CN112107541B - 一种黄芪甲苷自乳化释药系统及其制备方法 - Google Patents

一种黄芪甲苷自乳化释药系统及其制备方法 Download PDF

Info

Publication number
CN112107541B
CN112107541B CN201910544913.2A CN201910544913A CN112107541B CN 112107541 B CN112107541 B CN 112107541B CN 201910544913 A CN201910544913 A CN 201910544913A CN 112107541 B CN112107541 B CN 112107541B
Authority
CN
China
Prior art keywords
astragaloside
self
release system
drug release
emulsifying drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910544913.2A
Other languages
English (en)
Other versions
CN112107541A (zh
Inventor
张小飞
邹俊波
史亚军
果秋婷
郭东艳
孙静
程江雪
王晶
王潇
宋逍
王昌利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Chinese Medicine
Original Assignee
Shaanxi University of Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Chinese Medicine filed Critical Shaanxi University of Chinese Medicine
Priority to CN201910544913.2A priority Critical patent/CN112107541B/zh
Publication of CN112107541A publication Critical patent/CN112107541A/zh
Application granted granted Critical
Publication of CN112107541B publication Critical patent/CN112107541B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种自乳化释药系统,其是由以下重量份数的原料组成:表面活性剂0.25~0.60份,助表面活性剂0.22~0.62份,油相0.12~0.30份。本发明还提供了一种黄芪甲苷SMEDDS,其是由上述的自乳化释药系统与黄芪甲苷组成。实验结果表明,本发明制得的黄芪甲苷SMEDDS微乳液粒径小,比表面积大,药物溶出速率高,稀释稳定性好,利用本发明的黄芪甲苷SMEDDS,可以显著提高药物的吸收率、吸收速率常数和表观渗透系数,在制备黄芪甲苷制品上具有非常好的应用前景。

Description

一种黄芪甲苷自乳化释药系统及其制备方法
技术领域
本发明属于材料加工领域,具体涉及一种黄芪甲苷自乳化释药系统及其制备方法。
背景技术
黄芪甲苷(Astrageloside IV)是从黄芪中提取出来的一种化合物,能够排除体内的异物,可增强机体免疫力、提高机体的抗病能力。然而由于黄芪甲苷水溶性较差,渗透性较低,口服给药生物利用度较低仅为7.4%,严重影响了药物的治疗效果,因此有必要通过制剂手段改善黄芪甲苷的口服生物利用度。
自乳化释药系统(Self-microemulsifying drug delivery system,SMEDDS)是油、表面活性剂和助表面活性剂构成的各向同性混合物,进入体内与胃、肠液接触并在胃肠蠕动下自发形成粒径大小为10至500nm透明状微乳液。SMEDDS不仅可以提高药物溶解度,而且形成的微乳粒径为纳米级,具有非常大的比表面积,可促进药物吸收,提高药物口服生物利用度。
文献“黄芪注射液浓缩液微乳的制备及其体外释放实验评价研究,余东升等”以OP为乳化剂,丙三醇为助乳化剂,油酸乙酯为油相,制得了一种黄芪注射液浓缩液微乳。对比文件制备的微乳具有缓释的作用,该黄芪注射液浓缩液W/O型微乳在体外24h内缓慢释放,不能达到快速释药的效果,对黄芪药物在体内的吸收率和利用度会产生很大的影响。
因此,研究出一种能够有效提高黄芪甲苷药物的溶解度,并能够改善药物利用度的释药系统具有非常重要的应用价值。
发明内容
本发明的目的在于提供一种黄芪甲苷自乳化释药系统及其制备方法。
本发明提供了一种自乳化释药系统,所述自乳化释药系统是由以下重量份数的原料组成:
表面活性剂0.25~0.60份,助表面活性剂0.22~0.62份,油相0.12~0.30份。
进一步地,所述自乳化释药系统是由以下重量份数的原料组成:
表面活性剂0.40份,助表面活性剂0.40份,油相0.20份。
进一步地,所述油相为辛酸/癸酸甘油三酯,所述表面活性剂为吐温80,所述助表面活性为二乙二醇单乙基醚。
本发明还提供了一种黄芪甲苷自乳化释药系统,所述黄芪甲苷自乳化释药系统是由上述的自乳化释药系统与黄芪甲苷组成。
进一步地,所述黄芪甲苷自乳化释药系统中,黄芪甲苷的重量占总重量的4%~6%,优选为5%。
本发明还提供了一种上述自乳化释药系统的制备方法,所述方法为:将表面活性剂与助表面活性剂混合均匀,得混合物;然后向混合物中加入油相,混合均匀,即得。
进一步地,所述混合时间为5min,所述混合方式为涡旋混合。
本发明还提供了一种上述黄芪甲苷自乳化释药系统的制备方法,所述方法为:将黄芪甲苷加入权利要求1-3任一项所述自乳化释药系统中,搅拌,即得。
本发明还提供了上述黄芪甲苷自乳化释药系统在制备黄芪甲苷制品上的用途。
进一步地所述黄芪甲苷制品为增强机体免疫力的药物、提高机体的抗病能力的药物、抗病毒药物或促生长剂。
涡旋混合即利用旋涡搅拌器,将待混合物质充分搅拌并混合均匀。
油相指不溶于水的物质,包括大豆油、蓖麻油、Capryol 90、Capmul MCM等。
黄芪甲苷制品包括以黄芪甲苷为原料的药物、保健品、食品。
本发明利用Capmul MCM、Tween-80、Transcutol H,与黄芪甲苷在特定比例下,形成了黄芪甲苷自微乳化载药系统(即黄芪甲苷SMEDDS)。实验结果表明,本发明制得的黄芪甲苷SMEDDS微乳液粒径小,比表面积大,药物溶出速率高,稀释稳定性好,利用本发明的黄芪甲苷SMEDDS,可以显著提高药物的吸收率、吸收速率常数和表观渗透系数,在制备黄芪甲苷制品上具有非常好的应用前景。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为黄芪甲苷SMEDD不同比例下的相图,其中,绿色部分表示能够形成理想的微乳液的区域。
图2为黄芪甲苷SMEDDS微乳的透射电镜照片。
图3为黄芪甲苷SMEDDS微乳的粒径分布和Zeta电位。
图4为黄芪甲苷SMEDDS和黄芪甲苷原料药在水(Water)、人工胃液(SGF)和人工肠液(SIF)中的体外溶出曲线。
具体实施方式
本发明所用原料与设备均为已知产品,通过购买市售产品所得。
材料来源
1.1仪器
L-3000系列高效液相色谱系统(L-3200系列输液泵,L-3320自动进样器,L-3400柱温箱,L-3535蒸发光散射检测器),北京普源精仪科技有限公司;FA2014S电子天平,上海恒平科学仪器有限公司;SZCL型系列恒温加热磁力搅拌器,上海增森仪器科技有限公司;Malvern Zetasizer Nano型动态激光散射仪,英国Malvern公司;LVEM5台式透射电子显微镜,Quantum Design中国公司;RC-806溶出试验仪,天津天大天发科技有限公司;BT102S调速型蠕动泵,保定雷弗流体科技有限公司;TU-1810系列紫外可见分光光度计,北京普析通用仪器有限责任公司。
1.2药品与试剂
黄芪甲苷(成都科程生物科技开发有限公司,批号20180512,95.5%);黄芪甲苷对照品(中国药品生物制品检定所,批号110781-201717,含量96.9%);大豆油(新兴铁岭药业有限公司);蓖麻油(西安天正药用辅料有限公司);丙二醇辛酸酯(Capryol 90,嘉法狮贸易有限公司);辛酸/癸酸甘油三酯(Capmul MCM,嘉法狮贸易有限公司);辛酸癸酸聚乙二醇甘油酯(Labrasol,嘉法狮贸易有限公司);聚氧乙烯35蓖麻油(CremophorEL,巴斯夫公司);聚乙二醇-15羟基硬脂酸酯(Solutol HS 15,巴斯夫辅料公司);吐温80(Tween 80,国药集团化学试剂有限公司);二乙二醇单乙基醚(Transcutol H,嘉法狮贸易有限公司);聚乙二醇400(PEG400,国药集团化学试剂有限公司);1,2丙二醇(国药集团化学试剂有限公司);酚红(南京奥多福尼生物科技有限公司);乌拉坦(江苏倍达医药科技有限公司);Krebs-Ringer缓冲液(实验室自制)。
SD大鼠,雌雄各半,体重250~300g(成都达硕实验动物有限公司,许可证号:SCXK(川)2015-030)。
实施例1、本发明黄芪甲苷自乳化释药系统的制备
1饱和溶解度测定
采用振摇法测定黄芪甲苷在不同的油(大豆油、蓖麻油、Capryol 90、CapmulMCM),不同的表面活性剂(Labrasol、Cremophor EL、Solutol HS 15、Tween 80)和不同的助表面活性剂(Transcutol P、PEG400、1,2丙二醇)中的饱和溶解度。方法如下:
称取过量的黄芪甲苷加入到上述单个辅料中,涡旋混合5min后放置到振荡器上连续振荡48h,在5,000rpm条件下离心15min,取上清液用乙腈稀释,使用HPLC-ELSD法(流动相:乙腈-水(31:69),流速:1.0mL/min,漂移管温度:100℃,载气流速:2.7L/min)测定药物含量,计算黄芪甲苷在辅料中的饱和溶解度。本发明使用的HPLC-ELSD法参见文献:张承盟,李瑞明,缪兴龙,等.HPLC-ELSD法测定芪柏颗粒中黄芪甲苷的含量.天津药学,2018,30(2):9-11.
表1黄芪甲苷在在辅料中的饱和溶解度(n=3)
原则上选择对黄芪甲苷有较高溶解度的油,表面活性剂和助表面活性剂作为SMEDDS的组成成分,以达到对药物的最大溶解能力,防止SMEDDS在储存过程中药物析出结晶体。黄芪甲苷在各种油,表面活性剂和助表面活性剂中的饱和溶解度如表1所示,在所筛选的油相中,黄芪甲苷在蓖麻油和Capmul MCM中溶解度较高,分别为(45.3±0.4)和(54.3±0.1)mg/g;表面活性剂中,黄芪甲苷在Cremophor EL和Tween-80中溶解度最大,分别达到了(165.8±0.4)和(159.1±0.5)mg/g;助表面活性剂中,黄芪甲苷在TranscutolH和1,2丙二醇中溶解度较高,分别为(69.9±0.4)和(78.5±0.3)mg/g。
基于溶解度测定结果,初步确定蓖麻油和Capmul MCM作为油相,Cremophor EL和Tween-80作为表面活性剂,Transcutol H和1,2丙二醇作为助表面活性剂进一步用于SMEDDS处方筛选。
2配伍实验
通过配伍实验进一步确定SMEDDS中的油、表面活性剂和助表面活性剂的相容性和乳化性能,乳化等级按照表2进行分类。
表2乳化等级分类
2.1油相与表面活性剂筛选分别将油相蓖麻油和Capmul MCM与表面活性剂CremophorEL和Tween-80按照质量比为1:9、2:8、3:7、4:6、5:5涡旋混合5min,室温条件下静置,观察是否存在浑浊或分层。取1g未发生浑浊或分层的混合物,在50rpm磁力搅拌下加入到100mL水(温度为37℃)中,观察并记录乳化情况,根据表2的判断标准进行乳化等级分类,结果如表3所示。
表3不同油相与表面活性剂的配伍实验
由相容性和乳化性能结果可知,在考察的用量比例范围之内,Capmul MCM和Tween-80配伍后相容性和乳化性能均较好,而其于三组油相与表面活性剂配伍相容性或者的乳化效果较差。因此选择Capmul MCM作为油相,Tween-80作为表面活性剂,并作进一步研究。
2.2助表面活性剂筛选通常在SMEDDS处方中加入助表面活性剂以提高微乳的稳定性。将Tween-80与Transcutol H或1,2丙二醇按照质量比(Km)为1:1涡旋混合5min,再与Capmul MCM按照质量比为1:9、2:8、3:7、4:6、5:5涡旋混合5min,室温条件下静置。取1g混合物,在50rpm磁力搅拌下加入到100mL水(温度为37℃)中,观察并记录乳化情况,根据表2的判断标准进行乳化等级分类,结果如表4所示。
表4油相与混合表面活性剂的配伍实验
配伍实验结果表明,Transcutol H和1,2丙二醇的助乳化性能相似,所形成的乳化区域大小相近。然而在后续实验将Tween-80与1,2丙二醇的质量比(Km)调整为3:7~1:9时,形成的微乳液放置一段时间后有药物晶体析出,而以Transcutol H作为助表面活性剂微乳液稳定性较好。因此选择Transcutol H为助表面活性剂。
3各组分比例筛选
分别按照质量比(Km)为1:3、1:2、1:1、2:1、3:1称取Tween-80和Transcutol H,涡旋混合5min,形成澄清透明状混合物,称取该混合物依次与Capmul MCM按照质量比为1:9、2:8、3:7、4:6、5:5、6:4、7:3、8:2、9:1涡旋混合5min,形成空白SMEDDS,称取处方量(5%(w/w))黄芪甲苷依次加入到空白SMEDDS中,搅拌溶解,形成透明状溶液,既得黄芪甲苷SMEDDS。取1g黄芪甲苷SMEDDS,在50rpm磁力搅拌下加入到100mL水(温度为37℃)中,记录形成微乳液的处方,使用Origin 8.0软件绘制黄芪甲苷SMEDDS的自乳化区域,确定各组成成分的用量范围,结果见图1。
绿色部分表示该区域中的黄芪甲苷SMEDDS处方能够形成澄清或淡蓝色乳光微乳液,蓝色部分表示该区域中的处方能够形成半透明或蓝白光微乳液,灰色部分表示该区域中的处方能够形成亮白色不透明乳液。其中,绿色部分所示各组分的比例分别为:Tween-800.25-0.6,TranscutolH 0.22-0.62,Capmul MCM 0.12-0.3。
4本发明黄芪甲苷SMEDD的制备
在图1中绿色区域任选一点处方比例制备黄芪甲苷SMEDD,所选处方中,黄芪甲苷用量为5%(w/w),Tween-80为0.4,TranscutolH为0.4,Capmul MCM为0.2。按照处方称取Tween-80和Transcutol H涡旋混合5min,形成澄清透明状混合物,再称取处方量CapmulMCM加入到上述混合物中涡旋混合5min,形成空白SMEDDS,称取处方量黄芪甲苷加入到空白SMEDDS中,搅拌溶解,形成透明状溶液,既得黄芪甲苷SMEDDS。
将黄芪甲苷SMEDDS储存在室温条件下储存直至进行下一步实验研究。
以下通过实验例证明本发明制备的黄芪甲苷SMEDDS的有益效果。
实验例1、微观结构观察
取实施例1中制得的0.5g黄芪甲苷SMEDDS,加入到50mL蒸馏水中,搅拌分散,形成淡蓝色乳光微乳液。取少量液体滴加到铜网上,铺展均匀,并滴加1滴2.0%磷钨酸溶液,负染10min,用滤纸从边缘吸去多于水分,挥干,在透射电镜观察黄芪甲苷SMEDDS形成微乳的微观结构。
在电镜下可观察到黄芪甲苷SMEDDS所形成的微乳大小均匀,边缘光滑,呈圆球状分布,未见到有药物结晶析出(图2)。
实验例2、粒径分布和Zeta电位测定
取实施例1中制得的0.5g黄芪甲苷SMEDDS,加入到50mL蒸馏水中,搅拌分散,形成微乳液。用移液枪取约50μL黄芪甲苷SMEDDS微乳液加入到比色杯中,再加入3mL蒸馏水,轻轻振摇,分散均匀,放入到Malvern Zetasizer Nano型动态激光散射仪中测定粒径分布和Zeta电位,每份样品重复测定3次,取平均值。
测定结果显示(图3),黄芪甲苷SMEDDS微乳粒径呈正态分布,平均粒径为(45.4±5.8)nm,Zeta电位值为(-17.4±0.8)mV。
实验例3、黄芪甲苷SMEDDS体外释药研究
文献报道(比如:乌兰等,一种全新合成的抗抑郁药物的自微乳化载药系统(SMEDDS)理化性质和体外释药行为研究)通常采用透析法测定SMEDDS中的药物溶出度,但是,由于SMEDDS在与水接触后立即形成微乳,将难溶性药物包裹在微乳之中,通过淋巴系统被人体吸收,说明SMEDDS中的药物吸收并不完全依靠游离药物,因此只测定游离药物从制剂中的溶出并不完全适用于SMEDDS。本研究采用将黄芪甲苷SMEDDS加入到胶囊壳中直接测定药物溶出度,虽然测定的药物溶出度包括了游离、增溶在胶束中以及包裹在微乳中的药物总和,但是这与黄芪甲苷SMEDDS口服进入体内后药物的实际溶出情况更为接近。
采用《中国药典》2015年版第四部0931溶出度与释放度测定法,分别以水、人工胃液(Simulated Gastric Fluid,SGF)、人工肠液(Simulated Intestinal Fluid,SIF)作为溶出介质,考察实施例1中制得的黄芪甲苷SMEDDS在上述三种介质中的体外溶出度。溶出度测定方法为:溶出介质体积均为500mL,温度为(37±0.5)℃,搅拌桨转速为(50±1)rpm。精密称取1.0g黄芪甲苷SMEDDS(黄芪甲苷含量为50mg)加入到00号胶囊壳中,开启溶出仪,将胶囊加入到溶出杯中,开始计时,分别在5,10,20,30,45min取出溶出介质(同时补加等温等体积空白介质)5mL,经0.45μm微孔滤膜过滤,取续滤液稀释一定倍数,按照HPLC-ELSD法测定药物含量,计算药物累积溶出度。同法,精密称取50mg黄芪甲苷原料药加入到00号胶囊壳中,按照上述操作测黄芪甲苷原料药累积溶出度。
溶出结果显示(图4),在三种溶出介质中,黄芪甲苷SMEDDS均可显著提高药物溶出速率,10min药物已基本完全溶出。虽然黄芪甲苷原料药在人工肠液中溶出度要高于其他两种介质,但在45min时药物溶出只达到了36%。溶出度实验说明将黄芪甲苷制成SMEDDS可以显著提高药物溶出速率。
实验例4、黄芪甲苷SMEDDS稀释稳定性研究
分别称取实施例1中制得的1g黄芪甲苷SMEDDS,在50rpm磁力搅拌下分别加入到体积均为100mL,温度均为37℃的水(Water)、人工胃液(SGF)和人工肠液(SIF)中,分散形成微乳,记录乳化情况,并分别于0、5、10h观察外观,取样测定粒径分布以及药物含量,结果见表5。
表5黄芪甲苷SMEDDS在不同介质中的物理稳定性
实验结果表明,黄芪甲苷SMEDDS在水、人工胃液和人工肠液中均能快速乳化形成淡蓝色乳光微乳液,且微乳的粒径分布、药物含量均无显著差异;放置10h后,三种介质微乳液均未出现分层,无药物结晶析出,粒径分布和药物含量均与0h相似。说明黄芪甲苷SMEDDS在模拟胃肠道生理液中可快速形成微乳,且稀释后稳定性良好。
实验例5、大鼠在体肠回流实验
取SD大鼠,实验前24h禁食不禁水,经腹腔注射10%乌拉坦溶液(0.01mL/g)麻醉,固定在实验台上,沿腹中线解剖腹腔,结扎胆管,选择胃下端1cm处至结肠处肠段并在两端各切一小口,插入直径为0.3cm塑料管,用线扎紧,通过注射器将37℃生理盐水缓慢注入肠道内冲洗掉内容物,再注入空气排净生理盐水。将肠段两端塑料管连接到蠕动泵硅胶管两端,形成回路。精密称取0.5g实施例1中制得的黄芪甲苷SMEDDS和5mg酚红加入到(体积均为100mL,温度均为37℃)Krebs-Ringer缓冲液中,分散形成微乳(其中药物浓度为250μg/mL,酚红浓度为50μg/mL)作为供试液,恒温水浴温度为37℃保存。将连接在蠕动泵上的乳胶管一段管口和连接在大鼠胃段乳胶管管口分别放入到供试液中,开启蠕动泵,调整流速为2.5mL/min,当供试液充满肠段后开始计时,并分别在0、0.25、0.5、0.75、1.0、1.5、2、3、4h处取5mL供试液(同时补加含有酚红浓度为50μg/mL同体积同温度Krebs-Ringer缓冲液),经0.45μm滤膜过滤,取续滤液经适当稀释后采用HPLC-ELSD法测定黄芪甲苷浓度,同时采用紫外分光光度法在550nm处测定酚红浓度。在肠回流实验结束后剪下肠段,测量其长度和内径,计算肠段内面积S。根据酚红浓度计算供试液体积,根据0h黄芪甲苷总量与4h剩余药量之差计算药物吸收率(P,%);根据每段时间间隔内黄芪甲苷浓度与供试液体积计算出供试液中剩余黄芪甲苷剩余量(X),以lnX对取样时间t进行线性回归,直线斜率即为吸收速率常数(Ka,h-1),并根据公式计算出表观渗透系数(Papp,cm/S)=Ka/S/3600(S为小肠面积)。同法,精密称取25mg黄芪甲苷原料药和5mg酚红加入到(体积均为100mL,温度均为37℃)Krebs-Ringer缓冲液中,分散形成黄芪甲苷混悬液作为对照溶液进行大鼠在体肠回流实验,计算药物吸收率(P,%),吸收速率常数(Ka)和表观渗透系数(Papp),实验结果见表6。
表6黄芪甲苷SMEDDS和黄芪甲苷混悬液的吸收参数(n=3)
实验结果表明,黄芪甲苷SMEDDS形成的微乳液可以显著提高药物的吸收率、以及药物吸收速率常数和表观渗透系数。
综上,本发明以Capmul MCM作为油相,Tween-80作为表面活性剂,Transcutol H作为助表面活性剂,得到了黄芪甲苷SMEDDS。本发明进一步通过筛选实验确定了黄芪甲苷SMEDDS中各组分的比例。实验证明,在本发明特定比例的组分下,制得的黄芪甲苷SMEDDS形成的微乳液粒径小,比表面积大,药物溶出速率高,稀释后稳定性好,利用本发明的黄芪甲苷SMEDDS,可以显著提高药物的吸收率、吸收速率常数和表观渗透系数,在制备黄芪甲苷制品上具有非常好的应用前景。

Claims (5)

1.一种黄芪甲苷自乳化释药系统,其特征在于:所述黄芪甲苷自乳化释药系统是由自乳化释药系统与黄芪甲苷组成,所述自乳化释药系统是由以下重量份数的原料组成:表面活性剂0.40份,助表面活性剂0.40份,油相0.20份;所述油相为辛酸/癸酸甘油三酯,所述表面活性剂为吐温80,所述助表面活性为二乙二醇单乙基醚;所述黄芪甲苷自乳化释药系统中,黄芪甲苷的重量占总重量的4%~6%;
所述自乳化释药系统的制备方法为:将表面活性剂与助表面活性剂混合均匀,所述混合时间为5min,所述混合方式为涡旋混合,得混合物;然后向混合物中加入油相,混合均匀,所述混合时间为5min,所述混合方式为涡旋混合,即得自乳化释药系统;
所述黄芪甲苷自乳化释药系统制备方法为:将黄芪甲苷加入自乳化释药系统中,搅拌,即得黄芪甲苷自乳化释药系统。
2.根据权利要求1所述的黄芪甲苷自乳化释药系统,其特征在于:所述黄芪甲苷自乳化释药系统中,黄芪甲苷的重量占总重量的5% 。
3.权利要求1或2所述黄芪甲苷自乳化释药系统的制备方法,其特征在于:所述方法为:将黄芪甲苷加入自乳化释药系统中,搅拌,即得。
4.权利要求1或2所述黄芪甲苷自乳化释药系统在制备黄芪甲苷制品上的用途。
5.根据权利要求4所述的用途,其特征在于:所述黄芪甲苷制品为增强机体免疫力的药物、提高机体的抗病能力的药物、抗病毒药物或促生长剂。
CN201910544913.2A 2019-06-21 2019-06-21 一种黄芪甲苷自乳化释药系统及其制备方法 Active CN112107541B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910544913.2A CN112107541B (zh) 2019-06-21 2019-06-21 一种黄芪甲苷自乳化释药系统及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910544913.2A CN112107541B (zh) 2019-06-21 2019-06-21 一种黄芪甲苷自乳化释药系统及其制备方法

Publications (2)

Publication Number Publication Date
CN112107541A CN112107541A (zh) 2020-12-22
CN112107541B true CN112107541B (zh) 2023-07-25

Family

ID=73796539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910544913.2A Active CN112107541B (zh) 2019-06-21 2019-06-21 一种黄芪甲苷自乳化释药系统及其制备方法

Country Status (1)

Country Link
CN (1) CN112107541B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177284A (zh) * 2021-12-16 2022-03-15 江苏省农业科学院 一种兽用疫苗的自乳化型佐剂、制备方法及应用
CN114712379B (zh) * 2022-04-18 2024-04-09 复旦大学 黄芪甲苷iv在制备预防和治疗腹膜透析肠道并发症药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785203A (zh) * 2005-11-08 2006-06-14 南京工业大学 黄芪甲苷环糊精包合物、制剂及制备方法
CN101007013A (zh) * 2006-01-23 2007-08-01 天津药物研究院 黄芪甲苷脂质体及其药物制剂
CN108553417A (zh) * 2018-03-30 2018-09-21 陕西中医药大学 一种蛇床子素自乳化释药系统及其制备方法与用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785203A (zh) * 2005-11-08 2006-06-14 南京工业大学 黄芪甲苷环糊精包合物、制剂及制备方法
CN101007013A (zh) * 2006-01-23 2007-08-01 天津药物研究院 黄芪甲苷脂质体及其药物制剂
CN108553417A (zh) * 2018-03-30 2018-09-21 陕西中医药大学 一种蛇床子素自乳化释药系统及其制备方法与用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole:Ex-vivo transcorneal permeation, corneal toxicity and irritation testing";M. K. Pathak et al.;《Drug Development and Industrial Pharmacy》;20120809;第39卷(第5期);第780-790页 *
"Multivariate analysis of physicochemical characteristics of lipid basednanoemulsifying cilostazol—Quality by design";S. Pund et al.;《Colloids and Surfaces B: Biointerfaces》;20131119;第115卷;第29-36页 *
"Self-Emulsifying Formulation of Indomethacin with Improved Dissolution and Oral Absorption";PENJURI et al.;《Turk J Pharm Sci》;20171231;第14卷(第2期);第108-119页 *
"黄芪甲苷的研究进展";段立军等;《沈阳药科大学学报》;20110531;第28卷(第5期);第410-416页 *

Also Published As

Publication number Publication date
CN112107541A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
Gao et al. Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion
Kanwal et al. Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability
Kallakunta et al. Oral self emulsifying powder of lercanidipine hydrochloride: formulation and evaluation
Amrutkar et al. Study on self nano emulsifying drug delivery system of poorly water soluble drug rosuvastatin calcium
CN112107541B (zh) 一种黄芪甲苷自乳化释药系统及其制备方法
Madan et al. Formulation and development of self-microemulsifying drug delivery system of pioglitazone
Ansari et al. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity
Umeyor et al. Formulation design and in vitro physicochemical characterization of surface modified self-nanoemulsifying formulations (SNEFs) of gentamicin
Hassan et al. Novel semisolid SNEDDS based on PEG-30-dipolyhydroxystearate: development and characterization
Mao et al. Development of a solid self‐emulsification delivery system for the oral delivery of astaxanthin
Vanitasagar et al. Novel self-nanoemulsion drug delivery system of fenofibrate with improved bio-availability
CN100566758C (zh) 紫杉烷类口服给药的自乳化和自微乳化制剂
CN108553417B (zh) 一种蛇床子素自乳化释药系统及其制备方法与用途
Patel et al. Development of Solid SEDDS, II: application of Acconon® C-44 and Gelucire® 44/14 as solidifying agents for self-emulsifying drug delivery systems of medium chain triglyceride.
Shiyan et al. Chemometric Approach to Assess Response Correlation and its Classification in simplex centroid design for Pre-Optimization stage of Catechin-SNEDDS
Zhao et al. Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs
Annisa et al. Effect of vegetable oil on self-nanoemulsifying drug delivery system of Dayak Onion [Eleutherine palmifolia (L.) Merr.] extract using hydrophilic-lipophilic balance approach: formulation, characterization
CN107823135B (zh) 贝母素乙纳米乳及其制备方法与应用
Vinod et al. Preparation and characterization of poly (2-oxazoline) micelles for the solubilization and delivery of water insoluble drugs
CN109260151B (zh) 一种连翘挥发油自微乳及其制备方法
Patel et al. Linagliptin loaded solid-SMEEDS for enhanced solubility and dissolution: formulation development and optimization by D-optimal design
Nallamolu et al. Self-micro emulsifying drug delivery system “SMEDDS” for efficient oral delivery of andrographolide
CN111135143B (zh) 一种β-榄香烯自微乳及其制备方法
CN113197944A (zh) 一种复方紫草微乳温敏原位凝胶及其制备方法和应用
CN107661287B (zh) 地榆皂苷自乳化药物传递系统的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant