CN112126852A - 一种辊压成型用980MPa级冷轧复相钢及其制备方法 - Google Patents

一种辊压成型用980MPa级冷轧复相钢及其制备方法 Download PDF

Info

Publication number
CN112126852A
CN112126852A CN202010917598.6A CN202010917598A CN112126852A CN 112126852 A CN112126852 A CN 112126852A CN 202010917598 A CN202010917598 A CN 202010917598A CN 112126852 A CN112126852 A CN 112126852A
Authority
CN
China
Prior art keywords
complex phase
phase steel
less
roll forming
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010917598.6A
Other languages
English (en)
Inventor
陈卓
王金荣
刘靖宝
邝霜
王朝
杨明维
李孟星
靳斌
王诚斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan Iron and Steel Group Co Ltd
HBIS Co Ltd Tangshan Branch
Original Assignee
Tangshan Iron and Steel Group Co Ltd
HBIS Co Ltd Tangshan Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tangshan Iron and Steel Group Co Ltd, HBIS Co Ltd Tangshan Branch filed Critical Tangshan Iron and Steel Group Co Ltd
Priority to CN202010917598.6A priority Critical patent/CN112126852A/zh
Publication of CN112126852A publication Critical patent/CN112126852A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

本发明涉及一种辊压成型用980MPa级冷轧复相钢及其制备方法,复相钢的组分及重量百分比为C:0.08~0.12%;Si:0.17~0.30%;Mn:2.20~2.60Wt%;P:≤0.020%;S:≤0.008%;Alt:0.10~0.35%;Nb:0.030~0.060%;Ti:0.030~0.060%;N:≤0.0070%;Cr:0.18%~0.40%;Mo:0.14%~0.32%,其余为铁和不可避免的微量元素。本发明通过合理的成分设计并匹配相应的热轧、酸轧、连退、平整工艺,钢板屈服强度Rp0.2≥700MPa,抗拉强度Rm≥980MPa,延伸率A50mm≥8%,180°折弯不开裂。

Description

一种辊压成型用980MPa级冷轧复相钢及其制备方法
技术领域
本发明涉及一种辊压成型用980MPa级冷轧复相钢及其制备方法,属于冶金板材生产技术领域。
背景技术
随着我国汽车工业的快速发展,对汽车用先进高强钢的制造工艺和性能要求也越来越高。其中以复相钢为代表的新一代高强度用钢不仅具有超高的强度,而且具备成形性好、能量吸收率高、抗凹性好、扩孔性高等优点,在相同抗拉强度级别下,复相钢具有比铁素体+马氏体双相钢更高的屈强比,尤其适合辊压成型制造汽车的防撞杆、门槛、保险杠等加强件,因此在汽车工业显示了良好的应用前景。
发明专利CN201810639253.1公开了一种具有良好扩孔性能980MPa级冷轧复相钢及其制备方法,涉及钢板抗拉强度≥980MPa。该复相钢成分中C含量(0.15~0.20Wt%)较高,虽然能获得大量马氏体组织以实现高强度,但阻碍了贝氏体的形成,不利于实现复相钢的综合成型性能;同时过高的Si含量(0.30~0.80Wt%)会影响钢板的表面质量;此外,该成分中Cr含量(0.40~0.80Wt%)较高,容易造成贝氏体转变的推迟,且大幅增加复相钢的生产成本。
发明专利CN103243275 A公开了一种贝氏体/马氏体/奥氏体复相高强钢的制备方法,其退火工艺中,将钢板加热至850-1050℃保温1~5小时,冷却至室温~360℃后,再加热至100~500℃进行分配处理,分配后空冷至室温,最后在100~360℃保温30~360分钟得到该复相钢。该退火工艺温度过高、保温时间过长,不适合在实际生产中大批量制备。
本发明目的在于提供一种辊压成型用980MPa级冷轧复相钢的制备方法,通过优化成分设计、全流程改进炼钢、热轧、冷轧和连续退火工艺等,使复相钢兼具980MPa级的高强度和优良的塑性,尤其适合辊压成型工艺制备汽车加强件等。
发明内容
本发明目的是提供一种辊压成型用980MPa级冷轧复相钢及其制备方法,通过优化成分设计、全流程改进炼钢、热轧、冷轧和连续退火工艺等,使复相钢产品具备优良的综合性能。
为达到上述目的,本发明提供的技术方案如下:
一种辊压成型用980MPa级冷轧复相钢,其组分及重量百分比为C:0.08~0.12Wt%;Si:0.17~0.30Wt%;Mn:2.20~2.60Wt%;P:≤0.020Wt%;S:≤0.008Wt%;Alt:0.10~0.35Wt%;Nb:0.030~0.060Wt %;Ti:0.030~0.060Wt%;N:≤0.0070Wt%;Cr:0.18%~0.40Wt%;Mo:0.14%~0.32Wt%,其余为铁和不可避免的微量元素。
本发明所述复相钢厚度为1.0-2.0mm。
本发明所述复相钢的组织为典型的铁素体、贝氏体、马氏体复相钢组织。
本发明所述复相钢屈服强度Rp0.2≥700MPa,抗拉强度Rm≥980MPa,延伸率A50mm≥8%,180°折弯不开裂。
本发明还提供了该复相钢的制备方法:其流程包括炼钢→连铸→热轧→酸轧→连退→平整→成品,其中:所述热轧,将连铸坯加热至1240-1320℃,板坯在炉时间170-210min;精轧开轧温度为1050-1100℃,终轧温度为850-890℃,卷取温度为600-640℃。
本发明所述酸轧,酸轧压下率≥53%,冷轧板厚度1.0-2.0mm。
本发明所述连退,均热段温度控制在810~830℃,均热时间100-130s,缓冷段冷速5-10℃/s,缓冷结束温度690~720℃,快冷段冷速25-45℃/s,快冷结束温度350~390℃,时效段温度330~370℃。
本发明所述平整,平整轧制力分规格控制在8000-9500kN。
本发明的积极效果:
本发明的复相钢在成分上采用低碳,Nb、Ti微合金化,Si、Mn固溶强化的设计思路。其中低碳当量设计使复相钢具有良好的焊接性能,Nb、Ti微合金化设计能与C元素形成纳米析出相得到晶粒细化效果,从而使材料获得优异的折弯性能,涉及钢板屈服强度Rp0.2≥700MPa,抗拉强度Rm≥980MPa,延伸率A50mm≥8%,符合汽车用高强钢领域的应用要求。另外该复相钢产品180°折弯不开裂,兼具高强度和优良的塑性,尤其适于制作辊压成型件。
附图说明
图1为实施例1制备的980MPa级复相钢带金相显微组织;
图2为实施例2制备的980MPa级复相钢带金相显微组织;
图3为实施例3制备的980MPa级复相钢带金相显微组织。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
一种辊压成型用980MPa级冷轧复相钢,其组分及重量百分比为C:0.08~0.12Wt%;Si:0.17~0.30Wt%;Mn:2.20~2.60Wt%;P:≤0.020Wt%;S:≤0.008Wt%;Alt:0.10~0.35Wt%;Nb:0.030~0.060Wt %;Ti:0.030~0.060Wt%;N:≤0.0070Wt%;Cr:0.18%~0.40Wt%;Mo:0.14%~0.32Wt%,其余为铁和不可避免的微量元素。
上述辊压成型用980MPa级冷轧复相钢的制备方法采用下述工艺步骤:
(1)热轧步骤:将连铸坯加热至1240-1320℃,板坯在炉时间170-210min;精轧开轧温度为1050-1100℃,终轧温度为850-890℃,卷取温度为600-640℃;
(2)酸轧步骤:酸轧压下率≥53%,冷轧板厚度1.0-2.0mm;
(3)连退步骤:均热段温度控制在810~830℃,均热时间100-130s,缓冷段冷速5-10℃/s,缓冷结束温度690~720℃,快冷段冷速25-45℃/s,快冷结束温度350~390℃,时效段温度330~370℃;
(4)平整步骤:平整轧制力分规格控制在8000-9500kN。
下面结合具体实施例对本发明作进一步详细的说明。
实施例1-实施例8复相钢各化学成分含量见表1;
实施例1-实施例8中复相钢制备过程中的热轧、酸轧工艺参数见表2;
实施例1-实施例8中复相钢制备过程中的连退、平整工艺参数见表3;
实施例1-实施例8制备的钢带力学性能见表4。
表1 各实施例化学成分取值(wt%)
Figure 677197DEST_PATH_IMAGE001
表2 各实施例热轧、酸轧工艺参数
Figure DEST_PATH_IMAGE002
表3 各实施例连退、平整工艺参数
Figure 532020DEST_PATH_IMAGE003
表4 各实施例钢带力学性能
Figure DEST_PATH_IMAGE004
图1-3为本发明实施例1-3中980MPa级复相钢带的金相显微组织,由微观组织分析可见,本发明实施例1-3中制备得到的980MPa级复相钢产品主要由铁素体、贝氏体和马氏体组成,晶粒细小、组织均匀,为典型的复相钢组织状态。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1. 一种辊压成型用980MPa级冷轧复相钢,其特征在于:所述复相钢化学成分组成及质量百分含量为:C:0.08~0.12Wt%;Si:0.17~0.30Wt%;Mn:2.20~2.60Wt%;P:≤0.020Wt%;S:≤0.008Wt%;Alt:0.10~0.35Wt%;Nb:0.030~0.060Wt %;Ti:0.030~0.060Wt%;N:≤0.0070Wt%;Cr:0.18%~0.40Wt%;Mo:0.14%~0.32Wt%,其余为铁和不可避免的微量元素。
2.一种辊压成型用980MPa级冷轧复相钢,其特征在于:所述复相钢厚度为1.0-2.0mm。
3.一种辊压成型用980MPa级冷轧复相钢,其特征在于:所述复相钢的组织为典型的铁素体、贝氏体、马氏体复相钢组织。
4.一种辊压成型用980MPa级冷轧复相钢,其特征在于:所述复相钢屈服强度Rp0.2≥700MPa,抗拉强度Rm≥980MPa,延伸率A50mm≥8%,180°折弯不开裂。
5.如权利要求1-4任一项所述的一种辊压成型用980MPa级冷轧复相钢的制备方法,其流程包括炼钢→连铸→热轧→酸轧→连退→平整→成品,其特征在于:所述热轧,将连铸坯加热至1240-1320℃,板坯在炉时间170-210min;精轧开轧温度为1050-1100℃,终轧温度为850-890℃,卷取温度为600-640℃。
6.如权利要求5所述的一种辊压成型用980MPa级冷轧复相钢的制备方法,其特征在于:所述酸轧,酸轧压下率≥53%,冷轧板厚度1.0-2.0mm。
7.如权利要求5所述的一种辊压成型用980MPa级冷轧复相钢的制备方法,其特征在于:所述连退,均热段温度控制在810~830℃,均热时间100-130s,缓冷段冷速5-10℃/s,缓冷结束温度690~720℃,快冷段冷速25-45℃/s,快冷结束温度350~390℃,时效段温度330~370℃。
8.如权利要求5所述的一种辊压成型用980MPa级冷轧复相钢的制备方法,其特征在于:所述平整,平整轧制力分规格控制在8000-9500kN。
CN202010917598.6A 2020-09-03 2020-09-03 一种辊压成型用980MPa级冷轧复相钢及其制备方法 Pending CN112126852A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010917598.6A CN112126852A (zh) 2020-09-03 2020-09-03 一种辊压成型用980MPa级冷轧复相钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010917598.6A CN112126852A (zh) 2020-09-03 2020-09-03 一种辊压成型用980MPa级冷轧复相钢及其制备方法

Publications (1)

Publication Number Publication Date
CN112126852A true CN112126852A (zh) 2020-12-25

Family

ID=73848279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010917598.6A Pending CN112126852A (zh) 2020-09-03 2020-09-03 一种辊压成型用980MPa级冷轧复相钢及其制备方法

Country Status (1)

Country Link
CN (1) CN112126852A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206913A1 (zh) * 2021-04-02 2022-10-06 宝山钢铁股份有限公司 抗拉强度≥980MPa的双相钢和热镀锌双相钢及其快速热处理制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076144A (ko) * 2009-12-29 2011-07-06 주식회사 포스코 도금성이 우수한 프리코팅 용융도금용 강판 및 그 제조방법
KR20130107153A (ko) * 2012-03-21 2013-10-01 주식회사 포스코 고항복비 및 냉연형상이 우수한 초고강도 냉연강판 및 그 제조방법
CN108913991A (zh) * 2018-06-20 2018-11-30 武汉钢铁有限公司 具有良好扩孔性能980MPa级冷轧复相钢及其制备方法
CN108914000A (zh) * 2018-07-24 2018-11-30 唐山钢铁集团有限责任公司 一种抗拉强度780MPa级冷轧双相钢及其生产方法
CN109023106A (zh) * 2018-09-25 2018-12-18 首钢集团有限公司 一种冷轧热镀锌复相钢及其制备方法
CN109594020A (zh) * 2018-12-28 2019-04-09 首钢集团有限公司 一种抗拉强度1000MPa级冷轧复相钢及其制备方法
CN110129668A (zh) * 2019-04-25 2019-08-16 首钢集团有限公司 一种1000MPa级合金化热镀锌复相钢及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076144A (ko) * 2009-12-29 2011-07-06 주식회사 포스코 도금성이 우수한 프리코팅 용융도금용 강판 및 그 제조방법
KR20130107153A (ko) * 2012-03-21 2013-10-01 주식회사 포스코 고항복비 및 냉연형상이 우수한 초고강도 냉연강판 및 그 제조방법
CN108913991A (zh) * 2018-06-20 2018-11-30 武汉钢铁有限公司 具有良好扩孔性能980MPa级冷轧复相钢及其制备方法
CN108914000A (zh) * 2018-07-24 2018-11-30 唐山钢铁集团有限责任公司 一种抗拉强度780MPa级冷轧双相钢及其生产方法
CN109023106A (zh) * 2018-09-25 2018-12-18 首钢集团有限公司 一种冷轧热镀锌复相钢及其制备方法
CN109594020A (zh) * 2018-12-28 2019-04-09 首钢集团有限公司 一种抗拉强度1000MPa级冷轧复相钢及其制备方法
CN110129668A (zh) * 2019-04-25 2019-08-16 首钢集团有限公司 一种1000MPa级合金化热镀锌复相钢及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206913A1 (zh) * 2021-04-02 2022-10-06 宝山钢铁股份有限公司 抗拉强度≥980MPa的双相钢和热镀锌双相钢及其快速热处理制造方法

Similar Documents

Publication Publication Date Title
CN109594020B (zh) 一种抗拉强度1000MPa级冷轧复相钢及其制备方法
CN107619993B (zh) 屈服强度750MPa级冷轧马氏体钢板及其制造方法
CN106011643B (zh) 一种抗拉强度590MPa级冷轧双相钢及其制备方法
CN108018484B (zh) 抗拉强度1500MPa以上成形性优良的冷轧高强钢及其制造方法
CN108913991B (zh) 具有良好扩孔性能980MPa级冷轧复相钢及其制备方法
WO2016131218A1 (zh) 热冲压成形用钢板、热冲压成形工艺及热冲压成形构件
CN110453146B (zh) 一种无屈服平台的Cr合金化钢及其制备方法
CN102586688B (zh) 一种双相钢板及其制造方法
CN104357744B (zh) 一种抗拉强度≥780MPa级热轧双相钢及生产方法
CN102839329B (zh) 一种抗拉强度450MPa级汽车用冷轧双相钢钢板的制备方法
CN108914000B (zh) 一种抗拉强度780MPa级冷轧双相钢及其生产方法
CN102031455A (zh) 冲压淬火用钢板及其制造方法
CN109207849B (zh) 高强高塑性1000MPa级热轧钢板及制备方法
CN104498821B (zh) 汽车用中锰高强钢及其生产方法
CN105803334B (zh) 抗拉强度700MPa级热轧复相钢及其生产方法
CN106011644A (zh) 高伸长率冷轧高强度钢板及其制备方法
CN109295283A (zh) 一种快速退火制备1000MPa级高延性钢的方法
CN105950984B (zh) 抗拉强度650MPa级热轧复相钢及其生产方法
CN113416890A (zh) 高扩孔高塑性980MPa级冷轧连退钢板及其制备方法
CN103469112A (zh) 一种高成形性冷轧双相带钢及其制造方法
JP4983082B2 (ja) 高強度鋼材及びその製造方法
CN107747039A (zh) 一种高扩孔性能冷轧双相钢及其制备方法
CN103938101B (zh) 一种钢板及其制备方法
CN105063311A (zh) 一种改善trip钢表面质量的加工方法
CN108193139B (zh) 1180MPa级汽车用冷轧高强双相钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201225

RJ01 Rejection of invention patent application after publication