CN112143744A - OsPLDδ3基因在控制水稻抗旱性中的应用 - Google Patents

OsPLDδ3基因在控制水稻抗旱性中的应用 Download PDF

Info

Publication number
CN112143744A
CN112143744A CN202011128187.5A CN202011128187A CN112143744A CN 112143744 A CN112143744 A CN 112143744A CN 202011128187 A CN202011128187 A CN 202011128187A CN 112143744 A CN112143744 A CN 112143744A
Authority
CN
China
Prior art keywords
rice
gene
ospld3
drought
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011128187.5A
Other languages
English (en)
Other versions
CN112143744B (zh
Inventor
熊立仲
向登豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202011128187.5A priority Critical patent/CN112143744B/zh
Publication of CN112143744A publication Critical patent/CN112143744A/zh
Application granted granted Critical
Publication of CN112143744B publication Critical patent/CN112143744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/04Phosphoric diester hydrolases (3.1.4)
    • C12Y301/04004Phospholipase D (3.1.4.4)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于水稻基因工程领域,公开了OsPLDδ3基因在控制水稻抗旱性中的应用,所述的OsPLDδ3基因的CDS序列为SEQ ID NO.1所示。申请人通过全基因组关联分析定位到候选基因,是否能提高水稻的抗逆性目前尚无相关报道。因此,从水稻中分离出OsPLDδ3基因,并鉴定它在提高水稻抗逆性方面所发挥的功能,对于培育抗逆水稻新品种将具有非常重要的意义。本发明首次提出编码SEQ ID NO.2所示蛋白的基因可控制水稻的抗旱性,通过苗期及成株期干旱胁迫表型鉴定表明,缺失该基因片段时,水稻耐干旱胁迫能力降低,证实了该基因的功能及应用途径。

Description

OsPLDδ3基因在控制水稻抗旱性中的应用
技术领域
本发明涉及水稻基因工程领域,具体OsPLDδ3基因在控制水稻抗旱性中的应用,所述的OsPLDδ3基因的CDS序列为SEQ ID NO.1所示。
背景技术
植物在生长的过程中会受到诸多环境因素的影响,干旱、冷害和高温会导致农作物的大规模减产,在许多地区是农业发展的瓶颈。培育耐逆性的作物品种一直是农业科学技术研究的主要目标之一。为了抵抗或适应这些不利的因素,植物体感受细胞外环境条件的变化并通过多种途径将其传递到细胞内,会诱导表达一些应答基因,产生一些使细胞免受干旱、高盐、低温等胁迫伤害的功能蛋白、渗透调节物质以及传递信号和调控基因表达的转录因子,从而对外界的变化做出相应的反应(Xiong等,Cell signaling during cold,drought and salt stress.Plant Cell.14(suppl),S165–S183,2002)。而那些功能基因对环境做出反应的过程中能否正确表达,是受到了调控因子的精细调节。转录因子作为一种调控基因,当生物体感受逆境胁迫时,能调控一系列下游基因的表达,从而增强植物体对逆境的耐受能力,达到抵抗不良环境条件胁迫的效果。大多数类型的转录因子都参与了植物的非生物逆境应答反应,包括AP2/EREBP,bZip、HD-ZIP、MYB、MYC、NAC和Zinc finger类转录因子(Yamaguchi-Shinozaki K,Shinozaki K.Transcriptional regulatory networks incellular responses and tolerance to dehydration and cold stresses.Annu RevPlant Biol,2006,57:781-803)。通过基因工程,部分逆境应答转录因子已经成功应用于水稻抗逆遗传育种。利用SNAC1培育的转基因水稻植株在大田干旱环境下能提高结实率30%左右,而在正常条件下产量不受影响且没有其他表型变化。转基因植株在营养生长期对干旱和高盐的抗性也显著提高(Hu等.Overexpressing a NAM,ATAF,and CUC(NAC)transcription factor enhances drought resistance and salt tolerance inrice.Proc Natl Acad Sci U S A,2006,103:12987-12992)。这些抗逆转录因子是通过调控大量下游基因的表达来体现其功能。这些下游基因中往往含有参与信号转导和基因表达的调控蛋白,它们又进一步形成次级的调控网络。这些下游基因同样可以用于作物抗逆境的遗传改良。拟南芥中抗高温转录因子DREB2A的下游基因HsfA3同样可以提高转基因过量表达植株对高温的抗性(Yoshida等.Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream ofthe DREB2A stress-regulatory system.Biochem Biophys Res Commun,2008,368:515-21)。
磷脂酶D(PLD)通过水解磷脂而产生信号分子磷脂酸(PA),且导致生物膜组分的重组。拟南芥的研究表明磷脂酶D参与植物多种逆境条件下的脂质代谢和信号转导过程,具有显著的生物学效应。水稻含有17个PLD基因,其生物学功能有待探索。PLD在植物脱落酸(ABA)信号转导、缺氧和热胁迫中起重要作用。在拟南芥中,α1通过与gα的相互作用调节ABA信号。水稻是重要的粮食作物和模式植物,在极端气候条件频发的今天,培育抗逆性增强的水稻具有重要的意义。
本发明提供的OsPLDδ3基因是通过全基因组关联分析定位到的候选基因,是否能提高水稻的抗逆性目前尚无相关报道。因此,从水稻中分离出OsPLDδ3基因,并鉴定它在提高水稻抗逆性方面所发挥的功能,对于培育抗逆水稻新品种将具有非常重要的意义。
发明内容
本发明的目的在于提供了OsPLDδ3基因在控制水稻抗旱性中的应用;所述的OsPLDδ3基因的CDS序列为SEQ NO:1所示,其编码的蛋白的氨基酸的序列为SEQ ID NO:2所示。
为了达到上述目标,本发明采取以下技术措施:
OsPLDδ3基因在控制水稻抗旱性中的应用,所述的应用过程包括利用本发明的常规方案,将OsPLDδ3基因进行过表达或CRISPR敲除,以控制水稻的抗旱性;所述的OsPLDδ3基因的CDS编码的蛋白的氨基酸的序列为SEQ ID NO:2所示。
以上所述的应用中,优选的,是通过CRISPR/Cas9的方法,将该基因敲除,获得的水稻突变体为干旱敏感型水稻;
以上所述的应用中,优选地,将该基因在水稻中过表达,可获得抗旱型水稻;
以上所述的应用中,优选的,所述的干旱敏感型水稻包含基因序列为SEQ ID NO.3或SEQ ID NO.4所示。
与现有技术相比,本发明具有以下优点:
本发明首次提出编码SEQ ID NO.2所示蛋白的基因可控制水稻的抗旱性,通过苗期及成株期干旱胁迫表型鉴定表明,缺失该基因片段时,水稻耐干旱胁迫能力降低,证实了该基因的功能及应用途径。
附图说明
图1为水稻ospldδ3 CRISPR突变体苗期干旱胁迫实验示意图;
左边为对照野生型(WT)中花11(ZH11),右边为CRISPR突变体。
图2为水稻OsPLDδ3过量表达材料苗期干旱胁迫实验;
左边为对照野生型(WT)中花11(ZH11),右边为过量表达材料。
图3为水稻ospldδ3 CRISPR突变体成株期大田干旱胁迫实验;
左边为对照野生型(WT)中花11(ZH11),右边为CRISPR突变体。
具体实施方式
以下实施例定义了本发明,并描述了本发明在构建了OsPLDδ3的CRISPR突变体材料,鉴定了其基因型得到纯合突变体,并对其进行了苗期及成熟期的干旱表型鉴定。根据以下描述的全部或部分实施步骤,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用不同的用途和条件。
本发明所述技术方案,如未特别说明,均为本领域的常规方案;所述试剂或材料,如未特别说明,均来源于商业渠道。
实施例1:
OsPLDδ3基因CRISPR及过量表达载体的构建和遗传转化
为了能更好的分析OsPLDδ3基因的功能,申请人利用CRISPR/Cas9的方法将其在水稻中敲除以及利用过量表达的方法将该基因在水稻中过表达,从转基因植株的表型研究该基因的功能。
CRISPR载体构建参考文献(Kabin Xie等.Boosting CRISPR/Cas9 multiplexediting cap ability with the endogenous tRNA processing system.PNAS.2015 112(11)3570-3575)。
设计了两个靶位点,序列为PS-1:GGGAAACACTCAGCTGAATC和PS-2:TCAACAAAACCTGTGCCCAA。
根据靶位点设计引物:
OsPLDδ3–gR1-F:TAGGTCTCCCTCAGCTGAATCGTTTTAGAGCTAGAA;
OsPLDδ3–tR1-R:CGGGTCTCATGAGTGTTTCCCTGCACCAGCCGGG;
OsPLDδ3–gR2-F:TAGGTCTCCACCTGTGCCCAAGTTTTAGAGCTAGAA,
OsPLDδ3–tR2-R:CGGGTCTCAAGGTTTTGTTGATGCACCAGCCGGG。
利用上述文章已经设计好的引物配对为L5AD5-F+OsPLDδ3–tR1-R;OsPLDδ3–gR1-F+OsPLDδ3–tR2-R;OsPLDδ3–gR2-F+L3AD5-R共三对PCR反应,从质粒PGTR上分别扩增出三个片段,将三个片段进行GG反应,再用S5AD5-F和S3AD5-R去扩增得到第一片段。将目的片段用FokⅠ酶切,将目的载体PRGEB32用BsaⅠ酶切。将目的片段和目的载体用T4 DNA连接酶连接.其后转化大肠杆菌DH10β(该大肠杆菌DH10β菌株购自Invitrogen公司)。通过PCR筛选阳性克隆,测序确定序列正确性。获得的重组质粒载体被命名为OsPLDδ3-PRGEB32,载体上的目的序列为:
GATCCGTGGCAACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGGGTTCGATTCCCGGCTGGTGCAGGGAAACACTCAGCTGAATCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCAACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGGGTTCGATTCCCGGCTGGTGCATCAACAAAACCTGTGCCCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTT。
过量表达载体用的是pCAMBIA1301U载体(Yong Xiang等.Characterization ofOs bZIP23 as a Key Player of the Basic Leucine Zipper Transcription FactorFamily for Conferring Abscisic Acid Sensitivity and Salinity and DroughtTolerance in Rice.Pl ant Physiology.2008,Vol.148,pp.1938–1952),用引物OsPLDδ3-OE-F:TTACGAACGATAGCCGGATCCATGGGGAAACACTCAGCTGAAT和OsPLDδ3-OE-R:TCTAGAGGATCCCCGGGATCCAGTTGTCAATGCATTTGGAAGA从水稻日本晴cDNA进行PCR扩增,得到OsPLDδ3的全长CDS,进行纯化回收,再将pCAMBIA1301U载体用内切酶BamHⅠ和KpnⅠ进行双酶切,再用已经得到的OsPLDδ3的全长CDS的PCR产物与载体进行一步法连接,其后转化大肠杆菌DH10β。通过抽提质粒进行酶切检测筛选阳性克隆,测序确定序列正确性,获得的重组质粒载体被命名为OsPLDδ3-pCAMBIA1301U。
通过农杆菌介导的水稻遗传转化方法(其具体步骤如下所述)将上述CRISPR载体OsPLDδ3-PRGEB32和过量表达载体OsPLDδ3-pCAMBIA1301U分别转入到水稻品种“中花11”(中国水稻研究所提供的一个公开使用的水稻品种)中,经过预培养、侵染、共培养、筛选具有潮霉素抗性的愈伤、分化、生根、练苗、移栽,得到转基因植株。上述农杆菌介导的水稻(中花11)遗传转化方法(体系)在Hiei等人报道的方法(Hiei等,Efficient transformationof rice,Oryza sativa L.,mediated by Agrobacterium and sequence analysis ofthe boundaries of the T-DNA,Plant J,6:271-282,1994)基础上改良进行。
本实施例的具体遗传转化步骤如下:
(1)电转化:将最终CRISPR目标载体OsPLDδ3-PRGEB32和过量表达载体OsPLDδ3-pCAMBIA1301U,用1800v电压,分别电转化入农杆菌EHA105菌株,涂到带有对应抗性选择的LA培养基上,筛选出阳性克隆,用于下述转化愈伤。
(2)愈伤组织诱导:将成熟的水稻种子中花11去壳,然后依次用70%的乙醇处理1分钟,0.15%氯化汞(HgCl2)种子表面消毒15分钟;用灭菌水洗种子4-5次;将该消过毒的种子放在诱导培养基上;将接种后的愈伤组织诱导培养基置于黑暗处培养4周,温度25±1℃。
(3)愈伤继代:挑选亮黄色、紧实且相对干燥的胚性愈伤,放于继代培养基上黑暗下培养2周,温度25±1℃。
(4)预培养:挑选紧实且相对干燥的胚性愈伤,放于预培养基上黑暗下培养2周,温度25±1℃。
(5)农杆菌培养:在带有对应抗性选择的LA培养基上预培养农杆菌EHA105(来源于CAMBIA,商用菌株,携带有本发明的CRISPR载体OsPLDδ3-PRGEB32,或过量表达载体OsPLDδ3-pCAMBIA1301U)两天,培养温度28℃;将所述的农杆菌转移至悬浮培养基里,28℃摇床上培养2-3小时。
(6)农杆菌侵染:将预培养的愈伤转移至灭菌好的瓶子内;调节农杆菌的悬浮液至OD600 0.8-1.0;将愈伤在农杆菌悬浮液中浸泡30分钟;转移愈伤至灭菌好的滤纸上吸干;然后放置在共培养基上培养3天,培养温度19-20℃。
(7)愈伤洗涤和选择培养:灭菌水洗涤愈伤至看不见农杆菌;浸泡在含400ppm羧苄青霉素(CN)的灭菌水中30分钟;转移愈伤至灭菌好的滤纸上吸干;转移愈伤至选择培养基上选择2-3次,每次2周(第一次筛选羧苄青霉素浓度为400ppm,第二次以后为250ppm,潮霉素浓度250ppm)。
(8)分化:将抗性愈伤转移至预分化培养基上黑暗处培养5-7周;转移预分化培养的愈伤至分化培养基上,光照下培养,温度26℃。
(9)生根:剪掉分化时产生的根;然后将其转移至生根培养基中光照下培养2-3周,温度26℃。
(10)移栽:洗掉根上的残留培养基,将具有良好根系的幼苗转入温室,同时在最初的几天保持水分湿润。
实施例2:OsPLDδ3的CRISPR突变体基因型检测
将构建好的OsPLDδ3-PRGEB32载体转化出苗后,对出苗的转基因材料进行检测,用PCR的方法检测。引物为F:ACCCTACATTGTGATTTGCCTG;R:GCAGCCTACCGTTTTCAAGAG。将出苗的转基因材料抽提DNA小样,随后用以上引物进行PCR,95℃5min预变性,95℃30S变性,57℃30退火,72℃1min延伸,此扩增过程进行33个循环,最后72℃延伸5min,25℃保温。将PCR产物进行琼脂糖凝胶电泳,扩增出来的片段送测序公司测序,测序结果再和参考序列比对确定基因型。
实施例3:OsPLDδ3的过量表达材料的拷贝数和表达量检测
将构建好的OsPLDδ3-pCAMBIA1301U载体转化出苗后,对出苗的转基因材料进行检测。拷贝数检测用的是荧光定量PCR的方法,所用的检测引物为Hpt-qHGF:GATGCAATAGGTCAGGCTCTCG和Hpt-qHGR:GATGTAGGAGGGCGTGGATATG;内参基因引物为SPS-qHGF:CCTCTTCTAGCATCGAGGTCAC和SPS-qHGR:CTCCCCGACGATCAGATACATG。表达量检测用的是RT-qPCR的方法,所用的检测引物为OsPLDδ3-qF:GTCGCAGAAGCACTACAGAA和OsPLDδ3-qR:CACGCTTACCAAGACAGTAGAA。内参基因的引物为Ubq-qF:AACCAGCTGAGGCCCAAGA和Ubq-qR:ACGATTGATTTAACCAGTCCATGA。保留表达量高且拷贝数为1的T0单株进行加代繁种,在T1代保留拷贝数为2且表达量超过野生型对照的15倍以上的单株繁种以用作后续表型检测。
实施例4:鉴定CRISPR突变体和过量表达材料苗期干旱胁迫表型
将已鉴定好基因型的纯合CRISPR突变体(本发明的干旱敏感性突变型筛选出两株,含有SEQ ID NO.3或SEQ ID NO.4的基因序列)或过量表达材料和野生型家系的水稻种子催芽后直播到小圆桶中。试验用的土壤为中国南方水稻土与粗沙按体积比为2:3混合而成,每圆桶等量均匀沙土加等体积水,水自行渗漏确保土壤的紧实度一致。对健康生长的四叶期的植株进行断水干旱胁迫6-10天(具体根据天气情况而定),然后复水恢复5-7天,拍照。与野生型对照相比,CRISPR纯合植株表现为干旱敏感表型(图1),过量表达OsPLDδ3的植株表现为抗旱表型(图2)
实施例5:鉴定CRISPR突变体成株期干旱胁迫表型
为了鉴定CRISPR突变体成株期的表型将突变体及其对照种植于上面有可移动遮雨棚的沙土大田中南方水稻土与粗沙按体积比为1:2混合而成,每行5株每家系种植4行,试验设3次生物学重复做严重干旱胁迫实验。干旱胁迫是对健康生长的成株期植株进行断水15-20天(具体根据天气情况而定,雨天有可移动遮雨棚覆盖)。再复水生长。与对照相比,纯合CRISPR突变体植株卷叶更快表现为干旱敏感表型,复水后绿叶面积CRISPR突变体显著少于对照(图3)。
序列表
<110> 华中农业大学
<120> OsPLDδ3基因在控制水稻抗旱性中的应用
<160> 23
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2517
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atggggaaac actcagctga atcaggtact agtatgctct tgcatggaga tttggacata 60
cagatagtgg aagcaaaatg tcttcccaat atggatctta tgactgaaag gatgcgaaaa 120
tgcttcactg gctacggcgc ttgtagtact gagtgtggga agtctgatcc acatacagac 180
gtgaggaaga tcattactag tgatccatat gtttcggttt gcctctcagg agcaacagtg 240
gcacaaactc gagtcattgc aaactcagag aatcctaaat gggatgaaca tttttatgtt 300
caggttgccc attctgttag cagagttgag tttcacgtaa aagacaatga tgtttttgga 360
gcagaactta taggcgtggc ttcagtacca gttgaaaaca tcacaccagg tgataccgtc 420
agtggttggt ttccaatatc tggtcagtat agtaatccta tgaaggcatc tcctgaactt 480
catttgtcta tccagtacaa gccaattgag cagaatccat tgtacaaaga tggagttggt 540
tctgacggtt gtcagagtat tggtgtgcca aatgcttatt ttcctcttcg aaagggtggt 600
atggtcactc tatatcaaga tgcccatatt cctgatgact tttgtcctaa aattgaaatt 660
gatggtggaa gagtatacga acaaaataaa tgttgggaag acatttgcca tgcaattgct 720
gaggctcatc accttattta tataattggt tggtcgttgt atcaccctgt caagctggta 780
agggaatcaa caaaacctgt gcccaatgga agcccaccaa cccttggggg gcttttgaaa 840
accaaggttc aggagggggt ccgtgttatt gtgttacttt gggatgacaa aacatcacat 900
gacaaatttc tcttgaaaac ggatggactc atgcatacac atgacgagga agctcggaag 960
tttttcaggc attctggtgt ccattgtgtg ttggctcctc gctacgctag caacaaactt 1020
agcattttta agcaacaggt tgtaggaact ttgtttacgc accatcagaa atgtgtcatt 1080
gttgacaccc aagtcatagg gaacaataga aaaataactg cttttattgg tggcctagac 1140
ttatgtgatg gcagatatga tacacctgaa cacaggctct tcaaggatct tgacaccgtc 1200
ttcaaggatg atttccataa tcccacattc caagttaata agtctgggcc tagacaacca 1260
tggcatgatt tacattgcaa gattgagggt ccagctgcct atgatatact tacaaacttt 1320
gaacagagat ggagaaaatc tgcaaaatgg aaagtcagcg ttagaagagc tgtaagttgg 1380
caccatgata ccttggtaaa aataaaccgg atgtcgtgga ttgtctcccc ctctgcagat 1440
gagttaaatg cacgtgtttg tgaacaagat gatccagaaa actggcatgt acagatattc 1500
cggtccattg attcaggatc agtaaaaggg ttccctaaac ttgttcagga ggctgagtca 1560
cagaatcttg tctgcgcgaa aaatctgcag atagacaaga gcatacataa tgcatatgtg 1620
aaagctatca gatctgcaca acactatatc tacattgaaa atcaatattt tattggatct 1680
tcatactact ggtcttcaaa tagaagtgca ggtgcagaga atttgatacc gatcgaattg 1740
gccataaaga ttgcaagaaa gattaaagct agggaaagat ttgcagctta cattgttata 1800
ccaatgtggc ccgagggtaa tccaacaact gctgctatgc aggagatcct cttttggcag 1860
ggacaaacaa tgtccatgat gtacaagatt gtcgcagaag cactacagaa ggaggggtta 1920
gatgatacgc atccacagga ttaccttaac ttctactgtc ttggtaagcg tgaagtctca 1980
aatgacgtat ctacaacaag ccaatccaat gagaattccc cacagcgcct ggtccaaaag 2040
ttcaagcgat tcatgatcta cgtgcactcc aaggggatga ttgtcgatga tgagtatgtg 2100
ctcataggat cagccaacat aaatcagagg tccatggatg gctcaaggga caccgagatc 2160
gctatgggcg cctaccagcc tcactacagc tgggcaggac gcaagaaagc tccacgagga 2220
caggtgtacg ggtacaggat gtcgctgtgg gcggagcacc tgggtacagt ggaggagtgc 2280
ttccgttggc ctcattccgt ggagtgcgtc cggcaggtga atgaaatggc agaagagaac 2340
tgggcgcgct acgtatcacc ggagatggtg aacatgcggg ggcacctcat gaggtacccc 2400
atcaatgttg aacgggatgg tagggttggt ccggtgcatg ggtacgagtg cttcccggat 2460
gtcggtggca aggtgctcgg cacacactct tctcttccaa atgcattgac aacttga 2517
<210> 2
<211> 630
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Gly Lys His Ser Ala Ser Gly Thr Ser Met His Gly Asp Asp Ile
1 5 10 15
Ile Val Ala Lys Cys Asn Met Asp Met Thr Arg Met Arg Lys Cys Thr
20 25 30
Gly Tyr Gly Ala Cys Ser Thr Cys Gly Lys Ser Asp His Thr Asp Val
35 40 45
Arg Lys Ile Ile Thr Ser Asp Tyr Val Ser Val Cys Ser Gly Ala Thr
50 55 60
Val Ala Thr Arg Val Ile Ala Asn Ser Asn Lys Trp Asp His Tyr Val
65 70 75 80
Val Ala His Ser Val Ser Arg Val His Val Lys Asp Asn Asp Val Gly
85 90 95
Ala Ile Gly Val Ala Ser Val Val Asn Ile Thr Gly Asp Thr Val Ser
100 105 110
Gly Trp Ile Ser Gly Tyr Ser Asn Met Lys Ala Ser His Ser Ile Tyr
115 120 125
Lys Ile Asn Tyr Lys Asp Gly Val Gly Ser Asp Gly Cys Ser Ile Gly
130 135 140
Val Asn Ala Tyr Arg Lys Gly Gly Met Val Thr Tyr Asp Ala His Ile
145 150 155 160
Asp Asp Cys Lys Ile Ile Asp Gly Gly Arg Val Tyr Asn Lys Cys Trp
165 170 175
Asp Ile Cys His Ala Ile Ala Ala His His Ile Tyr Ile Ile Gly Trp
180 185 190
Ser Tyr His Val Lys Val Arg Ser Thr Lys Val Asn Gly Ser Thr Gly
195 200 205
Gly Lys Thr Lys Val Gly Val Arg Val Ile Val Trp Asp Asp Lys Thr
210 215 220
Ser His Asp Lys Lys Thr Asp Gly Met His Thr His Asp Ala Arg Lys
225 230 235 240
Arg His Ser Gly Val His Cys Val Ala Arg Tyr Ala Ser Asn Lys Ser
245 250 255
Ile Lys Val Val Gly Thr Thr His His Lys Cys Val Ile Val Asp Thr
260 265 270
Val Ile Gly Asn Asn Arg Lys Ile Thr Ala Ile Gly Gly Asp Cys Asp
275 280 285
Gly Arg Tyr Asp Thr His Arg Lys Asp Asp Thr Val Lys Asp Asp His
290 295 300
Asn Thr Val Asn Lys Ser Gly Arg Trp His Asp His Cys Lys Ile Gly
305 310 315 320
Ala Ala Tyr Asp Ile Thr Asn Arg Trp Arg Lys Ser Ala Lys Trp Lys
325 330 335
Val Ser Val Arg Arg Ala Val Ser Trp His His Asp Thr Val Lys Ile
340 345 350
Asn Arg Met Ser Trp Ile Val Ser Ser Ala Asp Asn Ala Arg Val Cys
355 360 365
Asp Asp Asn Trp His Val Ile Arg Ser Ile Asp Ser Gly Ser Val Lys
370 375 380
Gly Lys Val Ala Ser Asn Val Cys Ala Lys Asn Ile Asp Lys Ser Ile
385 390 395 400
His Asn Ala Tyr Val Lys Ala Ile Arg Ser Ala His Tyr Ile Tyr Ile
405 410 415
Asn Tyr Ile Gly Ser Ser Tyr Tyr Trp Ser Ser Asn Arg Ser Ala Gly
420 425 430
Ala Asn Ile Ile Ala Ile Lys Ile Ala Arg Lys Ile Lys Ala Arg Arg
435 440 445
Ala Ala Tyr Ile Val Ile Met Trp Gly Asn Thr Thr Ala Ala Met Ile
450 455 460
Trp Gly Thr Met Ser Met Met Tyr Lys Ile Val Ala Ala Lys Gly Asp
465 470 475 480
Asp Thr His Asp Tyr Asn Tyr Cys Gly Lys Arg Val Ser Asn Asp Val
485 490 495
Ser Thr Thr Ser Ser Asn Asn Ser Arg Val Lys Lys Arg Met Ile Tyr
500 505 510
Val His Ser Lys Gly Met Ile Val Asp Asp Tyr Val Ile Gly Ser Ala
515 520 525
Asn Ile Asn Arg Ser Met Asp Gly Ser Arg Asp Thr Ile Ala Met Gly
530 535 540
Ala Tyr His Tyr Ser Trp Ala Gly Arg Lys Lys Ala Arg Gly Val Tyr
545 550 555 560
Gly Tyr Arg Met Ser Trp Ala His Gly Thr Val Cys Arg Trp His Ser
565 570 575
Val Cys Val Arg Val Asn Met Ala Asn Trp Ala Arg Tyr Val Ser Met
580 585 590
Val Asn Met Arg Gly His Met Arg Tyr Ile Asn Val Arg Asp Gly Arg
595 600 605
Val Gly Val His Gly Tyr Cys Asp Val Gly Gly Lys Val Gly Thr His
610 615 620
Ser Ser Asn Ala Thr Thr
625 630
<210> 3
<211> 1736
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggggaaac actcagctga atcaatggaa gcccaccaac ccttgggggg cttttgaaaa 60
ccaaggttca ggagggggtc cgtgttattg tgttactttg ggatgacaaa acatcacatg 120
acaaatttct cttgaaaacg gatggactca tgcatacaca tgacgaggaa gctcggaagt 180
ttttcaggca ttctggtgtc cattgtgtgt tggctcctcg ctacgctagc aacaaactta 240
gcatttttaa gcaacaggtt gtaggaactt tgtttacgca ccatcagaaa tgtgtcattg 300
ttgacaccca agtcataggg aacaatagaa aaataactgc ttttattggt ggcctagact 360
tatgtgatgg cagatatgat acacctgaac acaggctctt caaggatctt gacaccgtct 420
tcaaggatga tttccataat cccacattcc aagttaataa gtctgggcct agacaaccat 480
ggcatgattt acattgcaag attgagggtc cagctgccta tgatatactt acaaactttg 540
aacagagatg gagaaaatct gcaaaatgga aagtcagcgt tagaagagct gtaagttggc 600
accatgatac cttggtaaaa ataaaccgga tgtcgtggat tgtctccccc tctgcagatg 660
agttaaatgc acgtgtttgt gaacaagatg atccagaaaa ctggcatgta cagatattcc 720
ggtccattga ttcaggatca gtaaaagggt tccctaaact tgttcaggag gctgagtcac 780
agaatcttgt ctgcgcgaaa aatctgcaga tagacaagag catacataat gcatatgtga 840
aagctatcag atctgcacaa cactatatct acattgaaaa tcaatatttt attggatctt 900
catactactg gtcttcaaat agaagtgcag gtgcagagaa tttgataccg atcgaattgg 960
ccataaagat tgcaagaaag attaaagcta gggaaagatt tgcagcttac attgttatac 1020
caatgtggcc cgagggtaat ccaacaactg ctgctatgca ggagatcctc ttttggcagg 1080
gacaaacaat gtccatgatg tacaagattg tcgcagaagc actacagaag gaggggttag 1140
atgatacgca tccacaggat taccttaact tctactgtct tggtaagcgt gaagtctcaa 1200
atgacgtatc tacaacaagc caatccaatg agaattcccc acagcgcctg gtccaaaagt 1260
tcaagcgatt catgatctac gtgcactcca aggggatgat tgtcgatgat gagtatgtgc 1320
tcataggatc agccaacata aatcagaggt ccatggatgg ctcaagggac accgagatcg 1380
ctatgggcgc ctaccagcct cactacagct gggcaggacg caagaaagct ccacgaggac 1440
aggtgtacgg gtacaggatg tcgctgtggg cggagcacct gggtacagtg gaggagtgct 1500
tccgttggcc tcattccgtg gagtgcgtcc ggcaggtgaa tgaaatggca gaagagaact 1560
gggcgcgcta cgtatcaccg gagatggtga acatgcgggg gcacctcatg aggtacccca 1620
tcaatgttga acgggatggt agggttggtc cggtgcatgg gtacgagtgc ttcccggatg 1680
tcggtggcaa ggtgctcggc acacactctt ctcttccaaa tgcattgaca acttga 1736
<210> 4
<211> 2513
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atggggaaac actcagatca ggtactagta tgctcttgca tggagatttg gacatacaga 60
tagtggaagc aaaatgtctt cccaatatgg atcttatgac tgaaaggatg cgaaaatgct 120
tcactggcta cggcgcttgt agtactgagt gtgggaagtc tgatccacat acagacgtga 180
ggaagatcat tactagtgat ccatatgttt cggtttgcct ctcaggagca acagtggcac 240
aaactcgagt cattgcaaac tcagagaatc ctaaatggga tgaacatttt tatgttcagg 300
ttgcccattc tgttagcaga gttgagtttc acgtaaaaga caatgatgtt tttggagcag 360
aacttatagg cgtggcttca gtaccagttg aaaacatcac accaggtgat accgtcagtg 420
gttggtttcc aatatctggt cagtatagta atcctatgaa ggcatctcct gaacttcatt 480
tgtctatcca gtacaagcca attgagcaga atccattgta caaagatgga gttggttctg 540
acggttgtca gagtattggt gtgccaaatg cttattttcc tcttcgaaag ggtggtatgg 600
tcactctata tcaagatgcc catattcctg atgacttttg tcctaaaatt gaaattgatg 660
gtggaagagt atacgaacaa aataaatgtt gggaagacat ttgccatgca attgctgagg 720
ctcatcacct tatttatata attggttggt cgttgtatca ccctgtcaag ctggtaaggg 780
aatcaacaaa acctgtgccc aatggaagcc caccaaccct tggggggctt ttgaaaacca 840
aggttcagga gggggtccgt gttattgtgt tactttggga tgacaaaaca tcacatgaca 900
aatttctctt gaaaacggat ggactcatgc atacacatga cgaggaagct cggaagtttt 960
tcaggcattc tggtgtccat tgtgtgttgg ctcctcgcta cgctagcaac aaacttagca 1020
tttttaagca acaggttgta ggaactttgt ttacgcacca tcagaaatgt gtcattgttg 1080
acacccaagt catagggaac aatagaaaaa taactgcttt tattggtggc ctagacttat 1140
gtgatggcag atatgataca cctgaacaca ggctcttcaa ggatcttgac accgtcttca 1200
aggatgattt ccataatccc acattccaag ttaataagtc tgggcctaga caaccatggc 1260
atgatttaca ttgcaagatt gagggtccag ctgcctatga tatacttaca aactttgaac 1320
agagatggag aaaatctgca aaatggaaag tcagcgttag aagagctgta agttggcacc 1380
atgatacctt ggtaaaaata aaccggatgt cgtggattgt ctccccctct gcagatgagt 1440
taaatgcacg tgtttgtgaa caagatgatc cagaaaactg gcatgtacag atattccggt 1500
ccattgattc aggatcagta aaagggttcc ctaaacttgt tcaggaggct gagtcacaga 1560
atcttgtctg cgcgaaaaat ctgcagatag acaagagcat acataatgca tatgtgaaag 1620
ctatcagatc tgcacaacac tatatctaca ttgaaaatca atattttatt ggatcttcat 1680
actactggtc ttcaaataga agtgcaggtg cagagaattt gataccgatc gaattggcca 1740
taaagattgc aagaaagatt aaagctaggg aaagatttgc agcttacatt gttataccaa 1800
tgtggcccga gggtaatcca acaactgctg ctatgcagga gatcctcttt tggcagggac 1860
aaacaatgtc catgatgtac aagattgtcg cagaagcact acagaaggag gggttagatg 1920
atacgcatcc acaggattac cttaacttct actgtcttgg taagcgtgaa gtctcaaatg 1980
acgtatctac aacaagccaa tccaatgaga attccccaca gcgcctggtc caaaagttca 2040
agcgattcat gatctacgtg cactccaagg ggatgattgt cgatgatgag tatgtgctca 2100
taggatcagc caacataaat cagaggtcca tggatggctc aagggacacc gagatcgcta 2160
tgggcgccta ccagcctcac tacagctggg caggacgcaa gaaagctcca cgaggacagg 2220
tgtacgggta caggatgtcg ctgtgggcgg agcacctggg tacagtggag gagtgcttcc 2280
gttggcctca ttccgtggag tgcgtccggc aggtgaatga aatggcagaa gagaactggg 2340
cgcgctacgt atcaccggag atggtgaaca tgcgggggca cctcatgagg taccccatca 2400
atgttgaacg ggatggtagg gttggtccgg tgcatgggta cgagtgcttc ccggatgtcg 2460
gtggcaaggt gctcggcaca cactcttctc ttccaaatgc attgacaact tga 2513
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gggaaacact cagctgaatc 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tcaacaaaac ctgtgcccaa 20
<210> 7
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
taggtctccc tcagctgaat cgttttagag ctagaa 36
<210> 8
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
cgggtctcat gagtgtttcc ctgcaccagc cggg 34
<210> 9
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
taggtctcca cctgtgccca agttttagag ctagaa 36
<210> 10
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cgggtctcaa ggttttgttg atgcaccagc cggg 34
<210> 11
<211> 365
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gatccgtggc aacaaagcac cagtggtcta gtggtagaat agtaccctgc cacggtacag 60
acccgggttc gattcccggc tggtgcaggg aaacactcag ctgaatcgtt ttagagctag 120
aaatagcaag ttaaaataag gctagtccgt tatcaacttg aaaaagtggc accgagtcgg 180
tgcaacaaag caccagtggt ctagtggtag aatagtaccc tgccacggta cagacccggg 240
ttcgattccc ggctggtgca tcaacaaaac ctgtgcccaa gttttagagc tagaaatagc 300
aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt 360
ttttt 365
<210> 12
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
ttacgaacga tagccggatc catggggaaa cactcagctg aat 43
<210> 13
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tctagaggat ccccgggatc cagttgtcaa tgcatttgga aga 43
<210> 14
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
accctacatt gtgatttgcc tg 22
<210> 15
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gcagcctacc gttttcaaga g 21
<210> 16
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
gatgcaatag gtcaggctct cg 22
<210> 17
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
gatgtaggag ggcgtggata tg 22
<210> 18
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
cctcttctag catcgaggtc ac 22
<210> 19
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
ctccccgacg atcagataca tg 22
<210> 20
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
gtcgcagaag cactacagaa 20
<210> 21
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
cacgcttacc aagacagtag aa 22
<210> 22
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
aaccagctga ggcccaaga 19
<210> 23
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
acgattgatt taaccagtcc atga 24

Claims (5)

1.OsPLDδ3基因在控制水稻抗旱性中的应用;所述的OsPLDδ3基因的CDS编码的蛋白的氨基酸的序列为SEQ ID NO:2所示。
2.根据权利要求1所述的应用,所述的OsPLDδ3基因的CDS序列为SEQ ID NO.1所示。
3.根据权利要求1所述的应用,其应用过程包括将OsPLDδ3基因在水稻中进行过表达,获得抗旱转基因水稻。
4.根据权利要求1所述的应用,其应用过程是通过CRISPR/Cas9的方法,将OsPLDδ3基因敲除,获得干旱敏感型水稻。
5.根据权利要求4所述的应用,所述的干旱敏感型水稻包含基因序列为SEQ ID NO.3或SEQ ID NO.4所示。
CN202011128187.5A 2020-10-21 2020-10-21 OsPLDδ3基因在控制水稻抗旱性中的应用 Active CN112143744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011128187.5A CN112143744B (zh) 2020-10-21 2020-10-21 OsPLDδ3基因在控制水稻抗旱性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011128187.5A CN112143744B (zh) 2020-10-21 2020-10-21 OsPLDδ3基因在控制水稻抗旱性中的应用

Publications (2)

Publication Number Publication Date
CN112143744A true CN112143744A (zh) 2020-12-29
CN112143744B CN112143744B (zh) 2022-03-25

Family

ID=73954240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011128187.5A Active CN112143744B (zh) 2020-10-21 2020-10-21 OsPLDδ3基因在控制水稻抗旱性中的应用

Country Status (1)

Country Link
CN (1) CN112143744B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060123505A1 (en) * 2002-05-30 2006-06-08 National Institute Of Agrobiological Sciences Full-length plant cDNA and uses thereof
CN101182354A (zh) * 2007-11-23 2008-05-21 中国农业科学院作物科学研究所 一种与植物抗旱性相关的蛋白及其编码基因与应用
JP2008245638A (ja) * 2007-03-02 2008-10-16 National Agriculture & Food Research Organization ホスホリパーゼd欠失性イネ系統
CN103773784A (zh) * 2014-01-08 2014-05-07 华中农业大学 PLDα1基因在增加作物抗旱性及种子产量中的应用
US20150315605A1 (en) * 2014-02-21 2015-11-05 E I Du Pont De Nemours And Company Novel transcripts and uses thereof for improvement of agronomic characteristics in crop plants
CN106191001A (zh) * 2016-07-27 2016-12-07 华中农业大学 磷脂酶PLDζ1基因在提高植物耐盐性中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060123505A1 (en) * 2002-05-30 2006-06-08 National Institute Of Agrobiological Sciences Full-length plant cDNA and uses thereof
JP2008245638A (ja) * 2007-03-02 2008-10-16 National Agriculture & Food Research Organization ホスホリパーゼd欠失性イネ系統
CN101182354A (zh) * 2007-11-23 2008-05-21 中国农业科学院作物科学研究所 一种与植物抗旱性相关的蛋白及其编码基因与应用
CN103773784A (zh) * 2014-01-08 2014-05-07 华中农业大学 PLDα1基因在增加作物抗旱性及种子产量中的应用
US20150315605A1 (en) * 2014-02-21 2015-11-05 E I Du Pont De Nemours And Company Novel transcripts and uses thereof for improvement of agronomic characteristics in crop plants
CN106191001A (zh) * 2016-07-27 2016-12-07 华中农业大学 磷脂酶PLDζ1基因在提高植物耐盐性中的应用

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
AMARJEET SINGH 等: ""Comprehensive expression analysis of rice phospholipase D gene family during abiotic stresses and development"", 《PLANT SIGNAL BEHAV.》 *
AYELEN M DISTÉFANO 等: ""Phospholipase D δ knock-out mutants are tolerant to severe drought stress"", 《PLANT SIGNALING & BEHAVIOR》 *
FERNANDA RAQUEL MARTINS ABREU 等: ""Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.)"", 《PROTOPLASMA》 *
HONG YUEYUN 等: ""Dual Functions of Phospholipase Dα1 in Plant Response to Drought"", 《MOLECULAR PLANT》 *
JIAN-KANG ZHU: ""Salt and Drought Stress Signal Transduction in Plants"", 《ANNUAL REVIEW OF PLANT BIOLOGY》 *
JIE FU 等: ""OsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice"", 《FRONT PLANT SCI》 *
KALAIVANI NADARAJAH 等: ""Drought Response in Rice: The miRNA Story"", 《INT. J. MOL. SCI》 *
NCBI: ""phospholipase D delta isoform X1 [Oryza sativa Japonica Group]"", 《GENBANK》 *
NCBI: ""PREDICTED: Oryza sativa Japonica Group phospholipase D delta (LOC4342872), transcript variant X3, mRNA"", 《GENBANK》 *
QI LIU 等: ""Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape"", 《BMC PLANT BIOLOGY VOLUME》 *
TAKESHI YAMAGUCHI 等: ""Suppression of a Phospholipase D Gene, OsPLDβ1, Activates Defense Responses and Increases Disease Resistance in Rice"", 《PLANT PHYSIOLOGY》 *
YUEYUN HONG 等: ""Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity"", 《PLANT,CELL & ENVIRONMENT》 *
ZIMIN,A.V.等: ""hypothetical protein EE612_038325 [Oryza sativa]"", 《GENBANK》 *
吕玮鑫 等: ""水稻磷脂酶Dζ1在盐胁迫反应中的作用"", 《植物生理学报》 *
康伟伟 等: ""水稻磷脂酶PLD家族生物信息学分析"", 《西南农业学报》 *
肖本泽: ""抗旱候选基因和启动子的水稻遗传转化分析和田间抗旱性鉴定"", 《中国博士学位论文全文数据库 (农业科技辑)》 *
郑晓东: ""拟南芥和水稻基因组中PLD家族分析"", 《中国优秀硕士学位论文全文数据库 (农业科技辑)》 *

Also Published As

Publication number Publication date
CN112143744B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN111206041B (zh) OsBAK1P基因在控制水稻抗旱性中的应用
CN110904071B (zh) Raf49蛋白及其编码基因在调控植物抗旱性中的应用
CN110643618A (zh) 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用
CN107353332B (zh) 一种水稻叶绿体发育调控基因ahs1及其编码的蛋白质与应用
CN114214358B (zh) 一种诱导型表达载体及其在培育哨兵作物上的应用
CN111295445A (zh) 非生物胁迫耐性提高的植物和提高植物非生物胁迫耐性的多聚核苷酸及方法
CN101874116A (zh) 具有增强的产量相关性状的植物及其生产方法
CN114015700B (zh) 大豆基因GmFER1在植物抗盐胁迫中的应用
CN109456396A (zh) 一种水稻叶片衰老和穗型调控基因hk73及其编码的蛋白质、分子标记与应用
CN112143744B (zh) OsPLDδ3基因在控制水稻抗旱性中的应用
CN112608938A (zh) OsAO2基因在控制水稻抗旱性中的应用
CN115044592A (zh) 一种调控玉米株型和瘤黑粉病抗性的基因ZmADT2及其编码蛋白和应用
CN110229831A (zh) 非生物胁迫耐性提高的植物和提高植物非生物胁迫耐性的ftr1多聚核苷酸及方法
CN114085854A (zh) 一种水稻抗旱、耐盐基因OsSKL2及其应用
KR101376522B1 (ko) 내염성을 증가시키는 벼 유래의 OsMLD 유전자 및 이의 용도
CN108892714B (zh) 植物耐盐相关蛋白GmLURP17及其编码基因的应用
CN113880927A (zh) 通过过表达锌指蛋白OsCIP3增强水稻低温耐受性的方法
CN114015666B (zh) OsPARP3基因在调控植物耐旱性中的应用
CN114381467B (zh) OsCRKS2基因在控制水稻抗旱性中的应用
CN114525302B (zh) OsCRKD1基因在控制水稻抗旱性中的应用
CN112322627B (zh) OsZFP1基因在控制水稻抗旱性中的应用
CN112321695B (zh) OsSEC3B基因在控制水稻抗旱性中的应用
KR102025257B1 (ko) 벼 유래의 v p 유전자의 수확량 및 환경 스트레스 조절자로서의 용도
US20220042030A1 (en) A method to improve the agronomic characteristics of plants
CN117721090A (zh) OsCRK13基因在控制水稻耐低温性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant