CN112109773A - 一种基于h∞和多目标优化的列车速度控制方法 - Google Patents

一种基于h∞和多目标优化的列车速度控制方法 Download PDF

Info

Publication number
CN112109773A
CN112109773A CN202010905781.4A CN202010905781A CN112109773A CN 112109773 A CN112109773 A CN 112109773A CN 202010905781 A CN202010905781 A CN 202010905781A CN 112109773 A CN112109773 A CN 112109773A
Authority
CN
China
Prior art keywords
train
resistance
vehicle
follows
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010905781.4A
Other languages
English (en)
Other versions
CN112109773B (zh
Inventor
张辉
陶斯友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202010905781.4A priority Critical patent/CN112109773B/zh
Publication of CN112109773A publication Critical patent/CN112109773A/zh
Application granted granted Critical
Publication of CN112109773B publication Critical patent/CN112109773B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/08Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only
    • B61L23/14Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only automatically operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C15/00Maintaining or augmenting the starting or braking power by auxiliary devices and measures; Preventing wheel slippage; Controlling distribution of tractive effort between driving wheels
    • B61C15/14Maintaining or augmenting the starting or braking power by auxiliary devices and measures; Preventing wheel slippage; Controlling distribution of tractive effort between driving wheels controlling distribution of tractive effort between driving wheels

Abstract

本发明提供了一种基于H∞和多目标优化的列车速度控制方法,属于控制算法领域,首先构建列车运行阻力计算模型,和单质点的列车运动学模型,然后利用拉格朗日展开方法将模型进行线性化,引入参考速度把模型改变成跟踪误差模型。在此基础上,设计状态反馈控制器,通过优化控制误差和系统干扰的H∞指标,用LMI工具求解控制器的反馈增益,然后计算总的驱动力和制动力。构建列车多质点运动学模型和钩缓装置拉力模型,从而得到每节车厢的动力学模型。本发明利用多胞体的方法处理动力学模型的参数不确定性,和H∞的控制方法保证在所有运行情况下驱动力或制动力控制的鲁棒性。

Description

一种基于H∞和多目标优化的列车速度控制方法
技术领域
本发明属于控制算法领域,具体是一种基于H∞和多目标优化的列车速度控制方法。
背景技术
近年来,列车的设计速度一直有提高的趋势,最新设计的磁悬浮列车时速可达600千米每小时。因为列车便利性、可靠性、安全性和准点率都比较高的原因,列车成为越来越多人中长距离出行的首选交通工具。
与此同时,为了提高列车乘坐舒适性和安全性,列车的整体设计变得日益复杂。加之列车速度越来越快,所有操作仅由列车驾驶员来完成变得非常困难。随着自动化技术和自动驾驶技术的出现与发展,一系列列车的自动监控与控制技术成功应用在列车上。
自动运行系统(ATO)是其中的一个重要子系统,主要用于实现列车运行的自动行驶、速度的自动调整和列车车门等装置的开关。列车的速度不仅关乎着列车是否能准时到达目的地,还和列车的能耗与安全密切相关。因此,设计一种精确跟踪目标速度的控制器,对列车自动驾驶技术的发展有着重要意义。
列车速度控制是一个非线性且复杂的问题,主要存在以下几个难点:首先,列车编组一般由4节以上的车厢组成,同一时刻不同车厢可能运行在不同的路况。其次,仅部分车厢可以提供动力,因此不同车厢的动力学特性差别较大。再次,列车上下客频繁,整体质量变化较大,并且乘客在不同车厢分布不均匀。最后,列车能提供的最大驱动力或制动力受限于钢轨的附着情况和列车传动系统的工作状态。
这些不确定性不仅导致难以计算列车总的驱动力(或制动力),并且可能引起部分车厢不能提供计算出的目标驱动力(或制动力),最终难以控制列车准确跟踪上目标速度。
发明内容
针对以上列车速度控制中存在的问题,本发明提出一种基于H∞和多目标优化的列车速度控制方法,基于线性时变列车动力学模型的H∞控制策略用于计算列车需要的总的驱动力(或制动力),然后用多目标优化的方法对列车编组各节车厢的驱动力(或制动力)进行控制分配,以达到准确控制列车速度的目标。具体步骤如下:
步骤一、充分考虑列车外形和编组长度对列车阻力的影响,根据列车多质点模型建立列车编组阻力模型;
列车编组阻力包括基本阻力和附加阻力;其中附加阻力包括了坡道阻力、曲线阻力和隧道阻力。
基本阻力F0的计算公式如下:
Figure BDA0002661395220000021
其中,rb是轴颈半径;φ是轴承摩擦系数;RL是车轮半径;σ是比例系数;b是一次系数;ρ是流体密度;S为迎风面积;v为列车速度;n是车厢节数;C1是车头空气阻力系数;d为列车动力直径(4×迎风面积/迎风面周长);L为列车总长度;m为列车质量;g为重力加速度。
隧道阻力Ft的计算公式如下:
Ft=1.16Lv2R2-0.74Lv2R+3.54LvR2-2.68LvR+0.13Lv2+39.79LR2+4.86v2R2-2.88v2R+13.42vR2+0.47Lv-26.4LR+5.99vR+0.3v2+15.62R2+4.64L-0.77R-0.92v-31.14 (2)
R是隧道阻塞比;
坡道阻力Fr的计算公式如下:
Figure BDA0002661395220000022
ri为第i个坡道的坡度;li为在第i个坡道上车身的长度;N为列车车身所处坡道的总数;
曲线阻力Fc的计算公式如下:
Figure BDA0002661395220000023
A0是经验常数;lj是处在第j个弯道上车身的长度;Rj是第j个弯道曲线半径;M是列车车身所处弯道的总数。
步骤二、把列车当作单质点,将所有阻力合并,构建列车总的动力学模型并简化,利用拉格朗日算法将动力学模型在运行速度进行展开,转化成线性模型;
列车的动力学方程,简化式如下:
Figure BDA0002661395220000024
其中c0,c1,c2均为常数,其计算公式如下:
Figure BDA0002661395220000025
c1=-bg-3.54LR2+2.68LR-13.42R2-0.47L-5.99R-0.92 (7)
Figure BDA0002661395220000026
Figure BDA0002661395220000027
式中v0是列车当前速度,F为列车系统的输入。
线性模型具体形式如下:
Figure BDA0002661395220000028
w为系统未知扰动。
步骤三、利用凸多面体的方法把线性模型中的时变参数用顶点值表示,引入理想参考速度,把系统扩展成偏差为状态变量的形式,选择状态反馈控制方法,得到闭环系统方程;
将c1+2c2v0设为参数A,将
Figure BDA0002661395220000031
设为参数B,A和B都是有界的时变参数;
时变参数A和B用顶点值表示形式如下:
Figure BDA0002661395220000032
Figure BDA0002661395220000033
式中,Api∈[Amin Amax],Bpi∈[Bmin Bmax]分别对应参数A和B的顶点值;α是时变参数A的系数,β是时变参数B的系数,且满足
Figure BDA0002661395220000034
Figure BDA0002661395220000035
闭环系统公式如下:
Figure BDA0002661395220000036
其中:
Figure BDA0002661395220000037
式中,ξ是系统状态,vr是理想的参考速度,K是控制器的反馈增益。
步骤四、选择H∞指标,利用LMI工具求解反馈增益,得到列车系统总的驱动力或制动力。
H∞指标如下:
Figure BDA0002661395220000038
式中γ1和γ2是两个大于零常数的H∞指标;
总的驱动力或制动力F
F=YPξ (16)
式中P是一个正定矩阵,Y=KP-1
步骤五、判断F是否大于0,如果是,则为总系统的驱动力,否则为制动力,考虑每节车厢能提供的最大驱动力和制动力,以及使相邻两车厢间钩缓装置力之和最小时,利用多目标优化的方法对每节车厢的驱动力或制动力进行分配。
本发明的优点在于:
1)本发明一种基于H∞和多目标优化的列车速度控制方法,结合了多质点和单质点列车模型的优点,一方面精准计算了运动阻力,另一方面对动力学模型进行简化。
2)本发明一种基于H∞和多目标优化的列车速度控制方法,利用多胞体的方法处理动力学模型的参数不确定性,和H∞的控制方法保证在所有运行情况下驱动力或制动力控制的鲁棒性。
3)本发明一种基于H∞和多目标优化的列车速度控制方法,采用先计算总的驱动力或制动力,然后再根据列车实际情况进行分配的方案,减少了控制计算的复杂度。
4)本发明一种基于H∞和多目标优化的列车速度控制方法,在驱动力或制动力分配时同时考虑了车厢能提供的最大驱动力或制动力,并且优化两车间偶合力之和,可以在减少钩缓装置受力的同时最大限度地有效执行分配的驱动力或制动力。
附图说明
图1为本发明一种基于H∞和多目标优化的列车速度控制方法的流程图;
图2为本发明不同车厢位于不同坡道的示意图;
图3为本发明单质点列车模型受力分析示意图;
图4为本发明多质点列车受力分析示意图。
具体实施方案
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明基于H∞和多目标优化分配的方法对列车总的驱动力和制动力进行控制,在减少钩缓装置磨损的前提下精确跟踪目标速度,首先建立列车的阻力模型,用于精确计算列车实时的运动阻力;其次在单质点模型的基础上构建列车动力学模型,然后在实时速度处进行拉格朗日展开,把非线性模型转化为线性模型;再利用多胞体技术将不确定参数分解,然后引入理想速度为系统参考输入,把系统扩展成偏差为状态变量的形式,设计H∞优化指标,求解状态反馈增益,以得到列车总的驱动力或制动力;最后建立钩缓装置力模型,设计优化指标和其他优化目标,对列车各节车厢的驱动力或制动力进行分配。
如图1所示,具体实施步骤如下:
步骤一、充分考虑列车外形和编组长度对列车阻力的影响,根据列车多质点模型建立列车编组阻力模型;
分析列车各种阻力形成的原因,构建列车各种阻力模型:列车的阻力由列车运行产生的阻力和道路产生的附加阻力组成。基本阻力构成动车和车辆的零部件之间的运动阻力、运行中的空气阻力,以及车轮与钢轨的摩擦和冲击等。
阻力模型如公式:
Figure BDA0002661395220000041
式中F0是基本阻力(kN);rb是轴颈半径(m);φ是轴承摩擦系数;RL是车轮半径(m);σ是比例系数;b是一次系数;ρ是流体密度(kg/m3);S为迎风面积(m2);v为列车速度(m/s);n是车厢节数;C1是车头空气阻力系数;d为列车动力直径(4×迎风面积/迎风面周长);L为列车总长度(m);m为列车质量(t);g为重力加速度(m/s2);
列车的附加阻力根据产生的机制不同,可以分为坡道阻力、曲线阻力和隧道阻力。坡道阻力是由于列车在坡度上运行时,受到重力沿轨道方向的分力的影响产生的附加阻力。因为列车比较长,可能同时在几个坡度不同的坡道上,如附图2所示。因此,需要考虑列车位于不同坡道上的长度,坡道阻力的计算如公式:
Figure BDA0002661395220000051
Fr为坡道阻力(kN);ri为第i个坡道的坡度(‰);li为在第i个坡道上车身的长度(m);N为列车车身所处坡道的总数;
曲线阻力和坡道阻力的建模方法类似,具体计算如公式:
Figure BDA0002661395220000052
Fc为曲线阻力(kN);A0是经验常数;lj是处在第j个弯道上车身的长度(m);Rj是第j个弯道曲线半径;M是列车车身所处弯道的总数。
隧道空气附加阻力形成的主要原因是因为活塞效应而产生,主要影响因素是阻塞比、列车长度和列车运行速度,具体计算如公式:
Ft=1.16Lv2R2-0.74Lv2R+3.54LvR2-2.68LvR+0.13Lv2+39.79LR2+4.86v2R2-2.88v2R+13.42vR2+0.47Lv-26.4LR+5.99vR+0.3v2+15.62R2+4.64L-0.77R-0.92v-31.14 (4)
Ft为隧道阻力(kN);R是隧道阻塞比;
步骤二、忽略各车厢间偶合力的影响,把列车当作一个质点,将所有阻力合并为一个合力,根据牛顿第二定律对列车做力分析,构建列车总的动力学模型并简化;利用拉格朗日算法对动力学模型在运行速度进行展开,将其转化成线性模型;
如图3所示,把列车当作一个质点,对列车做力分析,得到列车的动力学方程如下:
Figure BDA0002661395220000053
式中,F为列车提供的总的驱动力或制动力,F为阻力的合力(F=F0+Ft+Fr+Fc)。
对于一个选定的列车编组,阻力公式中有很多是参数是常数,把公式(5)简化为:
Figure BDA0002661395220000054
其中,c0,c1,c2均为常数:
Figure BDA0002661395220000055
c1=-bg-3.54LR2+2.68LR-13.42R2-0.47L-5.99R-0.92 (8)
Figure BDA0002661395220000056
Figure BDA0002661395220000057
可以看到简化后的列车动力学模型是一个非线性模型,首先利用拉格朗日方法在当前速度点进行展开,对系统进行线性化,线性模型具体形式如下:
Figure BDA0002661395220000061
式中v0是列车当前速度(km/h),w=w0+c0-c2v0 2为系统未知扰动,F为系统输入(kN)。
步骤三、线性模型公式中的c1+2c2v0设为参数A,
Figure BDA0002661395220000062
设为参数B,两参数是时变且有界的,利用凸多面体的方法把时变的参数用顶点值表示的形式,引入理想参考速度,把系统扩展成偏差为状态变量的形式,选择状态反馈控制方法,得到闭环系统方程;
公式(11)是一个参数时变的线性化模型,其中时变的参数为速度v0和质量m。但是这两个参数是可测量的,并且根据列车设计,速度和质量均是在一个合理的范围内变化,也就是A和B在确定的范围内变化。时变参数A和B用凸多面体的方法进行表示,顶点值表示形式如下:
Figure BDA0002661395220000063
Figure BDA0002661395220000064
式中,Api=[Amin Amax],Bpi=[Bmin Bmax]下角标min和max分别表示最小值和最大值;α和β分别是两个时变的系数,且满足
Figure BDA0002661395220000065
Figure BDA0002661395220000066
因为控制的目标是使实际速度和参考速度的偏差最小,假设理想的参考速度为vr,则跟踪的偏差可以定义为v-vr。取状态系统的变量为v-vr
Figure BDA0002661395220000067
则系统(11)可以写成:
Figure BDA0002661395220000068
其中系统状态ξ为:
Figure BDA0002661395220000069
Figure BDA00026613952200000610
设计状态反馈控制器的输入为:
F=Kξ (17)
式中K为系统反馈增益。
因此可得闭环系统如公式:
Figure BDA00026613952200000611
其中:
Figure BDA0002661395220000071
步骤四、选择合适的H∞指标,根据H无穷控制器设计方法,利用LMI公式求解反馈增益,最终得到总的驱动力或制动力;
控制器的控制目标是在减小两项干扰项对系统跟踪偏差的影响,所以选择以下H∞指标:
Figure BDA0002661395220000072
式中γ1和γ2是H∞指标,是两个大于零常数。性能指标γ1和γ2时闭环系统(18)稳定的条件是存在正定矩阵P,并设X=P-1,Y=KX,需要满足以下矩阵不等式:
Figure BDA0002661395220000073
在给定γ1值得条件下,利用LMI工具求解出正定矩阵P和Y,使得指标γ2最小,最终可以求得反馈增益:
K=YP (22)
步骤五、判断F车是否大于0,如果是,则为总系统的驱动力,否则为制动力,考虑以下两个因素:一是每节车厢能提供的最大驱动力和制动力,二是使相邻两车厢间钩缓装置力之和最小,利用多目标优化的方法对驱动力或制动力进行分配。
列车编组一般是由能提供动力的动车和没有动力的拖车通过钩缓装置连接组成。因为每一节车厢的路况和在编组中的位置不同,因此每一节车厢的受阻力情况不同,车厢的受力分析如附4所示。驱动力或制动力分配不合理可能使得部分车辆不能提供分配的力,或者相邻两节车厢存在相对加减速。前者会导致速度偏离目标速度,后者会使钩缓装置的受力增大,增加钩缓装置的磨损并降低乘坐舒适性。
因此,列车编组的驱动力或制动力分配要考虑两个因素:一是每节车厢能提供的最大驱动力和制动力,二是使相邻两车厢间钩缓装置力之和最小。
结合公式(17)和(22),可以计算得到列车总的驱动力或制动力:
F=YPξ (23)
当F>0时为驱动力,F<0为制动力。
从前面的描述可知,列车的形式阻力是一个关于列车速度的函数,假设第i节车厢的行驶阻力为:
Ffi=f(v) (24)
有研究表明列车钩缓装置的受力可以近似表示为关于车厢之间相对速度的连续可微函数,则第i节车厢受到第i+1节车厢的力可以表示为:
Fgi,i+1=η(vi+1-vi) (25)
式中η是一个比例系数,当vi+1>vi时是第i+1节车厢推第i节车厢,对第i节车厢有驱动作用,否则为第i节车厢拉动第i+1节车厢,对第i节车厢有制动作用。需要指出的是中间车厢受前后两个钩缓装置的力,首尾两节车厢只受一个钩缓装置的力。因此,第i节车厢的加速度可以表示为:
Figure BDA0002661395220000081
另外每节车厢能提供的最大制动力和驱动力也受限于工作情况和道路粘着条件,以6节车厢的编组为例,驱动力或制动力分配的目标可以表示为:
Figure BDA0002661395220000082
式中F车i表示第i节车厢能提供的最大驱动力或制动力,需要注意的是对于拖车最大驱动力为0。

Claims (5)

1.一种基于H∞和多目标优化的列车速度控制方法,其特征在于,包括以下步骤,
步骤一、充分考虑列车外形和编组长度对列车阻力的影响,根据列车多质点模型建立列车编组阻力模型;
列车编组阻力包括基本阻力和附加阻力;其中附加阻力包括了坡道阻力、曲线阻力和隧道阻力;
步骤二、把列车当作单质点,将所有阻力合并,构建列车总的动力学模型并简化,利用拉格朗日算法将动力学模型在运行速度进行展开,转化成线性模型;
线性模型具体形式如下:
Figure FDA0002661395210000011
c1,c2均为常数;v0是列车当前速度;w为系统未知扰动;v为列车速度;m为列车质量;F为列车系统的输入;
步骤三、利用凸多面体的方法把线性模型中的时变参数用顶点值表示,引入理想参考速度,把系统扩展成偏差为状态变量的形式,选择状态反馈控制方法,得到闭环系统方程;
将c1+2c2v0设为参数A,将
Figure FDA0002661395210000012
设为参数B,A和B都是有界的时变参数;
闭环系统公式如下:
Figure FDA0002661395210000013
其中:
Figure FDA0002661395210000014
式中,ξ是系统状态,vr是理想的参考速度,K是控制器的反馈增益,d为列车动力直径;
步骤四、选择H∞指标,利用LMI工具求解反馈增益,得到列车系统总的驱动力或制动力;
H∞指标如下:
Figure FDA0002661395210000015
式中γ1和γ2是两个大于零常数的H∞指标;
总的驱动力或制动力F
F=YPξ
式中P是一个正定矩阵,Y=KP-1
步骤五、判断F是否大于0,如果是,则为总系统的驱动力,否则为制动力,考虑每节车厢能提供的最大驱动力和制动力,以及使相邻两车厢间钩缓装置力之和最小时,利用多目标优化的方法对每节车厢的驱动力或制动力进行分配。
2.如权利要求1所述的一种基于H∞和多目标优化的列车速度控制方法,其特征在于,所述的步骤一中基本阻力F0的计算公式如下:
Figure FDA0002661395210000021
其中,rb是轴颈半径;φ是轴承摩擦系数;RL是车轮半径;σ是比例系数;b是一次系数;ρ是流体密度;S为迎风面积;n是车厢节数;C1是车头空气阻力系数;L为列车总长度;g为重力加速度;
隧道阻力Ft的计算公式如下:
Ft=1.16Lv2R2-0.74Lv2R+3.54LvR2-2.68LvR+0.13Lv2+39.79LR2+4.86v2R2-2.88v2R+13.42vR2+0.47Lv-26.4LR+5.99vR+0.3v2+15.62R2+4.64L-0.77R-0.92v-31.14 (2)
R是隧道阻塞比;
坡道阻力Fr的计算公式如下:
Figure FDA0002661395210000022
ri为第i个坡道的坡度;li为在第i个坡道上车身的长度;N为列车车身所处坡道的总数;
曲线阻力Fc的计算公式如下:
Figure FDA0002661395210000023
A0是经验常数;lj是处在第j个弯道上车身的长度;Rj是第j个弯道曲线半径;M是列车车身所处弯道的总数。
3.如权利要求1所述的一种基于H∞和多目标优化的列车速度控制方法,其特征在于,所述的步骤二中列车的动力学方程,简化式如下:
Figure FDA0002661395210000024
其中c0,c1,c2均为常数,其计算公式如下:
Figure FDA0002661395210000025
c1=-bg-3.54LR2+2.68LR-13.42R2-0.47L-5.99R-0.92 (7)
Figure FDA0002661395210000026
Figure FDA0002661395210000027
其中,rb是轴颈半径;φ是轴承摩擦系数;RL是车轮半径;σ是比例系数;L为列车总长度;R是隧道阻塞比;b是一次系数;g为重力加速度;ρ是流体密度;S为迎风面积;n是车厢节数;C1是车头空气阻力系数;d为列车动力直径;ri为第i个坡道的坡度;li为在第i个坡道上车身的长度;N为列车车身所处坡道的总数;A0是经验常数;lj是处在第j个弯道上车身的长度;Rj是第j个弯道曲线半径;M是列车车身所处弯道的总数,v0是列车当前速度,F为列车系统的输入。
4.如权利要求1所述的一种基于H∞和多目标优化的列车速度控制方法,其特征在于,所述的步骤三中时变参数A和B用顶点值表示形式如下:
Figure FDA0002661395210000031
Figure FDA0002661395210000032
式中,Api∈[Amin Amax],Bpi∈[Bmin Bmax]分别对应参数A和B的顶点值;α是时变参数A的系数,β是时变参数B的系数,且满足
Figure FDA0002661395210000033
5.如权利要求1所述的一种基于H∞和多目标优化的列车速度控制方法,其特征在于,所述的步骤五中驱动力或制动力分配的目标表示为:
Figure FDA0002661395210000034
式中F车i表示第i节车厢能提供的驱动力或制动力;I为车厢的节数;Fgi,i+1表示第i节车厢受到第i+1节车厢的钩缓装置的力。
CN202010905781.4A 2020-09-01 2020-09-01 一种基于h∞和多目标优化的列车速度控制方法 Active CN112109773B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010905781.4A CN112109773B (zh) 2020-09-01 2020-09-01 一种基于h∞和多目标优化的列车速度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010905781.4A CN112109773B (zh) 2020-09-01 2020-09-01 一种基于h∞和多目标优化的列车速度控制方法

Publications (2)

Publication Number Publication Date
CN112109773A true CN112109773A (zh) 2020-12-22
CN112109773B CN112109773B (zh) 2021-08-27

Family

ID=73803872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010905781.4A Active CN112109773B (zh) 2020-09-01 2020-09-01 一种基于h∞和多目标优化的列车速度控制方法

Country Status (1)

Country Link
CN (1) CN112109773B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815682A (zh) * 2021-10-20 2021-12-21 吉林大学 高速列车推拉式系统及速度跟踪控制方法
CN114167733A (zh) * 2022-02-14 2022-03-11 华东交通大学 一种高速列车速度控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130096741A1 (en) * 2011-10-18 2013-04-18 Lsis Co., Ltd. Apparatus and method for controlling train speed
CN105398473A (zh) * 2015-11-30 2016-03-16 中国神华能源股份有限公司 一种计算列车受力的设备和方法
CN107640183A (zh) * 2017-07-31 2018-01-30 李振轩 一种基于迭代学习控制的列车运行控制方法
CN109815523A (zh) * 2018-12-05 2019-05-28 南京工程学院 基于分解的列车运行多目标差分进化算法
CN110371163A (zh) * 2019-07-24 2019-10-25 北京航空航天大学 考虑全路段环境及人为因素的列车自动驾驶预测控制方法
CN111580391A (zh) * 2020-05-29 2020-08-25 中车青岛四方车辆研究所有限公司 基于模型预测的动车组牵引力矩控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130096741A1 (en) * 2011-10-18 2013-04-18 Lsis Co., Ltd. Apparatus and method for controlling train speed
CN105398473A (zh) * 2015-11-30 2016-03-16 中国神华能源股份有限公司 一种计算列车受力的设备和方法
CN107640183A (zh) * 2017-07-31 2018-01-30 李振轩 一种基于迭代学习控制的列车运行控制方法
CN109815523A (zh) * 2018-12-05 2019-05-28 南京工程学院 基于分解的列车运行多目标差分进化算法
CN110371163A (zh) * 2019-07-24 2019-10-25 北京航空航天大学 考虑全路段环境及人为因素的列车自动驾驶预测控制方法
CN111580391A (zh) * 2020-05-29 2020-08-25 中车青岛四方车辆研究所有限公司 基于模型预测的动车组牵引力矩控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815682A (zh) * 2021-10-20 2021-12-21 吉林大学 高速列车推拉式系统及速度跟踪控制方法
CN114167733A (zh) * 2022-02-14 2022-03-11 华东交通大学 一种高速列车速度控制方法及系统
CN114167733B (zh) * 2022-02-14 2022-06-14 华东交通大学 一种高速列车速度控制方法及系统

Also Published As

Publication number Publication date
CN112109773B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN110827535B (zh) 非线性车辆队列协同自适应抗扰纵向控制方法
Zhuan et al. Cruise control scheduling of heavy haul trains
CN112109773B (zh) 一种基于h∞和多目标优化的列车速度控制方法
CN113815682B (zh) 高速列车推拉式系统及速度跟踪控制方法
CN109634281B (zh) 一种列车系统建模与分布式协同控制方法
CN110450794B (zh) 一种基于最优蠕滑速度搜寻与跟踪的优化粘着控制方法
CN110281982B (zh) 一种基于周期性间歇控制的重载列车巡航控制方法
CN113552801A (zh) 一种基于分布式的地铁列车虚拟编队运行控制方法
Zheng et al. Research on control target of truck platoon based on maximizing fuel saving rate
CN114312848B (zh) 基于双层mpc的智能驾驶汽车轨迹规划与跟踪控制方法
Wang et al. Robust efficient cruise control for heavy haul train via the state-dependent intermittent control
CN111580391B (zh) 基于模型预测的动车组牵引力矩控制方法
Bakibillah et al. Eco-driving on hilly roads using model predictive control
CN112782978A (zh) 一种基于自触发机制的高速列车巡航运行控制方法
Kim et al. Precise stop control and experimental validation for metro train overcoming delays and nonlinearities
CN116834754A (zh) 一种自动驾驶车辆自适应调速的横纵协同控制方法
Yu et al. Research on operating strategy based on particle swarm optimization for heavy haul train on long down-slope
CN110162045A (zh) 一种基于自适应三步法的卡车编队行驶跟随车控制方法
Zhuan Optimal handling and fault-tolerant speed regulation of heavy haul trains
Zhao et al. Integrated longitudinal and lateral control system design and case study on an electric vehicle
CN111598311B (zh) 一种新型列车运行速度曲线智能优化方法
CN114625003B (zh) 一种基于多质点模型的高速列车分布式轨迹跟踪控制方法
Sun et al. MPC-PI cascade control method for heavy-haul train
CN116472505A (zh) 用于减少多挂车重型车辆高速跑偏的方法
CN116198522B (zh) 一种复杂矿区工况的无人矿卡横垂向耦合递阶控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant