CN112114286A - 基于线谱生命周期和单矢量水听器的多目标跟踪方法 - Google Patents

基于线谱生命周期和单矢量水听器的多目标跟踪方法 Download PDF

Info

Publication number
CN112114286A
CN112114286A CN202010579144.2A CN202010579144A CN112114286A CN 112114286 A CN112114286 A CN 112114286A CN 202010579144 A CN202010579144 A CN 202010579144A CN 112114286 A CN112114286 A CN 112114286A
Authority
CN
China
Prior art keywords
line spectrum
target
line
spectrum
life cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010579144.2A
Other languages
English (en)
Other versions
CN112114286B (zh
Inventor
崔浩
郑轶
何传林
刘洪宁
倪秀辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Original Assignee
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceanographic Instrumentation Research Institute Shandong Academy of Sciences filed Critical Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority to CN202010579144.2A priority Critical patent/CN112114286B/zh
Publication of CN112114286A publication Critical patent/CN112114286A/zh
Application granted granted Critical
Publication of CN112114286B publication Critical patent/CN112114286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明属于水下目标跟踪技术领域,具体涉及一种多目标跟踪方法。该方法包括:利用单矢量水听器的声压数据和振速水平分量数据进行方位估计,得到频点方位θ(f)和频点功率谱强度
Figure DDA0002551749310000011
根据频点方位θ(f)和频点功率谱强度
Figure DDA0002551749310000012
建立线谱螺旋型生命周期模型;根据所述的模型,分析线谱状态,确定其生命周期的阶段,对线谱进行处理,获得线谱信息集合;对集合中的线谱进行相似度评估,将线谱聚类为若干个不同的目标;根据线谱的方位和功率谱强度,拟合目标的方位航迹,实现多目标的跟踪。本发明的有益效果是:建立线谱螺旋型生命周期模型,对线谱进行实时的、系统的管理,以获取线谱信息;提出了线谱信息回填和继承技术,完善线谱消失部分的信息、将消失的线谱的信息拼接到相同目标的其它存在的线谱中。

Description

基于线谱生命周期和单矢量水听器的多目标跟踪方法
技术领域
本发明属于水下目标跟踪技术领域,具体涉及一种多目标跟踪方法。
背景技术
矢量水听器由声压传感器和振速传感器组成,能够共点同步测量水中声场空间一点处的声压和质点振速的三个正交分量,将声压和振速信号进行联合处理,可以估计目标的方位[1,2,3],并且单个矢量水听器具有体积小、易布放和易隐蔽等诸多优点,已广泛应用于水下目标被动探测和方位跟踪等领域。
利用方位历程图分析目标方位是水下目标被动跟踪的常用方法。此类方法通过状态模型预测或者对象特征分析实现。当目标的运动是线性或近似线性的时候,利用最小二乘[4]、卡尔曼滤波[5]或扩展卡尔曼滤波[6,7,8]可有效地跟踪目标,但如果线性假设不成立,会引入较大的线性化误差。为了较好的实现非线性目标的跟踪,学者们采用了无迹卡尔曼滤波[9,10,11],通过对非线性函数的概率密度分布进行近似,对非线性目标进行可靠的跟踪,但需要提前建立目标的状态方程,在目标实际状态与状态方程差异较大的情况下,无法有效跟踪目标。粒子滤波[12,13,14,15]适用于各种非线性目标的跟踪,在非高斯、非线性场合具有良好的估计性能,精度可以逼近最优估计,通过蒙特卡罗模拟方法实现递推贝叶斯滤波,不需要进行高斯噪声假设,但存在计算量大、面临粒子退化、对硬件性能要求高和系统功耗高等不足,距离实际应用仍有较大差距。也有学者通过对象特征分析的方式实现目标跟踪,目标骨架跟踪法[16]分析方位历程图中目标的特征,提出目标具有带状能量的概念,通过带约束的Delaunay三角剖分和骨架化,实现目标跟踪。该方法能够在潜标上实时运行,并且在海试中检验了效果。但这类方法存在两点不足:1、在有强干扰的情况下,目标特征无法在方位历程图中分辨,则不能进行可靠的目标跟踪;2、当目标与干扰的方位航迹存在交叉或重叠时,极易出现跟踪错误或者跟踪失败等问题。
线谱方位估计也被用于水下目标被动跟踪。目标辐射噪声在低频段具有丰富的线谱成分,而且不同目标具有不同的线谱,是一种较稳定的目标特征信息,并且具有相干性强、传播损失小等特点[17,18,19]。通过对目标线谱(而不是对通带内所有频点)进行方位估计,可以实现目标跟踪[20]。但这类方法有很明显的缺点:1、目标线谱稳定时长有限,一旦中断或消失,就无法继续进行目标跟踪; 2、目标具有多个线谱成分,这些线谱存在此消彼长或方位航迹不完全重合的情况,容易将单目标识别为多目标,引发二义性错误。
发明内容
本发明的目的是为了解决现有利用线谱方位估计进行水下目标跟踪存在的问题,利用单矢量水听器的声压数据和振速水平分量数据进行方位估计,分析线谱状态并对线谱的生命周期进行管理,通过线谱聚类和目标航迹拟合实现目标的被动跟踪。
本发明解决其技术问题采用的技术方案是:基于线谱生命周期和单矢量水听器的多目标跟踪方法,包括:
利用单矢量水听器的声压数据和振速水平分量数据进行方位估计,得到频点方位θ(f)和频点功率谱强度
Figure RE-GDA0002661770580000021
根据频点方位θ(f)和频点功率谱强度
Figure RE-GDA0002661770580000022
建立线谱螺旋型生命周期模型;
根据所述的模型,分析线谱状态,确定其生命周期的阶段,对线谱进行处理,获得线谱信息集合;
对集合中的线谱进行相似度评估,将线谱聚类为若干个不同的目标;
根据线谱的方位和功率谱强度,拟合目标的方位航迹,实现多目标的跟踪。
作为本发明的一种优选方式,所述线谱螺旋型生命周期模型包括:
出现阶段M1:线谱在谱峰检测算法中首次出现;
孕育阶段M2:经历出现阶段,且线谱持续时间不满足稳定性条件;
成长阶段M3:经历孕育或成长阶段,线谱持续时间满足稳定性条件,可以作为目标特征,或经历消失阶段,线谱在谱峰检测结果中重新出现,可以继续作为目标特征;
消失阶段M4:线谱出现之后,在谱峰检测结果中消失,不能作为目标特征;
消亡阶段M5:线谱长时间消失,满足消亡条件,不能继续作为目标特征。
进一步优选地,所述对线谱进行处理,包括:
在出现阶段M1,创建F(f,e,a)并加入S中,其中f是线谱频点,e是线谱功率谱强度,a是线谱方位,F是线谱,S是线谱信息集合;线谱在出现阶段的条件为:
Figure RE-GDA0002661770580000031
使得f∈F且f∈Ψi,Ψi是第i个时间片谱峰检测的结果;
在孕育阶段M2,更新F的信息,将ei和ai加入F,F不能作为目标特征,不输出;线谱在孕育阶段的条件为:
Figure RE-GDA00026617705800000313
使得f∈F且f∈Ψi,同时LF<T1,其中LF是F的时长,T1是稳定性条件;
在成长阶段M3,更新F的信息,F作为目标特征,输出;线谱在成长阶段的条件为:
Figure RE-GDA0002661770580000032
使得f∈F且f∈Ψi,同时LF≥T1
在消失阶段M4,F不能作为目标特征;线谱在消失阶段的条件为:
Figure RE-GDA0002661770580000033
使得f∈F且
Figure RE-GDA0002661770580000034
同时KF<T2,其中KF是F的消失时长,T2是线谱消亡条件;
在消亡阶段M5,将F从S中删除,其信息由同目标的其它线谱继承;线谱在消亡阶段的条件为:
Figure RE-GDA0002661770580000035
使得f∈F且
Figure RE-GDA0002661770580000036
同时KF≥T2
进一步优选地,在成长阶段中,F的信息更新方法包括:
若mi-1=M2或者M3,其中mi-1是F在第i-1个时段中所处的阶段,此时,将ei和ai加入F;
若mi-1=M4,利用eh-1,eh和ei,通过二次多项式插值,求解eh+1,eh+2,…, ei-1其中mh=M2或者M3,且mh+1=M4
将eh+1,eh+2,…,ei;ah+1,ah+2,…,ai加入F。
进一步优选地,通过评估集合S中各线谱的相似度,将相似的线谱聚类为同一个目标,同目标的其他线谱继承被删除的F,设目标T包含线谱F1,…,Fn和Fd,其中Fd处于消亡阶段,则Fd的信息由F1,…,Fn继承。
重叠时段的继承为:
Figure RE-GDA0002661770580000037
Figure RE-GDA0002661770580000038
i=1,…,n,其中ta是绝对时段;
继承后的功率谱强度信息
Figure RE-GDA0002661770580000039
的计算公式为:
Figure RE-GDA00026617705800000310
继承后的方位信息
Figure RE-GDA00026617705800000311
的计算公式为:
Figure RE-GDA00026617705800000312
非重叠时段的继承为:
Figure RE-GDA0002661770580000041
进一步优选地,所述的线谱聚类方法为:
提取集合S中,可以作为目标特征的线谱,利用相似度公式评估线谱间的相似度;
Figure RE-GDA0002661770580000042
其中,x和y表示线谱,x∈S,y∈S,且x≠y,ax和ay是线谱x和y时间重叠部分的方位值,lxy是线谱x和y时间重叠部分的长度;
选择满足相似度要求的线谱,聚类为一个目标。
进一步优选地,采用加权法拟合目标的方位航迹,具体为:
设目标T包含线谱F1,…,Fn,当前时段为
Figure RE-GDA0002661770580000048
目标的开始时段为
λ=min(t1,…,tn) (7)
其中,t为线谱F的开始时段;
在时段i
Figure RE-GDA0002661770580000049
目标的功率谱强度Γi
Figure RE-GDA0002661770580000043
Figure RE-GDA0002661770580000044
其中,
Figure RE-GDA0002661770580000045
是线谱Fj在时段i的功率谱强度;
在时段i,目标的方位Θi为:
Figure RE-GDA0002661770580000046
其中,
Figure RE-GDA0002661770580000047
是线谱Fj在时段i的方位。
本发明提出了一种水下多目标跟踪的方法,该方法分析目标辐射噪声中低频线谱的状态,确定其生命周期的阶段,使用螺旋型模型进行管理,通过线谱信息的回填和继承,延长目标跟踪时间;根据线谱的方位航迹和运动趋势,评估线谱的相似度,并将相似的线谱聚类为一个目标;利用线谱的方位和功率谱强度,采用加权的方式拟合目标的方位航迹,实现多目标跟踪。
本发明与现有技术相比,具有的有益效果是:
1.建立线谱螺旋型生命周期模型,对线谱进行实时的、系统的管理,以获取线谱信息;
2.提出了线谱信息回填技术,完善线谱消失部分的信息。解决了现有算法中,线谱中断则无法进行目标跟踪的技术难题;
3.提出了线谱信息继承技术,将消失的线谱的信息拼接到相同目标的其它存在的线谱中(一个目标有多个线谱)。解决了现有算法中,如果线谱消失,则无法进行目标跟踪的技术问题。
附图说明
图1是本发明实施例中基于线谱生命周期和单矢量水听器的多目标跟踪方法的流程示意图;
图2是单目标跟踪试验方案示意图;
图3是本发明的方法图运行结果(第67分钟)与AIS对比图
图4(a)是试验数据LOFAR图;
图4(b)是线谱方位航迹图;
图4(c)是对F1消失阶段的回填处理后的线谱方位航迹图;
图4(d)是对F1消亡阶段的继承处理后的线谱方位航迹图;
图5是线谱F1的生命周期管理:(a)、第10至11分钟;(b)第17分钟、(c) 第18至47分钟、(d)、第55分钟。
图6是线谱稳定性条件与线谱消亡条件分析:(a)线谱稳定性条件;(b)线谱消亡条件;
图7是弱目标与强干扰交叉跟踪试验方案;
图8是本发明的方法运行结果(第16分钟)与AIS对比示意图;
图9是基于方位历程图的目标跟踪方法结果示意图:(a)试验数据的方位历程;(b)基于方位历程图的方法无法分辨弱目标
图10是LOFAR图和线谱方位航迹图:(a)是试验数据的LOFAR图;(b)各线谱的方位航迹。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本说明书所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
本发明提供的其中一个实施例是:基于线谱生命周期和单矢量水听器的多目标跟踪方法,该方法利用单矢量水听器的声压数据和振速水平分量数据进行方位估计,分析线谱状态并对线谱的生命周期进行管理,通过线谱聚类和目标航迹拟合实现目标的被动跟踪,流程如图1所示,具体包括以下步骤:
一、利用单矢量水听器的声压数据和振速水平分量数据进行方位估计
计算单矢量水听器P通道和Vx通道的共轭互谱,得到声强流谱Ix(f);计算P 通道和Vy通道的共轭互谱,得到声强流谱Iy(f)。对通带内所有频点进行方位估计得到频点方位θ(f),方位估计的表达式为:
Figure RE-GDA0002661770580000061
对每个频点进行能量估计得到频点功率谱强度
Figure RE-GDA0002661770580000062
能量估计的表达式为:
Figure RE-GDA0002661770580000063
二、建立线谱螺旋型生命周期模型,对生命周期中各阶段对内线谱进行相应处理,获取线谱信息集合
目标的低频线谱具有相对稳定性和各异性,可以作为目标的特征信息。原因如下,目标辐射噪声在低频段具有丰富的线谱成分,稳定度可达数十分钟;目标一般具有多个低频线谱,而且不同的目标拥有不同的线谱。因此,目标跟踪可以通过低频线谱的方位估计来实现。
此外,低频线谱存在从出现到消失的渐变过程,过程中有具有出生、成长、衰退、死亡等状态,具有生命周期的特点。根据线谱出现期间的状态,将线谱生命周期划分为5个阶段:出现,孕育,成长,消失和消亡。线谱可以在阶段间相互转化。此外,同一个目标的不同线谱间也有此消彼长的情况。因此,可以通过建立螺旋型模型对线谱进行管理。
1.建立线谱螺旋型生命周期模型
Figure RE-GDA0002661770580000071
中不仅有线谱,也有连续谱噪声和其它噪声成分,并且部分线谱叠加在连续谱上,因此在线谱提取时,需要先将趋势项从功率谱中去除。本文采用高斯平滑滤波器,提取连续谱分量的趋势项,同时为了克服在谱边界由于数据量小而导致的平滑失真的现象,采用最小二乘法提取边界趋势项。
拉平线谱之后,利用谱峰检测算法提取线谱频点,功率谱强度和方位等信息。
然后分析线谱的状态,确定其生命周期的阶段,建立线谱螺旋型生命周期模型:
A.出现阶段:线谱在谱峰检测算法中首次出现。
B.孕育阶段:经历出现阶段,线谱持续时间不满足稳定性条件,不能作为目标特征。
C.成长阶段:分为两种情况:
1.经历孕育或成长阶段,线谱持续时间满足稳定性条件,可以作为目标特征。
2.经历消失阶段,线谱在谱峰检测结果中重新出现,可以继续作为目标特征。
D.消失阶段:线谱出现之后,在谱峰检测结果中消失,不能作为目标特征。
E.消亡阶段:线谱长时间消失,满足消亡条件,不能继续作为目标特征。但该线谱的信息可以由同目标的其它线谱继承。
2.对线谱的生命周期进行管理
线谱的生命周期是指线谱从出现阶段开始,到消亡阶段终止的全过程。线谱在中间过程中具有三个阶段:孕育,成长和消失。线谱会在成长阶段和消失阶段间相互转化,也会在消亡阶段让同目标的其他线谱继承自己的信息。因此,可以通过螺旋型模型对线谱进行管理。
(1)出现阶段M1:创建
线谱在出现阶段的条件为:
Figure RE-GDA0002661770580000072
使得f∈F且f∈Ψi,其中F是线谱,S是线谱信息集合,f是线谱频点,Ψi是第i个时间片谱峰检测的结果。
创建F(f,e,a)并加入S中,其中e是线谱功率谱强度,a是线谱方位。
(2)孕育阶段M2:更新且不输出。
线谱在孕育阶段的条件为:
Figure RE-GDA0002661770580000081
使得f∈F且f∈Ψi,同时LF<T1,其中LF是F的时长,T1是稳定性条件。
在孕育阶段,更新F的信息,将ei和ai加入F,F不能作为目标特征。
(3)成长阶段M3:更新且输出。
线谱在成长阶段的条件为:
Figure RE-GDA0002661770580000082
使得f∈F且f∈Ψi,同时LF≥T1
在成长阶段,更新F的信息,F作为目标特征。
更新分为两种情况:
若:mi-1=M2或者M3,其中mi-1是F在第i-1个时段中所处的阶段;此时,将ei和ai加入F。
若:mi-1=M4;此时,需要回填F消失阶段的信息。
利用eh-1,eh和ei,通过二次多项式插值,求解eh+1,eh+2,…,ei-1其中 mh=M2或者M3且mh+1=M4。将eh+1,eh+2,…,ei加入F。
使用相同方法,将ah+1,ah+2,…,ai加入F。
(4)消失阶段M4:暂停
线谱在消失阶段的条件为:
Figure RE-GDA0002661770580000083
使得f∈F且
Figure RE-GDA0002661770580000084
同时KF<T2,其中KF是F的消失时长,T2是线谱消亡条件。
在消失阶段,F设为待定状态,不能作为目标特征。
(5)消亡阶段M5:删除
线谱在消亡阶段的条件为:
Figure RE-GDA0002661770580000085
使得f∈F且
Figure RE-GDA0002661770580000086
同时KF≥T2
在消亡阶段,将F从S中删除,其信息由同目标的其它线谱继承。
3.线谱信息继承
目标具有多个线谱,且线谱间存在此消彼长的情况,可以通过继承的方式,将一个处于消亡阶段的线谱的信息由同目标的其它线谱继承,延长目标跟踪时间。
通过评估集合S中各线谱的相似度,将相似的线谱聚类为一个目标。
设目标T包含线谱F1,…,Fn和Fd,其中Fd处于消亡阶段,则Fd的信息由F1,…, Fn,继承,分为两类:
A.重叠时段继承:
Figure RE-GDA0002661770580000091
Figure RE-GDA0002661770580000092
i=1,…,n,其中ta是绝对时段。继承后的功率谱强度信息
Figure RE-GDA0002661770580000093
通过公式(3)得到,继承后的方位信息
Figure RE-GDA0002661770580000094
通过公式(4)得到,
Figure RE-GDA0002661770580000095
Figure RE-GDA0002661770580000096
B.非重叠时段继承:
Figure RE-GDA0002661770580000097
三、目标跟踪
集合S中的线谱包括频点、功率谱强度、方位和是否可以作为目标特征等信息,通过相似度评估,将线谱聚类为若干个不同的目标,然后根据线谱的方位和功率谱强度,采用加权的方式拟合目标的方位航迹,实现多目标的跟踪。
1.线谱聚类
目标低频辐射噪声中包含多个线谱,这些线谱具有方位航迹相近,运动趋势相似的特点。在线谱可以作为目标特征的前提下,利用公式(6)评估线谱间的相似度。然后选择满足相似度要求的线谱,聚类为一个目标。
Figure RE-GDA0002661770580000098
其中,x和y表示线谱,x∈S,y∈S,且x≠y,ax和ay是线谱x和y时间重叠部分的方位值,lxy是线谱x和y时间重叠部分的长度。
2.目标航迹拟合
确定了目标的线谱之后,根据线谱的方位和功率谱强度,通过加权的方式拟合目标的方位航迹,实现目标的跟踪。该方法克服了因目标具有多个线谱可能引发的二义性错误。并且由于不同的目标的线谱成分不同,该方法也可以在目标与干扰存在方位航迹交叉或重叠时,对目标进行可靠的跟踪。
设目标T包含线谱F1,…,Fn,当前时段为
Figure RE-GDA0002661770580000099
目标的开始时段为:
λ=min(t1,…,tn) (7)
其中,t为线谱F的开始时段。
在时段i
Figure RE-GDA0002661770580000106
目标的功率谱强度Γi为:
Figure RE-GDA0002661770580000101
Figure RE-GDA0002661770580000102
其中,
Figure RE-GDA0002661770580000103
是线谱Fj在时段i的功率谱强度。
在时段i,目标的方位Θi为:
Figure RE-GDA0002661770580000104
其中,
Figure RE-GDA0002661770580000105
是线谱Fj在时段i的方位。
为验证本发明方法的实际效果,课题组在南海海域进行试验。
潜标搭载单个矢量水听器,布放深度约70米,该方法运行在潜标的单片机上,实时处理单矢量水听器的数据。采用两种实现方案对本发明的方法进行验证。
一、单目标跟踪试验
1.试验方案
试验目标在潜标北侧,东向西运动,速度为6节,试验方案如图2所示。试验期间有一艘货轮在潜标西北侧,远离潜标。
2.试验结果
分析数据时长约67分钟。本发明的方法中,线谱稳定性条件T1设定为10分钟,线谱消亡条件T2设定为8分钟,方法运行到第67分钟,输出2个目标的方位航迹,一个从340°运动到335°,另一个从50°运动到0°然后运动到290°,上述方位航迹与货轮、目标AIS的对比结果一致,如图3所示。
3.试验数据分析
试验数据分析期间,本发明的方法累计输出6个可以作为目标特征的线谱 (F1至F6),频点分别是F1=121Hz,F2=133Hz,F3=205Hz,F4=299Hz,F5=314Hz 和F6=329Hz。各线谱的出现时段详见表1。
表1.线谱出现时段
Figure RE-GDA0002661770580000111
通过试验数据的LOFAR图也能观察到各线谱的出现时段,如图4(a)所示。本发明的方法运行到在第67分钟,输出4个线谱:F3,F4,F5和F6,各线谱的方位航迹如图4(b)所示,通过线谱聚类和目标航迹拟合得到2个目标,如图3 所示。
由表1可知,F1在12至16分钟处于消失时段,长度约5分钟。本发明的方法通过对F1消失阶段的回填处理,解决了目标方位航迹中断的问题,如图4(c) 所示。
由表1可知,F3的出现时段为26至67分钟,长度约42分钟。本发明的方法通过对F1消亡阶段的继承处理,由同目标的线谱F3继承了F1的信息,延长了目标的跟踪时间,长度约67分钟,如图4(d)所示。
现就试验数据分析期间的F1的生命周期管理进行分析,其余线谱的处理方法相同。
第1分钟(出现阶段),谱峰检测结果中出现线谱频点121Hz,创建F1
第2至9分钟(孕育阶段),
Figure RE-GDA0002661770580000112
F1不能作为目标特征。
第10至11分钟(成长阶段),
Figure RE-GDA0002661770580000113
F1作为目标特征,如图5(a)所示。
第12至16分钟(消失阶段),谱峰检测结果中没有线谱频点121Hz且
Figure RE-GDA0002661770580000114
F1不能作为目标特征。
第17分钟(成长阶段),F1经历消失阶段后重新处于成长阶段,此时需要回填F1的信息,F1作为目标特征,如图5(b)所示。
第18至47分钟(成长阶段),
Figure RE-GDA0002661770580000115
F1作为目标特征,如图5(c)所示。
第48至54分钟(消失阶段),谱峰检测结果中没有线谱频点121Hz且
Figure RE-GDA0002661770580000121
F1不能作为目标特征。
第55分钟(消亡阶段),
Figure RE-GDA0002661770580000122
删除F1,F1的信息由同目标的其它线谱 (F2和F3)继承。通过继承处理,F2的时长由40分钟延长至55分钟,F3的时长由30分钟延长至55分钟,如图5(d)所示。
4.线谱稳定性条件与线谱消亡条件分析
线谱稳定性条件与线谱消亡条件是线谱生命周期管理中的阶段转移条件,现对其进行分析。
A.线谱稳定性条件T1
T1增大,会延长线谱孕育阶段,导致稳定度不长的线谱因不满足条件,无法进入成长阶段,不能作为目标特征,出现目标无法跟踪的问题。
T1减小,会缩短线谱孕育阶段,导致具有一定稳定度的噪声线谱因满足条件,进入成长阶段,作为目标特征,产生伪目标。例如,本文方法在第52分钟创建线谱Ft,其频点为99Hz,Ft持续到第58分钟,之后消失,如图4(a)的LOFAR 图所示。若T1=7,Ft会在第58分钟进入成长阶段,作为目标特征,如图6(a) 所示,从Ft的方位变化程度分析,Ft是噪声。
B.线谱消亡条件T2
T2增大,会延长线谱消失阶段,导致线谱持续处于消失阶段,即无法进入消亡阶段并删除线谱。当同频点线谱重现时(这个线谱已属于另一个目标),会误将两个目标的线谱关联成一个目标的线谱,并对消失阶段的线谱信息进行回填,引发目标跟踪错误。
T2减小,会缩短线谱消失阶段,导致线谱过早的进入消亡阶段,线谱被删除。当同频点线谱重现时,这个线谱还属于原目标,此时会误将一个目标的线谱分割为两个目标的线谱,引发目标跟踪错误。例如,若T2=5,F1会在第16分钟进入消亡阶段,然后在第17分钟重新出现,作为新的线谱进入出现阶段,创建线谱Fu,到达成长阶段后,作为目标特征,如图6(b)所示。
本发明的方法分析线谱状态,确定其生命周期的阶段,并做相应的处理,通过线谱信息回填和继承,解决了因线谱中断或消失所引起的目标跟踪失败的问题,延长了目标跟踪的时间;通过线谱聚类和目标航迹拟合,将相似的线谱聚类为一个目标,克服了单目标多线谱可能引发的二义性错误。经海试数据验证,该方法可靠的延长单目标跟踪时间,跟踪结果与实际情况一致,没有出现跟踪错误或者跟踪失败等问题。
二、弱目标与强干扰交叉跟踪试验
1.试验方案
强干扰自西北向东南运动,速度为8节;试验目标自东南向西北运动,速度为4节。二者行进到潜标西南方(约200°)时,相对潜标的方位一致(方位交叉),试验方案如图7所示。
2.试验结果
分析数据时长约17分钟。方法运行到第17分钟,输出2个目标方位航迹,一个从280°运动到180°,另一个从180°运动到215°。上述方位航迹与目标、强干扰AIS的对比结果一致,如图8所示。
3.试验数据分析
在有强干扰并且目标辐射噪声较弱的情况下,目标的特征难以体现在方位历程图中,无法通过状态模型预测或者对象特征分析的方式进行可靠的目标跟踪。图9(a)是试验数据的方位历程,干扰的能量较强,清晰可见,方位航迹从280°运动到180°;目标能量较弱,不易区分。原因是目标的辐射噪声较弱,在加权直方图中不能清晰的体现其特征。例如在第4分钟(图9(a)中矩形框位置) 的加权直方图方位估计中,能量峰值出现在275°,是强干扰的方位,此时,目标的方位约为180°,其能量值与255°,280°及335°等位置相似,无法可靠区分,如图9(b)所示。
图10(a)是试验数据的LOFAR图,由图可知,试验期间不仅存在29Hz,161Hz 和308Hz等强线谱,也有75Hz,118Hz和23Hz等弱线谱。本文方法运行到第17 分钟,输出4个线谱:F1至F4。频点分别是F1=75Hz,F2=29Hz,F3=161Hz和F4=308Hz,各线谱的方位航迹如图10(b)所示。通过线谱聚类和目标航迹拟合得到2个目标,如图8所示。
本发明的方法,建立了线谱的螺旋型生命周期模型,分析线谱的生命周期阶段,并做相应的处理,通过线谱聚类和目标航迹拟合,将相似的线谱聚类为一个目标。克服了在有强干扰的情况下目标跟踪失败的问题,解决了在目标与强干扰之间存在方位航迹交叉或重叠情况下可能产生的目标跟踪错误的问题。经海试数据验证,该方法可靠的跟踪多个目标,跟踪结果与实际情况一致,没有出现跟踪错误或者跟踪失败等问题。
针对水下目标被动跟踪的问题,提出了一种基于线谱螺旋型生命周期管理的多目标跟踪方法。通过分析线谱的状态,确定其生命周期的阶段并做出相应处理,通过线谱重现时的信息回填和线谱消亡时的信息继承,可靠的提高了跟踪的时效性;根据线谱的方位航迹和运动趋势,评估线谱的相似度,将方位航迹相近,运动趋势相似的线谱聚类为一个目标,克服了单目标多线谱可能导致的跟踪错误;根据线谱的方位和功率谱强度,采用加权的方式拟合目标的方位航迹,实现多目标的被动跟踪,解决了因目标与干扰的方位航迹存在交叉或重叠所产生的跟踪错误或者跟踪失败等问题。海试结果与数据分析结果表明,该方法可实时运行在潜标平台上,连续输出多目标方位航迹,目标跟踪结果与实际情况一致,在方位航迹断续,交叉和有强干扰的情况下,能够可靠的进行目标跟踪,有较强的实用性和环境适应性。
参考文献
【1】.惠俊英,刘宏,余华兵,范敏毅.声压振速联合信息处理及其物理基础初探[J].声学学报,2000;25(4):303-307.
【2】.惠俊英,李春旭,梁国龙,刘宏.声压和振速联合信号处理抗相干干扰 [J].声学学报,2000;25(5):389-394.
【3】.姚直象,惠俊英,殷敬伟,杨娟.基于单矢量水听器四种方位估计方法 [J].海洋工程,2006;24(1):122-131.
【4】.吴小强,潘丽丽.最小二乘法在纯方位目标跟踪中的应用[J].雷达与对抗,2016,36(04):12-14+68.
【5】.张维,尚玲.单矢量水听器水中多目标方位跟踪方法[J].国防科技大学学报,2017,39(2):114-119.
【6】.ANDERSON B D O,MOORE J B,ESLAMI M.Optimal filtering[M]. EnglewoodCliffs,NJ,US:Prentice-Hall,1979
【7】.吴林煌,苏凯雄,郭里婷等.基于自适应扩展卡尔曼滤波与神经网络的HPA预失真算法[J].自动化学报,2016,42(1):122-130.
【8】.孟祥萍,张本法,苑全德.自适应扩展卡尔曼滤波在移动机器人定位中的应用[J].计算机系统应用,2015,24(12):176-181.
【9】.JULIERS J,UHLMANN J K.New extension of the Kalman filtertononlinear systems[J].Proceedings of SPIE,Signal ProcessingSensor Fusion&Target Recognition VI,1997,3068:182-193.
【10】.UHLMANN J K.Algorithm for multiple target tracking[J]. AmericanScience,1992,80(2):128-141
【11】.马艳,刘小东.状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用[J].兵工学报,2019,40(02):361-368.
【12】.Gordon N J,Salmond D J,Smith A F M.Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J].Radar and Signal Processing,IEEProceedings F,1993,140(2):107-113.
【13】.LARA I B.Theory and applications of Monte Carlo simulations [J].Journal of Socioeconomic Engineering,2015(2):45-48
【14】.宋德枢.机动目标DOA跟踪粒子滤波算法研究[D].哈尔滨工程大学,2014.
【15】.金盛龙,李宇,黄海宁.水下多目标方位的联合检测与跟踪[J].声学学报,2019,44(04):503-512.
【16】.Hao Cui.Multi-Target Tracking Algorithm in DOA Matrix[C].中国自动化学会控制理论专业委员会.第37届中国控制会议论文集(C).中国自动化学会控制理论专业委员会:中国自动化学会控制理论专业委员会,2018:800-804.
【17】.李启虎,李敏,杨秀庭.水下目标辐射噪声中单频信号分量的检测:理论分析[J].声学学报(中文版),2008(03):193-196.
【18】.徐灵基,杨益新.水下运动目标线谱噪声源识别方法研究[J].电子与信息学报,2014,36(05):1119-1125.
【19】.李海涛,王易川,孙世林,程玉胜,程健.基于矢量线阵的目标低频线谱提取方法[J/OL].应用声学:1-8[2019-12-30]
【20】.姚直象.单矢量水听器信号处理研究[D].哈尔滨工程大学,2005.
【21】.李嘉兴.生命周期视角下移动社交网络老年用户使用行为过程研究 [D].吉林大学,2019。

Claims (9)

1.基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,包括:
利用单矢量水听器的声压数据和振速水平分量数据进行方位估计,得到频点方位θ(f)和频点功率谱强度
Figure FDA0002551749280000011
根据频点方位θ(f)和频点功率谱强度
Figure FDA0002551749280000012
建立线谱螺旋型生命周期模型;
根据所述的模型,分析线谱状态,确定其生命周期的阶段,对线谱进行处理,获得线谱信息集合;
对集合中的线谱进行相似度评估,将线谱聚类为若干个不同的目标;
根据线谱的方位和功率谱强度,拟合目标的方位航迹,实现多目标的跟踪。
2.根据权利要求1所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,所述线谱螺旋型生命周期模型包括:
出现阶段M1:线谱在谱峰检测算法中首次出现;
孕育阶段M2:经历出现阶段,且线谱持续时间不满足稳定性条件;
成长阶段M3:经历孕育或成长阶段,线谱持续时间满足稳定性条件,可以作为目标特征,或经历消失阶段,线谱在谱峰检测结果中重新出现,可以继续作为目标特征;
消失阶段M4:线谱出现之后,在谱峰检测结果中消失,不能作为目标特征;
消亡阶段M5:线谱长时间消失,满足消亡条件,不能继续作为目标特征。
3.根据权利要求2所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,所述对线谱进行处理,包括:
在出现阶段M1,创建F(f,e,a)并加入S中,其中f是线谱频点,e是线谱功率谱强度,a是线谱方位,F是线谱,S是线谱信息集合;线谱在出现阶段的条件为:
Figure FDA0002551749280000013
使得f∈F且f∈Ψi,Ψi是第i个时间片谱峰检测的结果;
在孕育阶段M2,更新F的信息,将ei和ai加入F,F不能作为目标特征,不输出;线谱在孕育阶段的条件为:
Figure FDA0002551749280000014
使得f∈F且f∈Ψi,同时LF<T1,其中LF是F的时长,T1是稳定性条件;
在成长阶段M3,更新F的信息,F作为目标特征,输出;线谱在成长阶段的条件为:
Figure FDA0002551749280000015
使得f∈F且f∈Ψi,同时LF≥T1
在消失阶段M4,F不能作为目标特征;线谱在消失阶段的条件为:
Figure FDA0002551749280000021
使得f∈F且
Figure FDA0002551749280000022
同时KF<T2,其中KF是F的消失时长,T2是线谱消亡条件;
在消亡阶段M5,将F从S中删除,其信息由同目标的其它线谱继承;线谱在消亡阶段的条件为:
Figure FDA0002551749280000023
使得f∈F且
Figure FDA0002551749280000024
同时KF≥T2
4.根据权利要求3所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,在成长阶段中,F的信息更新方法包括:
若mi-1=M2或者M3,其中mi-1是F在第i-1个时段中所处的阶段,此时,将ei和ai加入F;
若mi-1=M4,利用eh-1,eh和ei,通过二次多项式插值,求解eh+1,eh+2,…,ei-1,其中mh=M2或者M3,且mh+1=M4;将eh+1,eh+2,…,ei;ah+1,ah+2,…,ai加入F。
5.根据权利要求3所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,在消亡阶段,通过评估集合S中各线谱的相似度,将相似的线谱聚类为同一个目标,同目标的其他线谱继承被删除的F,设目标T包含线谱F1,…,Fn和Fd,其中Fd处于消亡阶段,则Fd的信息由F1,…,Fn继承。
6.根据权利要求5所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,重叠时段的继承为:
Figure FDA0002551749280000025
Figure FDA0002551749280000026
其中ta是绝对时段;
继承后的功率谱强度信息
Figure FDA0002551749280000027
的计算公式为:
Figure FDA0002551749280000028
继承后的方位信息
Figure FDA0002551749280000029
的计算公式为:
Figure FDA00025517492800000210
7.根据权利要求5所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,非重叠时段的继承为:
Figure FDA00025517492800000211
8.根据权利要求1-7任一项所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,所述的线谱聚类方法为:
提取集合S中,可以作为目标特征的线谱,利用相似度公式评估线谱间的相似度;
Figure FDA0002551749280000031
其中,x和y表示线谱,x∈S,y∈S,且x≠y,ax和ay是线谱x和y时间重叠部分的方位值,lxy是线谱x和y时间重叠部分的长度;
选择满足相似度要求的线谱,聚类为一个目标。
9.根据权利要求8所述的基于线谱生命周期和单矢量水听器的多目标跟踪方法,其特征在于,采用加权法拟合目标的方位航迹,具体为:
设目标T包含线谱F1,…,Fn,当前时段为θ;
目标的开始时段为:
λ=min(t1,...,tn) (7)
其中,t为线谱F的开始时段;
在时段i(i=λ,...,θ),目标的功率谱强度Γi为:
Figure FDA0002551749280000032
Figure FDA0002551749280000033
其中,
Figure FDA0002551749280000034
是线谱Fj在时段i的功率谱强度;
在时段i,目标的方位Θi为:
Figure FDA0002551749280000035
其中,
Figure FDA0002551749280000036
是线谱Fj在时段i的方位。
CN202010579144.2A 2020-06-23 2020-06-23 基于线谱生命周期和单矢量水听器的多目标跟踪方法 Active CN112114286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010579144.2A CN112114286B (zh) 2020-06-23 2020-06-23 基于线谱生命周期和单矢量水听器的多目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010579144.2A CN112114286B (zh) 2020-06-23 2020-06-23 基于线谱生命周期和单矢量水听器的多目标跟踪方法

Publications (2)

Publication Number Publication Date
CN112114286A true CN112114286A (zh) 2020-12-22
CN112114286B CN112114286B (zh) 2022-07-08

Family

ID=73799444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010579144.2A Active CN112114286B (zh) 2020-06-23 2020-06-23 基于线谱生命周期和单矢量水听器的多目标跟踪方法

Country Status (1)

Country Link
CN (1) CN112114286B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239775A (zh) * 2021-05-09 2021-08-10 西北工业大学 一种基于分层关注深度卷积神经网络的方位历程图中航迹检测与提取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279399A (zh) * 2009-12-25 2011-12-14 中国科学院声学研究所 一种基于动态规划的微弱目标频谱跟踪方法
CN102981146A (zh) * 2012-11-19 2013-03-20 哈尔滨工程大学 一种单矢量水听器被动定位方法
CN103293515A (zh) * 2012-11-19 2013-09-11 西北工业大学 一种舰船线谱噪声源纵向分布特性测量方法
CN107179535A (zh) * 2017-06-01 2017-09-19 东南大学 一种基于畸变拖曳阵的保真增强波束形成的方法
CN107886068A (zh) * 2017-11-10 2018-04-06 哈尔滨工程大学 一种基于时空域线谱增强器的未知线谱目标检测方法
CN109085595A (zh) * 2018-07-25 2018-12-25 西北工业大学 一种使用水听器接收信号估计空中运动声源速度的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279399A (zh) * 2009-12-25 2011-12-14 中国科学院声学研究所 一种基于动态规划的微弱目标频谱跟踪方法
CN102981146A (zh) * 2012-11-19 2013-03-20 哈尔滨工程大学 一种单矢量水听器被动定位方法
CN103293515A (zh) * 2012-11-19 2013-09-11 西北工业大学 一种舰船线谱噪声源纵向分布特性测量方法
CN107179535A (zh) * 2017-06-01 2017-09-19 东南大学 一种基于畸变拖曳阵的保真增强波束形成的方法
CN107886068A (zh) * 2017-11-10 2018-04-06 哈尔滨工程大学 一种基于时空域线谱增强器的未知线谱目标检测方法
CN109085595A (zh) * 2018-07-25 2018-12-25 西北工业大学 一种使用水听器接收信号估计空中运动声源速度的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239775A (zh) * 2021-05-09 2021-08-10 西北工业大学 一种基于分层关注深度卷积神经网络的方位历程图中航迹检测与提取方法

Also Published As

Publication number Publication date
CN112114286B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN109975879B (zh) 一种基于磁传感器阵列的磁偶极子目标跟踪方法
CN106772352B (zh) 一种基于Hough和粒子滤波的PD雷达扩展微弱目标检测方法
CN110209180B (zh) 一种基于HuberM-Cubature卡尔曼滤波的无人水下航行器目标跟踪方法
CN110501683B (zh) 一种基于四维数据特征的海陆杂波分类方法
CN110361744A (zh) 基于密度聚类的rbmcda水下多目标跟踪方法
Ma et al. Target tracking system for multi-sensor data fusion
CN102679980A (zh) 一种基于多尺度维分解的目标跟踪方法
CN115201799A (zh) 一种用于声呐的时变卡尔曼滤波跟踪方法
CN112114286B (zh) 基于线谱生命周期和单矢量水听器的多目标跟踪方法
CN113835069B (zh) 一种距离门拖引干扰的智能生成方法
Zhou et al. Multiple target tracking in urban environments
Lai et al. Bearings-only tracking and Doppler-bearing tracking with inequality constraint
Ristic et al. Gaussian mixture multitarget–multisensor Bernoulli tracker for multistatic sonobuoy fields
Coetzee et al. Multifunction radar resource management using tracking optimisation
Wilts et al. Enhanced state estimation based on particle filter and sensor data with non-gaussian and multimodal noise
CN111505567B (zh) 基于单矢量水听器波达方向估计的多目标跟踪方法
Su et al. Underwater passive manoeuvring target tracking with isogradient sound speed profile
CN108981707B (zh) 基于时差量测箱粒子phd的被动跟踪多目标方法
CN116047495B (zh) 一种用于三坐标雷达的状态变换融合滤波跟踪方法
Hu et al. Weak target tracking based on improved particle filter algorithm
Yang et al. Robust sequential adaptive Kalman filter algorithm for ultrashort baseline underwater acoustic positioning
CN102707278A (zh) 奇异值分解的多目标跟踪方法
Amiri et al. Underwater noise modeling and direction-finding based on heteroscedastic time series
CN109297478B (zh) 一种基于GM-CBMeMBer的光纤陀螺导航自适应滤波方法
Tian et al. Multi-acoustic array localization and tracking method based on Gibbs-GLMB

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant