CN112114068A - 一种同时测定蜜柚中6种糖苷类香气前体的方法 - Google Patents

一种同时测定蜜柚中6种糖苷类香气前体的方法 Download PDF

Info

Publication number
CN112114068A
CN112114068A CN202010983355.2A CN202010983355A CN112114068A CN 112114068 A CN112114068 A CN 112114068A CN 202010983355 A CN202010983355 A CN 202010983355A CN 112114068 A CN112114068 A CN 112114068A
Authority
CN
China
Prior art keywords
beta
glucoside
primrose
glycoside
geraniol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010983355.2A
Other languages
English (en)
Inventor
苏德森
郑云云
陈自强
黄锐敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Quality Standard And Testing Technology For Agro-Products Fujian Academy Of Agricultural Sciences
Original Assignee
Institute Of Quality Standard And Testing Technology For Agro-Products Fujian Academy Of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Quality Standard And Testing Technology For Agro-Products Fujian Academy Of Agricultural Sciences filed Critical Institute Of Quality Standard And Testing Technology For Agro-Products Fujian Academy Of Agricultural Sciences
Priority to CN202010983355.2A priority Critical patent/CN112114068A/zh
Publication of CN112114068A publication Critical patent/CN112114068A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种同时测定蜜柚中香叶醇β‑葡萄糖苷、香叶醇β‑樱草糖苷、芳樟醇β‑樱草糖苷、苯甲醇β‑樱草糖苷、2‑苯乙醇β‑樱草糖苷和橙花叔醇β‑樱草糖苷等6种糖苷类香气前体的UPLC‑MS/MS检测方法,包括提取、净化、配制基质标准工作溶液和采用UPLC‑MS/MS法进行测定步骤。本发明的测定方法能够有效提取蜜柚中的香叶醇β‑葡萄糖苷、香叶醇β‑樱草糖苷、芳樟醇β‑樱草糖苷、苯甲醇β‑樱草糖苷、2‑苯乙醇β‑樱草糖苷和橙花叔醇β‑樱草糖苷等6种糖苷类香气前体,并能进行定性定量测定。该方法快速、准确,灵敏度高,重现性好。

Description

一种同时测定蜜柚中6种糖苷类香气前体的方法
技术领域
本发明属于分析化学领域,具体涉及一种同时测定柚果中香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷等6种糖苷类香气前体的UPLC-MS/MS检测方法。
背景技术
植物中的风味化合物实质上是以非挥发性和无味糖配合物的形式存在的,而且在一些植物中发现的糖苷结合芳香化合物的浓度比游离的化合物高出几倍。为了长时间保持香味,许多水果或花卉可以通过糖苷酶的水解从糖苷香味前体中长期释放香气化合物。香叶醇、芳樟醇、橙花叔醇、苯甲醇和2-苯乙醇是各种植物的糖苷类香气前体。
柚子是我国南方广泛种植的柑桔栽培品种。柚子因其芳香可口、有益健康和药用价值而被认为是很有吸引力的水果,并被用作果酱和糖果的原料。柚子皮也加工成精油,因为会产生各种芳香化合物。香叶醇、芳樟醇、橙花叔醇、苯甲醇和2-苯乙醇是柚子香气的主要成分。然而,关于柚子中糖苷类成分的测定,尤其是糖苷类成分的测定,却鲜有报道。建立测定柚子中糖苷类香气前体的方法,研究糖苷类香气前体产生芳香化合物的机理,进而对柚子加工过程中的增香行为具有重要意义。
目前,植物叶、花和果实中糖苷类香气前体的检测方法主要有通过气相色谱-质谱(GC-MS)技术检测糖苷水解释放的苷元、气相色谱-质谱法通过检测三氟乙酸转化的糖苷类芳香前体衍生物。水解法可能会因为在水解过程中芳香异构体的重排以及缺乏糖基信息等因素而影响对糖苷类香气前体的定性定量分析。衍生法也存在着因糖苷类香气前体的衍生化不具有选择性而导致产品质量的差异的缺点。因此,建立一种直接测定蜜柚中糖苷类香气前体的检测方法尤为重要。
发明内容
本发明提供一种同时测定水果中香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷等6种糖苷类香气前体的UPLC-MS/MS检测方法。该方法首次利用超高压液相色谱-质谱联用仪,通过优化质谱条件和流动相,实现香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷的分离和同时测定。
本发明的目的是通过以下技术方案来实现的。
一种同时测定蜜柚中糖苷类香气前体的方法,包括如下步骤:
(1) 提取:称取打碎后的蜜柚样品2 g至50 mL离心管中,加入20 mL甲醇,在10000 r/min条件下均质2分钟;然后超声提取20 min,再4500 r/min下离心5 min,上清液转移至另一新的离心管中;上清液通过0.22μm有机膜过滤至进样小瓶,供高效液相色谱----串联质谱仪测定;
(2)配制基质标准工作溶液在甲醇中以1 mg/mL的浓度制备香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷的储备溶液;将这些储备溶液混合,然后稀释以产生连续校准标准溶液;在甲醇中制备标准混合物,配制至少五个浓度的糖苷系列基质标准工作溶液储备溶液和校准标准溶液在-18℃下保存;
(3)液相色谱-串联质谱法LC-MS/MS测定
质谱检测使用多反应监测扫描模式,香叶醇β-葡萄糖苷的母离子361.1,子离子分别为361.1;香叶醇β-樱草糖苷的母离子493.1,子离子分别为149.1和89.1;芳樟醇β-樱草糖苷的母离子493.1, 子离子分别为315.1和161.1;苯甲醇β-樱草糖苷的母离子447.0,子离子分别为401.1和269.1;2-苯乙醇β-樱草糖苷的母离子461.1,子离子分别为415.1和149.1;橙花叔醇β-樱草糖苷的母离子561.1,子离子分别为515.2和383.2;
定量测定:将步骤(2)中系列基质标准工作液进行LC-MS/MS测定,以基质标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线;在相同条件下将步骤(1) 中样品液注入LC-MS/MS进行测定,测得样品液中糖苷类化合物的色谱峰面积,代入标准曲线,得到样品液中糖苷类药物含量,然后根据样品液所代表试样的质量计算得到样品中糖苷类药物残留量;
定性测定:检测步骤(1)中样品液中目标化合物母离子和子离子对,若其离子色谱峰保留时间与标准工作溶液一致;且样品液中目标化合物的两个子离子的相对丰度与浓度相当,则判断该样品中存在该种目标化合物;若上述两个条件不能同时满足,则判断不含该种目标化合物;所述的6种糖苷类香气前体是香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷;
液相色谱条件为,色谱柱:Shim-pack GIST C18柱(2.0um,2.1mm×100mm);流速:0.3mL/min;柱温:40℃;样品盘温度:15℃;进样量:2μL;流动相A为0.1%(V/V)甲酸水溶液,流动相B为乙腈;
梯度洗脱条件为:0 min,10% B;3 min,25% B;9 min,40% B;11 min,90% B;12 min,90% B;12 min,10% B,16 min,10% B;
质谱条件如下:离子源:电喷雾离子源ESI;扫描方式:负离子扫描;检测方式:多反应监测扫描模式;气压电离(API)气体:氮气(纯度>95%,压力600-900kpa);碰撞气体:高纯氩;界面电压:3.0 kv;界面温度:300 ℃;脱溶剂温度:250 ℃;干燥气:10 L/min,雾化气:3 L/min,加热气:10 L/min,热块温度:400 ℃。
本发明的有益效果:本发明的测定方法能够有效提取蜜柚中香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷等6种糖苷类香气前体,首次利用超高压液相色谱-质谱联用仪,通过优化色谱条件和质谱条件,实现蜜柚中香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷等6种糖苷类香气前体的提取、分离和快速检出,方法快速、准确,灵敏度高,重现性好。
附图说明
图1为6种糖苷类香气前体的结构式;
图2为本发明6种糖苷类香气前体的色谱图;1.香叶醇β-葡萄糖苷,2.香叶醇β-樱草糖苷,3.芳樟醇β-樱草糖苷,4.苯甲醇β-樱草糖苷,5.2-苯乙醇β-樱草糖苷,6.橙花醇β-樱草糖苷;
图3为本发明6种糖苷类香气前体测定的超高液相质谱图;1.香叶醇β-葡萄糖苷,2.香叶醇β-樱草糖苷,3.芳樟醇β-樱草糖苷,4.苯甲醇β-樱草糖苷,5.2-苯乙醇β-樱草糖苷,6.橙花醇β-樱草糖苷。
具体实施方式
本发明以下将结合实施例作进一步描述,但并不限制本发明:
实施例1
①样品提取:取已研磨的新鲜柚子花样品2.0 g置于50 mL离心管中,加入20 mL甲醇作为溶剂,在10000 r/min条件下均质2 min,超声提取20 min后,在4500 r/min离心分离,以0.22μm的尼龙滤膜过滤,制得试样。
②测定:采用UPLC-MS/MS法进行测定,仪器条件如下:
液相色谱条件为,色谱柱:Shim-pack GIST C18柱(2.0um,2.1mm×100mm);流速:0.3mL/min;柱温:40℃;样品盘温度:15℃;进样量:2μL;流动相A为0.1%(V/V)甲酸水溶液,流动相B为乙腈;
梯度洗脱条件为:0 min,10% B;3 min,25% B;9 min,40% B;11 min,90% B;12 min,90% B;12 min,10% B,16 min,10% B;
质谱条件如下:离子源:电喷雾离子源ESI;扫描方式:负离子扫描;检测方式:多反应监测扫描模式;气压电离(API)气体:氮气(纯度>95%,压力600-900kpa);碰撞气体:高纯氩;界面电压:3.0 kv;界面温度:300 ℃;脱溶温度:250 ℃;干气:10 L/min,雾化气:3 L/min,热气:10 L/min,热块温度:400 ℃。
测定结果显示:柚花中香叶醇β-葡萄糖苷的含量为470.8 µg/kg、香叶醇β-樱草糖苷的含量为1252.9 µg/kg、芳樟醇β-樱草糖苷的含量为65.0 µg/kg、苯甲醇β-樱草糖苷241.3的含量为 µg/kg、2-苯乙醇β-樱草糖苷的含量为30.8 µg/kg和橙花叔醇β-樱草糖苷的含量为134.2 µg/kg。
表1 糖苷类香气前体物的质谱参数
Figure DEST_PATH_IMAGE001
表2 6种糖苷香气前体测试的工作曲线相关参数表
Figure DEST_PATH_IMAGE002

Claims (5)

1.一种同时测定蜜柚中6种糖苷类香气前体的方法,其特征在于:包括如下步骤:
(1) 提取:称取打碎后的蜜柚样品2 g至50 mL离心管中,加入20 mL甲醇,在10000 r/min条件下均质2分钟;然后超声提取20 min,再4500 r/min下离心5 min,上清液转移至另一新的离心管中;上清液通过0.22μm有机膜过滤至进样小瓶,供高效液相色谱----串联质谱仪测定;
(2)配制基质标准工作溶液在甲醇中以1 mg/mL的浓度制备香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷的储备溶液;将这些储备溶液混合,然后稀释以产生连续校准标准溶液;在甲醇中制备标准混合物,配制至少五个浓度的糖苷系列基质标准工作溶液储备溶液和校准标准溶液在-18℃下保存;
(3)液相色谱-串联质谱法LC-MS/MS测定
定量测定:将步骤(2)中系列基质标准工作液进行LC-MS/MS测定,以基质标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线;在相同条件下将步骤(1) 中样品液注入LC-MS/MS进行测定,测得样品液中糖苷类化合物的色谱峰面积,代入标准曲线,得到样品液中糖苷类药物含量,然后根据样品液所代表试样的质量计算得到样品中糖苷类药物残留量;
定性测定:检测步骤(1)中样品液中目标化合物母离子和子离子对,若其离子色谱峰保留时间与标准工作溶液一致;且样品液中目标化合物的两个子离子的相对丰度与浓度相当,则判断该样品中存在该种目标化合物;若上述两个条件不能同时满足,则判断不含该种目标化合物;所述的6种糖苷类香气前体是香叶醇β-葡萄糖苷、香叶醇β-樱草糖苷、芳樟醇β-樱草糖苷、苯甲醇β-樱草糖苷、2-苯乙醇β-樱草糖苷和橙花叔醇β-樱草糖苷。
2.根据权利要求1所述的一种同时测定蜜柚中6种糖苷类香气前体的方法,其特征在于:质谱检测使用多反应监测扫描模式,香叶醇β-葡萄糖苷的母离子361.1,子离子分别为361.1;香叶醇β-樱草糖苷的母离子493.1,子离子分别为149.1和89.1;芳樟醇β-樱草糖苷的母离子493.1, 子离子分别为315.1和161.1;苯甲醇β-樱草糖苷的母离子447.0,子离子分别为401.1和269.1;2-苯乙醇β-樱草糖苷的母离子461.1,子离子分别为415.1和149.1;橙花叔醇β-樱草糖苷的母离子561.1,子离子分别为515.2和383.2。
3.根据权利要求1所述的一种同时测定蜜柚中6种糖苷类香气前体的方法,其特征在于:液相色谱条件为,色谱柱:Shim-pack GIST C18柱,2.0um,2.1mm×100mm;流速:0.3 mL/min;柱温:40℃;样品盘温度:15℃;进样量:2μL;流动相A为0.1%(V/V)甲酸水溶液,流动相B为乙腈。
4.根据权利要求1所述的一种同时测定蜜柚中6种糖苷类香气前体的方法,其特征在于:梯度洗脱条件为:0 min,10% B;3 min,25% B;9 min,40% B;11 min,90% B;12 min,90%B;12 min,10% B,16 min,10% B。
5.根据权利要求1所述的一种同时测定蜜柚中6种糖苷类香气前体的方法,其特征在于:质谱条件如下:离子源:电喷雾离子源ESI;扫描方式:负离子扫描;检测方式:多反应监测扫描模式;气压电离API气体:氮气纯度>95%,压力600-900kpa;碰撞气体:高纯氩;界面电压:3.0 kv;界面温度:300 ℃;脱溶剂温度:250 ℃;干燥气:10 L/min,雾化气:3 L/min,加热气:10 L/min,热块温度:400 ℃。
CN202010983355.2A 2020-09-18 2020-09-18 一种同时测定蜜柚中6种糖苷类香气前体的方法 Pending CN112114068A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010983355.2A CN112114068A (zh) 2020-09-18 2020-09-18 一种同时测定蜜柚中6种糖苷类香气前体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010983355.2A CN112114068A (zh) 2020-09-18 2020-09-18 一种同时测定蜜柚中6种糖苷类香气前体的方法

Publications (1)

Publication Number Publication Date
CN112114068A true CN112114068A (zh) 2020-12-22

Family

ID=73799908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010983355.2A Pending CN112114068A (zh) 2020-09-18 2020-09-18 一种同时测定蜜柚中6种糖苷类香气前体的方法

Country Status (1)

Country Link
CN (1) CN112114068A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023692A (ja) * 1998-07-14 2000-01-25 Nippon Shokuhin Kako Co Ltd β−グルコシドの製造方法
AU2005229753A1 (en) * 2005-11-08 2007-05-24 Alice Wai Fun Ma A botanical composition for aiding optimal health and prevention of illness
WO2015197841A1 (en) * 2014-06-27 2015-12-30 Technische Universität München Method and kit for the identification of glycosyl transferase substrates
CN108693257A (zh) * 2018-03-05 2018-10-23 浙江大学 直接检测茶叶糖苷结合态香气前体物质的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023692A (ja) * 1998-07-14 2000-01-25 Nippon Shokuhin Kako Co Ltd β−グルコシドの製造方法
AU2005229753A1 (en) * 2005-11-08 2007-05-24 Alice Wai Fun Ma A botanical composition for aiding optimal health and prevention of illness
WO2015197841A1 (en) * 2014-06-27 2015-12-30 Technische Universität München Method and kit for the identification of glycosyl transferase substrates
CN108693257A (zh) * 2018-03-05 2018-10-23 浙江大学 直接检测茶叶糖苷结合态香气前体物质的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANDREW J. CAFFREY 等: "Direct Analysis of Glycosidic Aroma Precursors Containing Multiple Aglycone Classes in Vitis vinifera Berries", 《J. AGRIC. FOOD CHEM.》 *
JILAI CUI 等: "Characteristic Fluctuations in Glycosidically Bound Volatiles during Tea Processing and Identification of Their Unstable Derivatives", 《J. AGRIC. FOOD CHEM.》 *
R. FLAMINI 等: "Combining liquid chromatography and tandem mass spectrometry approaches to the study of monoterpene glycosides (aroma precursors) in wine grape", 《J. MASS SPECTROM.》 *
周洁 等: "茶叶中的糖苷类香气前体物质研究进展", 《信阳师范学院学报(自然科学版)》 *
李朋亮: "基于修饰代谢组学的绿茶中糖苷类品质成分研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
路欣 等: "凤凰单丛香气及糖苷类香气前体变化研究", 《食品安全质量检测学报》 *

Similar Documents

Publication Publication Date Title
Baldi et al. HPLC/MS application to anthocyanins of Vitis vinifera L.
Natić et al. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia
Heier et al. Anthocyanin analysis by HPLC/Esi-MS
Dungey et al. Quantitative analysis of glycoconjugate precursors of guaiacol in smoke-affected grapes using liquid chromatography–tandem mass spectrometry based stable isotope dilution analysis
Tian et al. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles
Mulat et al. Rapid chemical characterisation of stilbenes in the root bark of Norway spruce by off‐line HPLC/DAD–NMR
Scorrano et al. Anthocyanins profile by Q-TOF LC/MS in Myrtus communis berries from Salento Area
Li et al. Determination and comparison of flavonoids and anthocyanins in Chinese sugarcane tips, stems, roots and leaves
Yan et al. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS
CN107664670B (zh) 玉米中种菌唑残留的超高效液相色谱-串联质谱检测方法
CN106645480B (zh) 一种蓝莓中花青苷类物质的检测分析方法
CN108693257A (zh) 直接检测茶叶糖苷结合态香气前体物质的方法
Qiao et al. Comprehensive chemical analysis of triterpenoids and polysaccharides in the medicinal mushroom Antrodia cinnamomea
Andruszkiewicz et al. Novel Amadori and Heyns compounds derived from short peptides found in dried cocoa beans
CN111912926A (zh) 一种超高效液相色谱—串联质谱法测定稻米中还原型谷胱甘肽含量的方法
Yuan et al. The simultaneous analysis of Amadori and Heyns compounds in dried fruits by high performance liquid chromatography tandem mass spectrometry
Papageorgiou et al. Analytical methods for the determination of alkannins and shikonins
CN108445131B (zh) 一种食用槟榔中主要成分的检测方法
CN112114079B (zh) 一种同时检测使君子中9种化学成分的方法
Di Matteo et al. Phytochemical characterization of malt spent grain by tandem mass spectrometry also coupled with liquid chromatography: bioactive compounds from brewery by-products
CN112114068A (zh) 一种同时测定蜜柚中6种糖苷类香气前体的方法
Chandraju et al. Liquid Chromatography/Mass spectroscopy and TLC analysis for the identification of sugars extracted from the outer skin of Almond fruit (Prunus dulcis)
Chandraju et al. Separation & identification of simple sugar metabolites from non-edible Pomegranate (Punica granatum L.) via TLC and on-line Electrospray Mass Spectrometry
Su et al. Simultaneous determination of six glycosidic aroma precursors in pomelo by ultra-high performance liquid chromatography-tandem mass spectrometry
CN115480017A (zh) 一种高分辨质谱测定六堡茶中氨基酸类化合物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201222

RJ01 Rejection of invention patent application after publication