质。独立电介质的非电化学活性电解质可通过被加热并固定至阳极或阴极上,如在层压过程中的,或通过共挤出并由此与电极成形在一起而热成形至所述阳极或阴极上。在一个方面,所有三个电池部件都包含固体聚合物电解质,并且一起热成形或共挤出以形成电池。
经合成的材料的电子电导率使用恒电势法在阻断电极之间测量,并且确定为6.5×10-9S/cm或小于1×10-8S/cm。
对经合成的材料进行扩散率测量。使用Varian-S Direct Drive 300(7.1T)光谱仪进行PGSE-NMR测量。使用魔角旋转技术使化学位移各向异性和偶极相互作用达到均衡。脉冲梯度自旋受激回波脉冲序列被用于自扩散(扩散率)的测量。分别使用1H核和7Li核来进行每种材料样品中的阳离子和阴离子的自扩散系数的测量。所述材料在室温下的阳离子扩散率D(7Li)为0.23×10-9m2/s,并且在室温下的阴离子扩散率D(1H)为0.45×10-9m2/s。
为了确定将会降低材料电导率的离子缔合度,使用测量的扩散测量值,通过能斯特-爱因斯坦方程计算材料的电导率,确定了相关的计算电导率远大于测量的电导率。差值平均至少为一个数量级(或10倍)。因此,相信可通过改善离子解离来改善电导率,并且可在电导率范围内考虑所计算的电导率。
可通过以下式(1)从扩散系数数据估计阳离子迁移数:
t+~D+/(D++D-)(1)
其中D+和D-分别指Li阳离子和TFSI阴离子的扩散系数。从以上数据获得固体离子传导性聚合物材料中约0.7的t+值。高的阳离子迁移数的这一性质对电池性能有重要意义。理想地,优选t+值为1.0,这意味着Li离子携带全部电流。阴离子迁移导致可限制电池性能的电极极化效应。经计算0.7的迁移数不被认为已在任何液体或PEO基电解质中观察到。尽管离子缔合可能影响计算,但电化学结果确认0.65至0.75的迁移数范围。
相信t+取决于阴离子扩散,因为锂阳离子的扩散高。当阳离子扩散大于相应的阴离子扩散时,阳离子迁移数始终高于0.5,当阴离子可移动时,阳离子迁移数也必须小于1.0。相信作为离子化合物的锂盐的调查将产生大于0.5且小于1.0的该范围的阳离子迁移数。作为比较实施例,已报道一些陶瓷具有高的扩散数,然而此类陶瓷仅传输单个离子,因此当D-为零时,阳离子迁移数降低至1.0。
实施例2
制备含有来自实施例1的合成材料的锂钴氧化物(LiCoO2)(“LCO”)阴极。阴极使用与固体离子传导性聚合物材料和导电碳混合的70%的LCO负载。使用锂金属阳极、多孔聚丙烯隔离物以及由LiPF6盐和基于碳酸盐的溶剂构成的标准Li离子液体电解质来制备单电池。在干燥的手套箱中组装单电池并进行循环测试。
用于这些单电池中的以LCO的克数表示的基于重量的容量示于图2中。可以看出,当充电至4.3V时,容量稳定,并且与在充电期间从阴极移除的0.5当量Li的目标一致。还使所述电池循环至4.5V的更高充电电压,其利用来自阴极的更高百分比的锂,并产生>140mAh/g的高容量。针对4.5V充电测试所观察到的容量随循环次数的轻微下降与在该更高电压下液体电解质的分解(即非稳定)一致。总之,含有本发明材料的LCO阴极的性能有利地与浆料涂覆的LCO阴极相当。
实施例3
表3中列出了另外的固体离子传导性聚合物材料,以及实施例1中合成和描述的材料(PPS-氯醌-LiTFSI)(使用实施例1的合成方法制备),以及它们的反应物和在室温下的相关的离子传导率(EIS方法)。
表3:
Figure GDA0002800534540001241
测量固体离子传导性聚合物材料的各种物理性质,并确定固体离子传导性聚合物材料:电子区域比电阻(electronic area specific resistance)大于1×105Ohm-cm2;可被成型至200微米直至20微米厚度;至非常低的温度例如-40℃下具有显著的离子迁移率,且在室温下具有大于1.0E-05S/cm、1.0E-04S/cm和1.0E-03S/cm的离子传导率,并且这些离子传导率包括以锂作为通过固体离子传导性聚合物材料传导的迁移离子之一。
实施例4
为了证实固体聚合物电解质与锂离子电化学活性材料组合的能力,利用诸如石墨(介碳微珠)、硅、锡和钛酸锂(Li4Ti5O12、LTO)的材料制备阳极。这些材料被选择用于评价,因为它们目前要么正在被用于市售的Li-离子单电池,或要么正在被积极地研究以应用于Li-离子阳极。在每种情况下,将固体聚合物电解质材料添加至活性阳极材料中并制备阳极。然后相对于具有聚丙烯隔离物和标准液体电解质的锂金属阳极,通过循环对这些阳极进行测试。该测试的结果呈现于图3和图4中。图3展示与固体聚合物电解质组合的锡阳极的循环测试。Li/Sn和固体聚合物电解质纽扣单电池以0.5mA的恒定电流放电,并以0.2mA的恒定电流充电。图4展示与固体聚合物电解质组合的石墨阳极的循环测试。Li/石墨和固体聚合物电解质纽扣单电池以0.5mA的恒定电流放电,并以0.2mA的恒定电流充电。
在每种情况下,发现固体聚合物电解质与阳极材料相容,并且证实了所述固体聚合物电解质在制备用于锂离子单电池的阴极和阳极两者中的实用性。此外,所述固体聚合物电解质已显示作为独立的离子传导性电解质和隔离物时稳定,或者与标准的Li-离子隔离物和液体电解质组合时稳定。单电池设计的这种灵活性为电池制造商提供了优点,其中电池化学、设计和整体单电池性能可被定制,以满足特定的装置要求。
实施例5
为了证实所述固体聚合物电解质稳定并且能够实现高压电池,使用锂金属阳极构造纽扣单电池。将固体聚合物电解质切成盘以完全覆盖锂金属盘,并且将钛金属盘用作阻断电极。在具有非常低的水含量的氩气填充的手套箱中制备这种Li/固体聚合物电解质(“SPE”)/Ti构造的纽扣单电池,以防止锂电极与水分的反应。
然后将Li/SPE/Ti纽扣单电池置于循环伏安法(CV)测试,其中所述单电池的电压在-0.5V和5.5V的设定电压极限之间以恒定的扫描速率(在这种情况下为2mV/sec)变化。测量该单电池的电流,并将其作为电压的函数绘制成图,如图5中所示,该图展示以2mV/sec的扫描速率时在-0.5V和5.5V的电压极限之间循环的Li/SPE/Ti单电池的循环伏安曲线。该测试可用于模拟SPE在高压单电池中的使用,其中充电的电池电压向上延伸至大于4.2V且最高达至少5.5V。
如在图5的循环伏安曲线中可见,有接近0V的强阳极波和阴极波,这归因于锂金属的镀覆和剥离(stripping)。低于0V时,负电流指示锂金属正被镀覆至不锈钢盘上。略高于0V时,正电流归因于锂金属从不锈钢盘剥离。这些波非常重要,因为它们证实固体聚合物电解质将锂离子转移通过电解质的能力,这对于任何锂阳极二次电池的操作是必需的。与Li镀覆波和剥离波一样重要的是所述CV曲线中不存在其它波。该测试证实,聚合物电解质在该电压窗口(最高达或超过5.5V)内是稳定的,并且在充电电压或操作电压延伸至5.5V或更高的电池中将会类似地稳定。
典型的锂离子(“Li-离子”)电池在电压范围上受限于用于这些系统中的液体电解质。通常含有基于碳酸酯的溶剂如碳酸亚丙酯、碳酸亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯等的Li-离子电解质会限制电池的正电压。通常,这种性质的电池只能被充电至4.3V,因为所述液体电解质在高于该电势下开始氧化和分解。在基于锂的电池中使用所述固体聚合物电解质使得能够充电至更高的电压,这进而将增加储存在电池中的能量的量,并导致更长的电池运行时间。充电至更高的电压还可使得能够使用更高电压的阴极,如磷酸锂钴、NCM和用于锂离子单电池的其它新型阴极材料,其相对于锂金属具有大于4.3V的电化学电势。对这些新型高压阴极的研究由于缺乏在大于4.3V的电压下稳定的电解质而受到阻碍。所述固体聚合物电解质通过提供在高压下稳定的锂离子传导性电解质而解决了该问题。
比较实施例6
作为与图5中所示的循环伏安法的比较,测量了含有液体电解质(具有LiPF6盐的EC-DMC-DEC和VC)和聚丙烯间隔物(来自Celgard)的Li/不锈钢单电池的电流-电压(“CV”)曲线。所述曲线展示于图6中。
如在液体电解质比较实施例的CV曲线中可见,阴极峰出现在正扫描(如箭头所示)上,这归因于液体电解质在高于4V的电压下的分解。该比较显示,在高电压下液体电解质易于分解,而聚合物电解质稳定且不分解,如实施例5中所示。
实施例7
参考图7,显示了固体聚合物电解质插置在两个锂金属条之间的测试电池。在惰性气氛中构造Li/固体聚合物电解质/Li单电池,并通过将恒定电流施加至单电池一段时间(在本实施例中,该段时间为1h)来转移锂。然后逆转电流,并在相反方向上转移锂。图8显示使用0.5mA/cm2的电流密度并且在室温下测试的具有>320次充电-放电循环的单电池的电压V相对于时间的图。在该实施例中,保持电流恒定并且测量电压,如在图8的y轴上可见。在恒定电流测试期间所述单电池所展示的电压依赖于电池的极化,其与电池的总电阻有关(即,电池的电阻越高,电压的变化越大,或极化越高)。单电池的总电阻归因于固体聚合物电解质的体积电阻加上与锂金属表面接触的聚合物电解质的界面电阻。图8的绘图显示单电池的极化对于整个测试相对恒定。该测试的结果进一步证实了聚合物电解质的稳定性,其中在整个测试中转移了1565微米的锂,锂金属电极的厚度开始仅为约85微米。这些结果证实所述固体聚合物电解质具有以高稳定性转移大量锂的能力。图8绘图的电压高于1.0V,因为所述单电池在测试期间与NiMH单电池串联放置。
实施例8
为了证实所述固体聚合物电解质在高压电池中的实用性,使用锂金属阳极(厚度为20微米或更小)、固体聚合物电解质和含有固体聚合物电解质的锂钴氧化物阴极构造单电池。使用锂钴氧化物LiCoO2(“LCO”)是因为这是具有超过4V的充电电压的高压阴极材料。锂金属阳极的使用增加了电池的能量密度,因为锂金属具有远高于通常用于Li-离子电池中的锂化石墨电极的容量。锂化石墨的理论容量为372mAh/g,而锂金属具有3860mAh/g的容量-超过石墨阳极容量的十倍。对Li/SPE/LCO配置的纽扣单电池进行循环测试,并证明有良好的性能,如图9中所示的,图9显示双极Li/SPE/Li电池的电化学阻抗谱(EIS)。图9显示了最初的EIS、储存1个月后的EIS、储存2个月后的EIS和储存3个月后的EIS。
用于这些单电池中的LiCoO2的容量为134mAh/g,其对应于在充电期间从阴极移除的目标0.5当量的Li。发现锂的循环效率超过99%,这匹配或超过了针对液体电解质体系所发现的循环效率。循环效率是通过在单次循环内对库仑计数并比较充电和放电循环以计算所述效率((离开电池的电荷/进入电池的电荷)×100)来计算的。总之,这些结果证实了固体聚合物电解质作为用于基于锂的高压电池系统的电解质的功能。
测量电池充电期间沉积在阳极集电器上的锂的密度,并确定其为大于0.4g/cc。
实施例9
在开路(open circuit)储存下测试Li/固体聚合物电解质/LCO单电池的稳定性。该测试利用如实施例8中所描述的完全充电的Li/SPE固体聚合物电解质LCO单电池,并将所述单电池在室温下储存两周。所述单电池展示出良好的电压稳定性,如图10中所示。在开路储存2周后,将单电池完全放电,并将放电容量与储存前的单电池性能进行比较。两种单电池均展示出84%-85%的储存前放电(大于80%),证实在两周储存期间的低的自放电,并进一步证实高压Li/SPE/LCO电池系统的稳定性。
实施例10
使用实施例3的固体聚合物电解质、具体是PPS/氯醌/LiTFSI-LiFSI-LiBOB来制备二次锂单电池。所述单电池包括锂金属阳极,固体聚合物电解质插置在阳极和浆料阴极之间。浆料阴极也包含所述固体聚合物电解质,并且所述阴极是使用逐步工艺制造的。所述工艺最初包括在溶剂如N-甲基-2-吡咯烷酮(NMP)或二甲基乙酰胺(DMA)中的聚偏二氟乙烯(PVDF)粘结剂。然后在第一混合步骤中添加导电的碳和石墨以及固体聚合物电解质,其中所述碳和固体聚合物电解质保持稳定且不溶于粘结剂溶剂中。然后在第二混合步骤中将该第一混合物与电化学活性阴极材料如锂钴氧化物(LiCoO2)(“LCO”)混合以产生浆料混合物,然后将所述浆料混合物涂覆至阴极集电器上。在将粘结剂溶剂从阴极中驱出的干燥步骤之后,将阴极压延以产生高密度阴极。
表4详述了包含在所描述的浆料阴极工艺中的每种阴极组分的组成范围。
表4
阴极组分 Wt.%
电化学活性材料 70-90
固体聚合物电解质 4-15
导电碳 1-5
导电石墨 1-5
粘结剂 3-5
高密度阴极的厚度为约15至115微米,并且具有在1.2至3.6g/cc范围内的阴极涂层密度。
然后将高密度阴极添加至所述二次锂单电池中并展示显著的性能。具体地,所述锂单电池展示出在高于5.0V到至少5.5V(大于4.1V和4.5V)下的电压稳定性;锂金属可在室温下以大于0.5mA/cm2、1.0mA/cm2和到至少1.5mA/cm2的速率循环通过固体聚合物电解质,同时还能够使锂以超过3.0mAh/cm2的面积容量循环大于10次,且大于18.0mAh/cm2;以1.0mA/cm2和0.25mAh/cm2循环大于150次;具有锂阳极的大于80%的深度放电(即,循环的存在的锂金属的分数),以及以0.5mA/cm2和3mAh/cm2持续至少10次的超过70%的深度放电;并且产生在阳极集电器上大于0.45g/cc(大于0.4g/cc)的镀覆锂,由此维持几乎没有至没有膨胀的电池体积。
尽管根据本发明的某些方面已经在本文中详细描述了本发明,但本领域技术人员可在不脱离本发明的精神的情况下对其进行多种的修改和变化。因此,我们的意图是仅受所附权利要求书的范围的限制,而不受描述本文所示的实施方案的细节和手段的限制。
应当理解,可在不脱离本发明的构思的情况下对前述结构做出变化和修改,并且进一步应当理解,除非这些权利要求通过它们的语言另外明确说明,否则这些构思意在被以下的权利要求所覆盖。
Figure GDA0002800534540001301
Figure GDA0002800534540001311
Figure GDA0002800534540001321
Figure GDA0002800534540001331
Figure GDA0002800534540001341
Figure GDA0002800534540001351
Figure GDA0002800534540001361
Figure GDA0002800534540001371
Figure GDA0002800534540001381
Figure GDA0002800534540001391
Figure GDA0002800534540001401
Figure GDA0002800534540001411
Figure GDA0002800534540001421
Figure GDA0002800534540001431
Figure GDA0002800534540001441
Figure GDA0002800534540001451
Figure GDA0002800534540001461
Figure GDA0002800534540001471
Figure GDA0002800534540001481
Figure GDA0002800534540001491
Figure GDA0002800534540001501
Figure GDA0002800534540001511

Claims (17)

1.一种可用于电化学电池中的电极,其包含:
电化学活性材料;
导电材料;
固体离子传导聚合物电解质;以及
粘结剂;
其中,所述粘结剂分散在水溶液中。
2.根据权利要求1所述的电极,其中所述粘结剂可溶于水溶液中。
3.根据权利要求1所述的电极,其中所述粘结剂可部分溶于水溶液中。
4.根据权利要求1所述的电极,其还包含锂。
5.根据权利要求1所述的电极,其中所述电化学活性材料包含石墨。
6.根据权利要求1所述的电极,其中所述电化学活性材料的量为所述电极的70-90重量%。
7.根据权利要求1所述的电极,其还包含导电集流体,所述导电集流体与所述导电材料电连通。
8.根据权利要求1所述的电极,其还包含第二粘结剂,所述第二粘结剂可溶于水溶液中。
9.根据权利要求1所述的电极,其中所述固体离子传导聚合物电解质的量为所述电极的52-15重量%。
10.根据权利要求1所述的电极,其中所述固体离子传导聚合物电解质的离子传导率为至少1×10-4S/cm。
11.根据权利要求1所述的电极,其中所述固体离子传导聚合物电解质的结晶度为至少30%。
12.根据权利要求1所述的电极,其中所述固体离子传导聚合物电解质的阴极迁移数大于0.4且小于1.0。
13.根据权利要求1所述的电极,其中所述固体离子传导聚合物电解质为处于玻璃态。
14.根据权利要求1所述的电极,其中所述电化学活性材料、所述导电材料、所述固体离子传导聚合物电解质和所述粘结剂包含多个分散的互混的颗粒。
15.根据权利要求1所述的电极,
其中所述电极还包含导电集流体;并且
其中,所述电极粘附至所述导电集流体。
16.根据权利要求15所述的电极,
其中所述电化学活性材料、所述导电材料、所述固体离子传导聚合物电解质和所述粘结剂包含多个分散的互混的颗粒,以形成混合物;并且
其中所述混合物通过水性浆料粘附至所述导电集流体。
17.一种制造电池结构的方法,其包括以下步骤:
选择导电集流体和电极;
其中所述电极包含电化学活性材料、导电材料、固体离子传导聚合物电解质和粘结剂;
将所述电化学活性材料、所述导电材料、所述固体离子传导聚合物电解质以及所述粘结剂在水溶液中混合,以生成浆料;
将所述浆料与所述导电集流体相邻而置;以及
干燥所述浆料;
其中,所述电极粘附至所述导电集流体。
CN201880089863.7A 2017-12-21 2018-12-20 具有固体聚合物电解质和水溶性粘结剂的电池电极 Pending CN112154564A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762608853P 2017-12-21 2017-12-21
US62/608,853 2017-12-21
PCT/US2018/066849 WO2019126532A1 (en) 2017-12-21 2018-12-20 Battery electrode with solid polymer electrolyte and aqueous soluble binder

Publications (1)

Publication Number Publication Date
CN112154564A true CN112154564A (zh) 2020-12-29

Family

ID=66995078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880089863.7A Pending CN112154564A (zh) 2017-12-21 2018-12-20 具有固体聚合物电解质和水溶性粘结剂的电池电极

Country Status (7)

Country Link
US (1) US20210119213A1 (zh)
EP (1) EP3729551A4 (zh)
JP (1) JP2021507471A (zh)
KR (1) KR20200118800A (zh)
CN (1) CN112154564A (zh)
SG (1) SG11202005853SA (zh)
WO (1) WO2019126532A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265538A (zh) * 2021-05-21 2021-08-17 中南大学 一种盐湖提锂用高导电性多孔电极的制备方法
US11715863B2 (en) 2018-08-08 2023-08-01 Brightvolt, Inc. Solid polymer matrix electrolytes (PME) and methods and uses thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US9819053B1 (en) 2012-04-11 2017-11-14 Ionic Materials, Inc. Solid electrolyte high energy battery
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
KR102640010B1 (ko) 2015-06-04 2024-02-22 아이오닉 머터리얼스, 인코퍼레이션 고체 중합체 전해질을 갖는 리튬 금속 배터리
CN111525164B (zh) * 2020-04-30 2021-03-12 郑州帅先新能源科技有限公司 燃料电池再生控制方法及燃料电池系统
CN113808780B (zh) * 2021-08-06 2022-11-11 东华大学 一种具有褶皱结构的可拉伸导电弹性体及其制备和应用
KR20230091517A (ko) 2021-12-16 2023-06-23 주식회사 엘지에너지솔루션 고체 전해질 및 이를 포함하는 전고체 전지
WO2023122203A1 (en) * 2021-12-21 2023-06-29 Hyzon Motors Inc. Method of making and processing catholyte and anolyte for solid state batteries
WO2023158843A1 (en) * 2022-02-20 2023-08-24 2D Polymer Batteries, Llc Polyaniline-based battery with lean electrolyte
WO2023203555A2 (en) 2022-04-22 2023-10-26 Universidade De Coimbra A composite electrode, a stretchable battery and method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106540A (ja) * 1996-10-01 1998-04-24 Hitachi Maxell Ltd リチウム二次電池
US6455202B1 (en) * 1999-02-25 2002-09-24 Alcatel Positive electrode for a lithium rechargeable electro-chemical cell having an aluminum current collector
CN1434525A (zh) * 2002-01-22 2003-08-06 三星Sdi株式会社 锂硫电池的正极
US20090197183A1 (en) * 2008-01-31 2009-08-06 Ohara Inc. Solid battery and a method for manufacturing an electrode thereof
US20150280218A1 (en) * 2012-04-11 2015-10-01 Ionic Materials, Inc. High capactity polymer cathode and high energy dmensity rechargeable cell comprising the cathode
US20150349345A1 (en) * 2014-05-29 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for forming electrode, electrode, storage battery, and electric device
US20160181669A1 (en) * 2014-12-22 2016-06-23 Samsung Sdi Co., Ltd. Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same
CN106058165A (zh) * 2015-04-02 2016-10-26 松下知识产权经营株式会社 电池和电池用电极材料
WO2016197098A1 (en) * 2015-06-04 2016-12-08 Ionic Materials, Inc. Solid state bipolar battery
WO2016196873A1 (en) * 2015-06-04 2016-12-08 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
CN107346819A (zh) * 2016-05-04 2017-11-14 现代自动车株式会社 全固态电池及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378560A (en) * 1993-01-21 1995-01-03 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
KR101753197B1 (ko) * 2011-05-31 2017-07-03 제온 코포레이션 리튬 2 차 전지 정극용 복합 입자, 리튬 2 차 전지 정극용 복합 입자의 제조 방법, 리튬 2 차 전지용 정극의 제조 방법, 리튬 2 차 전지용 정극, 및 리튬 2 차 전지
JP2016507142A (ja) * 2013-02-05 2016-03-07 エー123 システムズ, インコーポレイテッド 合成固体電解質界面の電極材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106540A (ja) * 1996-10-01 1998-04-24 Hitachi Maxell Ltd リチウム二次電池
US6455202B1 (en) * 1999-02-25 2002-09-24 Alcatel Positive electrode for a lithium rechargeable electro-chemical cell having an aluminum current collector
CN1434525A (zh) * 2002-01-22 2003-08-06 三星Sdi株式会社 锂硫电池的正极
US20090197183A1 (en) * 2008-01-31 2009-08-06 Ohara Inc. Solid battery and a method for manufacturing an electrode thereof
US20150280218A1 (en) * 2012-04-11 2015-10-01 Ionic Materials, Inc. High capactity polymer cathode and high energy dmensity rechargeable cell comprising the cathode
US20150349345A1 (en) * 2014-05-29 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for forming electrode, electrode, storage battery, and electric device
US20160181669A1 (en) * 2014-12-22 2016-06-23 Samsung Sdi Co., Ltd. Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same
CN106058165A (zh) * 2015-04-02 2016-10-26 松下知识产权经营株式会社 电池和电池用电极材料
WO2016197098A1 (en) * 2015-06-04 2016-12-08 Ionic Materials, Inc. Solid state bipolar battery
WO2016196873A1 (en) * 2015-06-04 2016-12-08 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
CN107346819A (zh) * 2016-05-04 2017-11-14 现代自动车株式会社 全固态电池及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11715863B2 (en) 2018-08-08 2023-08-01 Brightvolt, Inc. Solid polymer matrix electrolytes (PME) and methods and uses thereof
CN113265538A (zh) * 2021-05-21 2021-08-17 中南大学 一种盐湖提锂用高导电性多孔电极的制备方法

Also Published As

Publication number Publication date
WO2019126532A1 (en) 2019-06-27
EP3729551A4 (en) 2021-12-01
KR20200118800A (ko) 2020-10-16
SG11202005853SA (en) 2020-07-29
US20210119213A1 (en) 2021-04-22
JP2021507471A (ja) 2021-02-22
EP3729551A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US20210288313A1 (en) High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
CN112154564A (zh) 具有固体聚合物电解质和水溶性粘结剂的电池电极
JP6944380B2 (ja) 固体ポリマー電解質を含むリチウム金属バッテリー
KR102470117B1 (ko) 충전식 배터리 셀
US10811688B2 (en) Solid, ionically conducting polymer material, and methods and applications for same
KR102594870B1 (ko) 고체 이온 전도성 폴리머 재료
CN108140805B (zh) 固态双极性电池
CN101510605B (zh) 正极活性物质、具有其的正极以及非水电解质二次电池
CN117441246A (zh) 具有固体离子导电聚合物材料的电化学电池
JP2022037050A (ja) 固体イオン伝導性ポリマー材料
EP3465804A1 (en) ELECTROCHEMICAL CELL HAVING SOLID lONICALLY CONDUCTING POLYMER MATERIAL
CA3173433A1 (en) New lithium rare-earth halides
CN116802853A (zh) 可再充电电池电芯
Mahootcheian Asl Design of multilayer electrolyte for next generation lithium batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination