CN112095117B - 一种InGaN基光阳极的制备方法 - Google Patents

一种InGaN基光阳极的制备方法 Download PDF

Info

Publication number
CN112095117B
CN112095117B CN202010857283.7A CN202010857283A CN112095117B CN 112095117 B CN112095117 B CN 112095117B CN 202010857283 A CN202010857283 A CN 202010857283A CN 112095117 B CN112095117 B CN 112095117B
Authority
CN
China
Prior art keywords
gan
ingan
gan layer
thickness
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010857283.7A
Other languages
English (en)
Other versions
CN112095117A (zh
Inventor
曹得重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202010857283.7A priority Critical patent/CN112095117B/zh
Publication of CN112095117A publication Critical patent/CN112095117A/zh
Application granted granted Critical
Publication of CN112095117B publication Critical patent/CN112095117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/12Etching of semiconducting materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种InGaN基光阳极的制备方法,具体按照以下步骤实施:步骤1、在酸性溶液中,采用光电化学刻蚀技术对GaN多层结构进行恒电压刻蚀,制备出中孔GaN镜;步骤2、以中孔GaN镜为衬底,先采用MOCVD技术外延生长InGaN/GaN层,通过能带工程调制In组分,调制其带隙,然后采用电子束蒸发技术,蒸镀欧姆接触电极,制备出InGaN基光阳极;本发明的方法能够制备出开启电压低、效率高及稳定性强的光阳极电极。

Description

一种InGaN基光阳极的制备方法
技术领域
本发明属于半导体异质结制备技术领域,具体涉及一种InGaN基光阳极的制备方法。
背景技术
与传统光电极(如:Si,TiO2,ZnO等)相比,InGaN基薄膜材料在可见光区具有量子效率高、稳定性好等优点,引起广泛关注。然而,由于异质外延制备的InGaN层存在应力大、极化效应强等缺点,限制了其光解水效率。中孔GaN镜具有高的光反射效应、大的应力松弛、低的缺陷密度,以其为衬底,所生长InGaN基薄膜呈现出大的应力松弛、小的极化效应及高的晶体质量,有望显著提高InGaN基光阳极的转化效率。
发明内容
本发明的目的是提供一种InGaN基光阳极的制备方法,能够制备出开启电压低、效率高及稳定性强的光阳极电极。
本发明采用的技术方案是,一种InGaN基光阳极的制备方法,具体按照以下步骤实施:
步骤1、在酸性溶液中,采用光电化学刻蚀技术对GaN多层结构进行恒电压刻蚀,制备出中孔GaN镜;
步骤2、以中孔GaN镜为衬底,先采用MOCVD技术外延生长InGaN/GaN层,通过能带工程调制In组分,调制其带隙,然后采用电子束蒸发技术,蒸镀欧姆接触电极,制备出InGaN基光阳极。
步骤1刻蚀技术为光电化学刻蚀技术,酸性溶液是浓度为0.3-0.5mol/L的硫酸、硝酸或盐酸水溶液中的任意一种。
恒电压刻蚀的电压为5-50V,刻蚀时间范围为5-80min。
步骤1中GaN多层结构包括低掺杂GaN层和高掺杂GaN层,厚度均为50-68nm,低掺杂GaN层掺杂浓度为4.0×1015-1.0×1018cm-3,高掺杂GaN层掺杂浓度为3.0×1018-4.0×1019cm-3,周期数为7。
步骤2中InGaN/GaN层包括GaN层、超晶格结构和多量子阱层。
GaN层是在850-1060℃温度下制备的1.5-2.6μm厚的n-GaN层,掺杂浓度为3.5×1018-7.5×1019cm-3;超晶格结构是周期为9-11的Inx Ga1-x N/GaN超晶格结构,其中,0<x<0.1,每个周期中,Inx Ga1-x N厚度为3-4nm,GaN厚度为7nm;多量子阱层是周期14-30的InyGa1-y N/GaN多量子阱结构,其中,0.1<y<0.4,每个周期中,InyGa1-y N厚度为4-6nm,GaN厚度为10-11nm;p-GaN层是Mg掺杂p-GaN层,掺杂浓度为1×1019cm-3-6×1019cm-3,厚度为100-300nm。
本发明一种InGaN基光阳极的制备方法有益效果是:
1)中孔GaN镜具有高的光反射效应、大的应力松弛、低的缺陷密度,以其为衬底,所生长InGaN基薄膜呈现出大的应力松弛、小的极化效应及高的晶体质量,有望显著提高InGaN基光阳极的转化效率;
2)InGaN/GaN结构中的GaN层生长温度可以影响底部中孔GaN镜的光反射能力以及InGaN基薄膜的晶体质量;当GaN层再生长温度在850-1060℃之间时,中孔GaN镜保持较高的反射率,InGaN基薄膜的晶体质量显著提高,有利于提高光电极的转化效率;
3)本发明中工艺条件易于精确控制,制备的具有中孔GaN镜的InGaN基光阳极均匀性和重复性好,便于产业化生产;所制备的光阳极还具有开启电压低、转化效率高、稳定性强等优良特性,有着广阔的应用前景。
附图说明
图1是实施例3制备的中孔GaN镜的切面扫描电子显微镜照片,图中标尺为200nm;
图2是实施例3制备的中孔GaN镜的反射光谱;
图3是实施例3制备的具有中孔GaN镜的InGaN基光阳极的切面扫描电子显微镜图片;
图4是InGaN基光阳极的HRXRD图谱;
图5是InGaN基光阳极的InGaN(0002)峰对应的摇摆曲线;
图6是InGaN基光阳极的拉曼光谱;
图7是InGaN基光阳极的光电流-电压曲线;
图8是InGaN基光阳极的转换效率-电压曲线;
图9是InGaN基光阳极的光电流-时间曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种InGaN基光阳极的制备方法,具体按照以下步骤实施:
步骤1、在酸性溶液中,采用光电化学刻蚀技术对GaN多层结构进行恒电压刻蚀,制备出中孔GaN镜;
其中,刻蚀技术为光电化学刻蚀技术,酸性溶液是浓度为0.3-0.5mol/L的硫酸、硝酸或盐酸水溶液中的任意一种。
恒电压刻蚀的电压为5-50V,刻蚀时间范围为5-80min。
GaN多层结构包括低掺杂GaN层和高掺杂GaN层,厚度均为50-68nm,低掺杂GaN层掺杂浓度为4.0×1015-1.0×1018cm-3,高掺杂GaN层掺杂浓度为3.0×1018-4.0×1019cm-3,周期数为7。
步骤2、以中孔GaN镜为衬底,先采用MOCVD技术外延生长InGaN/GaN层,通过能带工程调制In组分,调制其带隙,然后采用电子束蒸发技术,蒸镀欧姆接触电极,制备出InGaN基光阳极。
其中,InGaN/GaN层包括GaN层、超晶格结构和多量子阱层。
GaN层是在850-1060℃温度下制备的1.5-2.6μm厚的n-GaN层,掺杂浓度为3.5×1018-7.5×1019cm-3;超晶格结构是周期为9-11的Inx Ga1-x N/GaN超晶格结构,其中,0<x<0.1,每个周期中,Inx Ga1-x N厚度为3-4nm,GaN厚度为7nm;多量子阱层是周期14-30的InyGa1-y N/GaN多量子阱结构,其中,0.1<y<0.4,每个周期中,InyGa1-y N厚度为4-6nm,GaN厚度为10-11nm;p-GaN层是Mg掺杂p-GaN层,掺杂浓度为1×1019cm-3-6×1019cm-3,厚度为100-300nm。
实施例1
在外延衬底上,先后生长低温GaN缓冲层和GaN多层结构,生长温度1070℃,低掺杂GaN层和高掺杂GaN层厚度均为52nm,低掺杂GaN层掺杂浓度为4.0×1015,高掺杂GaN层掺杂浓度为2.5×1019,周期数为7。
在0.1mol/L的硝酸溶液中,开启光电化学刻蚀设备,开启紫外灯,并将刻蚀电压设定为16V;以铂丝为阴极,以GaN多层结构为阳极,恒电压刻蚀40分钟;刻蚀结束后,关闭光电化学刻蚀设备;将阳极样品用去离子水冲洗后,用氮气吹干,得中孔GaN镜;
以中孔GaN镜为衬底,将该衬底置于MOCVD生长室中,在850℃下生长GaN,掺杂浓度为5.0×1018cm-3,厚度为1.5μm,在800℃,生长9周期的In0.01Ga0.99 N/GaN超晶格结构,其中阱和垒厚度分别为3nm和7nm,继续生长18周期的In0.15 Ga0.85 N/GaN多量子阱结构,其中阱和垒的生长温度分别为750℃和850℃,生长厚度分别为4nm和10nm,最后,在970℃下,生长掺Mg的p-GaN,其掺杂浓度为1.5×1019cm-3,厚度为100nm,蒸镀欧姆接触电极(Ti/Al/Ni/Au合金),制备出具有中孔GaN镜的InGaN基光阳极。
实施例2
在外延衬底上先后生长低温GaN缓冲层和GaN多层结构,生长温度1070℃,低掺杂GaN层掺杂浓度为5.0×1017cm-3,厚度为55nm,高掺杂GaN层掺杂浓度为3.0×1019cm-3,厚度为52nm,制备出GaN多层结构;
在0.2mol/L的硝酸溶液中,开启光电化学刻蚀设备,开启白光灯,并将刻蚀电压设定为10V;以铂丝为阴极,以GaN多层结构为阳极,恒电压刻蚀80分钟;刻蚀结束后,关闭光电化学刻蚀设备;将阳极样品用去离子水冲洗后,用氮气吹干,得中孔GaN镜;
以中孔GaN镜为衬底,将该衬底置于MOCVD生长室中,在1000℃下生长GaN,掺杂浓度为9×1018cm-3,厚度为2.0μm,在800℃,生长10周期的In0.03 Ga0.97N/GaN超晶格结构,其中阱和垒厚度分别为3nm和7nm,继续生长14周期的In0.2 Ga0.8N/GaN多量子阱结构,其中阱和垒的生长温度分别为750℃和850℃,生长厚度分别为4nm和10nm,最后,在970℃下,生长掺Mg的p-GaN,其掺杂浓度为4×1019cm-3,厚度为150nm,蒸镀欧姆接触电极(Ti/Al/Ni/Au合金),制备出具有中孔GaN镜的InGaN基光阳极。
实施例3
在外延衬底上先后生长低温GaN缓冲层和GaN多层结构,生长温度1070℃,轻掺杂GaN掺杂浓度和厚度分别为5.0×1015cm-3和50nm,重掺杂GaN掺杂浓度和厚度分别为1×1019cm-3和65nm,制备出GaN多层结构,在0.3mol/L的硝酸溶液中,开启光电化学刻蚀设备,并将刻蚀电压设定为15V;以铂丝为阴极,以GaN多层结构为阳极,恒电压刻蚀20分钟;刻蚀结束后,关闭光电化学刻蚀设备;将阳极样品用去离子水冲洗后,用氮气吹干,得中孔GaN镜;
以中孔GaN镜为衬底,将该衬底置于MOCVD生长室中,在1050℃下生长GaN,掺杂浓度为8×1018cm-3,厚度为2.54μm,在800℃,生长10周期的In0.05 Ga0.95 N/GaN超晶格结构,其中阱和垒厚度分别为3nm和7nm,继续生长14周期的In0.2 Ga0.8 N/GaN多量子阱结构,其中阱和垒的生长温度分别为750℃和850℃,生长厚度分别为4nm和10nm,最后,在970℃下,生长掺Mg的p-GaN,其掺杂浓度为5×1019cm-3,厚度为280nm,蒸镀欧姆接触电极(Ti/Al/Ni/Au合金),制备出具有中孔GaN镜的InGaN基光阳极。
实施例4
在外延衬底上先后生长低温GaN缓冲层和GaN多层结构,生长温度1070℃,轻掺杂GaN的掺杂浓度和厚度分别为1×1018cm-3和55nm,重掺杂GaN的掺杂浓度和厚度分别为1×1019cm-3和60nm,制备出GaN多层结构,在0.5mol/L的硝酸溶液中,开启光电化学刻蚀设备,并将刻蚀电压设定为30V;以铂丝为阴极,以GaN多层结构为阳极,恒电压刻蚀15分钟;刻蚀结束后,关闭光电化学刻蚀设备;将阳极样品用去离子水冲洗后,用氮气吹干,得中孔GaN镜;
以中孔GaN镜为衬底,将该衬底置于MOCVD生长室中,在950℃下生长GaN,掺杂浓度为2×1019cm-3,厚度为2.0μm,在800℃,生长11周期的In0.07Ga0.93 N/GaN超晶格结构,其中阱和垒厚度分别为4nm和7nm,继续生长20周期的In0.3Ga0.7 N/GaN多量子阱结构,其中阱和垒的生长温度分别为750℃和850℃,生长厚度分别为4nm和10nm,最后,在970℃下,生长掺Mg的p-GaN,其掺杂浓度为5.5×1019cm-3,厚度为260nm,蒸镀欧姆接触电极(Ti/Al/Ni/Au合金),制备出具有中孔GaN镜的InGaN基光阳极。
实施例5
在外延衬底上先后生长低温GaN缓冲层和GaN多层结构,生长温度1070℃,轻掺杂GaN的掺杂浓度和厚度分别为9×1016cm-3和65nm,重掺杂GaN的掺杂浓度和厚度分别为4×1019cm-3和50nm,制备出GaN多层结构,在0.7mol/L的硝酸溶液中,开启光电化学刻蚀设备,并将刻蚀电压设定为40V;以铂丝为阴极,以GaN多层结构为阳极,恒电压刻蚀15分钟;刻蚀结束后,关闭光电化学刻蚀设备;将阳极样品用去离子水冲洗后,用氮气吹干,得中孔GaN镜;
以中孔GaN镜为衬底,将该衬底置于MOCVD生长室中,在950℃下生长GaN,掺杂浓度为7.5×1019cm-3,厚度为2.6μm,在800℃生长11周期的In0.09Ga0.91N/GaN超晶格结构,其中阱和垒厚度分别为3nm和7nm,继续生长25周期的In0.35 Ga0.65N/GaN多量子阱结构,其中阱和垒的生长温度分别为750℃和850℃,生长厚度分别为4nm和10nm,最后,在970℃下,生长掺Mg的p-GaN,其掺杂浓度为6×1019cm-3,厚度为300nm,蒸镀欧姆接触电极(Ti/Al/Ni/Au合金),制备出具有中孔GaN镜的InGaN基光阳极。
对本发明中实施例3制备的具有中孔GaN镜的InGaN基光阳极进行实验,结果如下:
如图1是本实施3中孔GaN镜的切面扫描电子显微镜(SEM)照片,图中标尺为200纳米。
图2是实施例3制备的中孔GaN镜的反射光谱,其中,横坐标:波长(wavelength),单位:纳米(nm),纵坐标:反射率(Reflectance),由图2可知,该反射镜在440-515nm之间的反射率约为97%。
本实施例3所制备的InGaN基光阳极的切面SEM照片如图3所示,其中标尺:1微米(1μm);从图3中可以看到,再生长以后,中孔GaN镜层保持较好的周期性结构。
本实施例3所制备的InGaN基光阳极的HRXRD图谱如图4所示,其中,横坐标:角度(2θ),单位:度(degree),纵坐标:强度(Intensity)。参比InGaN基样品记为样品1,具有中孔GaN镜的InGaN基光阳极记为样品2,由图4可知,两个光电极都出现两个衍射峰,其中强的衍射峰对应的是GaN(0002)峰,弱的衍射峰对应的是InGaN(0002)峰。
本实施例3所制备的InGaN基光阳极的InGaN(0002)峰对应的摇摆曲线如图5所示,其中,横坐标:角度(ω),单位:度(degree),纵坐标:强度(Intensity),由图5可知,与参比光电极相比,具有中孔GaN镜的InGaN基光电极呈现出较小的半高宽,这一结果表明在中孔GaN镜衬底上更易制备出高质量的InGaN基光电极。
本实施例3所制备的InGaN基光阳极的拉曼光谱如图6所示,其中,横坐标:波数(Raman shifit),单位:纳米(cm-1),纵坐标:强度(Intensity),由图6可知,与参比光电极相比,具有中孔GaN镜的InGaN基光电极的拉曼峰呈现出红移,这一结果表明在中孔GaN镜衬底上制备出的InGaN基光电极发生明显的应力松弛。
实施例3制备的InGaN基光阳极的光电流-电压曲线如图7所示,其中,横坐标:电压(voltage),单位:(V),纵坐标:光电流(photocurrent),单位:(mA cm-2),图7中曲线1为参比InGaN基光阳极的光电流-电压曲线,曲线2为具有中孔GaN镜的InGaN基光阳极的光电流-电压曲线。与参比电极相比,具有中孔GaN镜的InGaN基光阳极的开启电压降低、光电流显著提高;此外,其转化效率提高3-8倍,且表面平整光滑。
实施例3制备的InGaN基光阳极的转换效率-电压曲线如图8所示,其中,横坐标:电压(voltage),单位:(V),纵坐标:转换效率(conversion efficiency),图8中曲线1为参比InGaN基光阳极,曲线2为具有中孔GaN镜的InGaN基光阳极;由图8可知实施例3制备的光阳极转化效率提高3-8倍。
如图9所示,实施例3制备的InGaN基光阳极的光电流-时间曲线,其中,横坐标:时间(Time),单位:(s),光电流(photocurrent),单位:(mA cm-2),图9中曲线1为参比InGaN基光阳极,曲线2为具有中孔GaN镜的InGaN基光阳极,由图9可知具有中孔GaN镜的InGaN基光电极,其光电流在10000s内只有较小的衰减,这表明该光电极在光解水制氢过程中具有较好的稳定性。
为了说明本发明的光阳极效果,进行以下对比实验验证:
对比例1
以实施例3步骤1的方法采用MOCVD技术在
Figure GDA0004190757280000101
面蓝宝石衬底上制备GaN多层结构,以所得未刻蚀的GaN多层结构为衬底,采用实施例3步骤2完全相同的工艺条件,制备InGaN基光阳极。由图5可知,与参比光电极相比,具有中孔GaN镜的InGaN基光电极呈现出较小的半高宽,这一结果表明在中孔GaN镜衬底上更易制备出高质量的InGaN基光电极。由图6可知,与参比光电极相比,具有中孔GaN镜的InGaN基光电极的拉曼峰呈现出红移,这一结果表明在中孔GaN镜衬底上制备出的InGaN基光电极发生明显的应力松弛。由图7-9可知,与参比电极相比,具有中孔GaN镜的InGaN基光阳极的开启电压降低、光电流显著提高;此外,其转化效率提高3-8倍,且表面平整光滑,稳定性高。
对比例2
制备方法与实施例3相同,所不同的是刻蚀电压由25V增加到45V。制备的具有中孔GaN镜的InGaN基光阳极表面出现明显的脱落现象,变得凹凸不平。
对比例3
制备方法与实施例3相同,所不同的是步骤2在采用MOCVD方法在中孔GaN镜上再生长过程中,GaN层最初生长温度为1070℃,没有采用分段升温生长模式。制备的具有中孔GaN镜的InGaN基光阳极,虽表面平整光滑,但表面颜色变黑,有金属镓析出。
对比例4
制备方法与实施例3相同,所不同的是,GaN多层结构中重掺杂GaN掺杂浓度由2×1019cm-3增加至5×1019cm-3。制备的具有中孔GaN镜的InGaN基光阳极表面出现明显脱落现象。
通过上述方式,本发明一种InGaN基光阳极的制备方法,工艺条件易于精确控制,制备的具有中孔GaN镜的InGaN基光阳极均匀性和重复性好,便于产业化生产,所制备的光阳极具有开启电压低、转化效率高、稳定性强等优良特性,有着广阔的应用前景。

Claims (3)

1.一种InGaN基光阳极的制备方法,其特征在于,具体按照以下步骤实施:
步骤1、在酸性溶液中,采用光电化学刻蚀技术对GaN多层结构进行恒电压刻蚀,制备出中孔GaN镜;
所述GaN多层结构包括低掺杂GaN层和高掺杂GaN层,厚度均为50-68nm,低掺杂GaN层掺杂浓度为4.0×1015-1.0×1018cm-3,高掺杂GaN层掺杂浓度为3.0×1018-4.0×1019cm-3,周期数为7;
步骤2、以中孔GaN镜为衬底,先采用MOCVD技术外延生长InGaN/GaN层,所述InGaN/GaN层包括GaN层、超晶格结构和多量子阱层,所述GaN层是在850-1060℃温度下制备的1.5-2.6μm厚的n-GaN层,掺杂浓度为3.5×1018-7.5×1019cm-3;所述超晶格结构是周期为9-11的InxGa1-x N/GaN超晶格结构,其中,0<x<0.1,每个周期中,Inx Ga1-x N厚度为3-4nm,GaN厚度为7nm;所述多量子阱层是周期14-30的Iny Ga1-yN/GaN多量子阱结构,其中,0.1<y<0.4,每个周期中,InyGa1-y N厚度为4-6nm,GaN厚度为10-11nm,最后生长掺Mg的p-GaN层,掺杂浓度为1×1019cm-3-6×1019cm-3,厚度为100-300nm;
通过能带工程调制In组分,调制其带隙,然后采用电子束蒸发技术,蒸镀欧姆接触电极,制备出InGaN基光阳极。
2.根据权利要求1所述一种InGaN基光阳极的制备方法,其特征在于,步骤1所述刻蚀技术为光电化学刻蚀技术,所述酸性溶液是浓度为0.3-0.5mol/L的硫酸、硝酸或盐酸水溶液中的任意一种。
3.根据权利要求1所述一种InGaN基光阳极的制备方法,其特征在于,所述恒电压刻蚀的电压为5-50V,刻蚀时间范围为5-80min。
CN202010857283.7A 2020-08-24 2020-08-24 一种InGaN基光阳极的制备方法 Active CN112095117B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010857283.7A CN112095117B (zh) 2020-08-24 2020-08-24 一种InGaN基光阳极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010857283.7A CN112095117B (zh) 2020-08-24 2020-08-24 一种InGaN基光阳极的制备方法

Publications (2)

Publication Number Publication Date
CN112095117A CN112095117A (zh) 2020-12-18
CN112095117B true CN112095117B (zh) 2023-06-06

Family

ID=73752709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010857283.7A Active CN112095117B (zh) 2020-08-24 2020-08-24 一种InGaN基光阳极的制备方法

Country Status (1)

Country Link
CN (1) CN112095117B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279008B (zh) * 2021-05-18 2022-03-22 河北工业大学 一种用于人工光合作用氮化镓串联cigs的器件及其制备方法
CN117059713B (zh) * 2023-10-11 2024-02-02 深圳市领耀东方科技股份有限公司 一种基于微纳加工技术的高亮度led芯片制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364482B (zh) * 2008-09-19 2010-12-08 南京大学 一种可见光铟镓氮基光电化学电池制备方法
CN101922015B (zh) * 2010-08-25 2012-07-04 中国科学院半导体研究所 一种InGaN半导体光电极的制作方法
CN104810451B (zh) * 2015-04-29 2017-11-24 华灿光电(苏州)有限公司 一种GaN基发光二极管外延片及其制备方法
CN108520911A (zh) * 2018-04-11 2018-09-11 山东大学 一种具有纳米多孔GaN分布布拉格反射镜的InGaN基蓝光发光二极管的制备方法
CN108550963A (zh) * 2018-05-03 2018-09-18 南京大学 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
CN109830583B (zh) * 2019-01-31 2020-10-27 西安工程大学 一种具有GaN/纳米空腔的蓝光发光二极管的制备方法

Also Published As

Publication number Publication date
CN112095117A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
TWI445052B (zh) 藉由金屬有機化學氣相沈積(MOCVD)於多孔性氮化鎵(GaN)模板上氮化銦鎵(InGaN)之生長
DE10223797B4 (de) Licht emittierende III-Nitrid-Anordnungen mit niedriger Ansteuerspannung und Herstellverfahren dafür
DE112006001084B4 (de) Licht emittierende Bauelemente mit aktiven Schichten, die sich in geöffnete Grübchen erstrecken
CN112095117B (zh) 一种InGaN基光阳极的制备方法
US8809832B1 (en) Method of selective photo-enhanced wet oxidation for nitride layer regrowth on substrates and associated structure
DE60014097T2 (de) Nitrid-halbleiterschichtenstruktur und deren anwendung in halbleiterlasern
US10665753B2 (en) Vertical-type ultraviolet light-emitting diode
US20230369541A1 (en) Process for manufacturing a relaxed gan/ingan structure
KR20070116687A (ko) GaN 단결정 성장방법, GaN 기판 제작방법, GaN계소자 제조방법 및 GaN계 소자
DE102010012711A1 (de) Strahlungsemittierendes Halbleiterbauelement und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterbauelements
WO2018040124A1 (zh) 生长在r面蓝宝石衬底上的非极性LED外延片的制备方法及应用
US8138494B2 (en) GaN series light-emitting diode structure
US10770621B2 (en) Semiconductor wafer
TW201240140A (en) A photonic device and method of making the same
KR100586948B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
US20140167059A1 (en) Pec etching of (20-2-1) semipolar gallium nitride for external efficiency enhancement in light emitting diode applications
CN113013018A (zh) 制造包含松弛的氮化铟镓层的衬底的方法
CN107895690A (zh) 一种大面积、高反射率氮化镓/纳米多孔氮化镓分布布拉格反射镜的制备方法
Zhao et al. Enhancement in light-emission efficiency of InGaN/GaN multiple quantum well layer by a porous-GaN mirror
CN116682909B (zh) 一种led外延片、制备方法及led芯片
Lee et al. Regrowth of semipolar GaN on nanoporous GaN template by metal organic chemical vapor deposition
CN108520911A (zh) 一种具有纳米多孔GaN分布布拉格反射镜的InGaN基蓝光发光二极管的制备方法
KR101471608B1 (ko) 나노로드를 포함하는 질화물계 발광다이오드 및 이의 제조방법
CN109830583B (zh) 一种具有GaN/纳米空腔的蓝光发光二极管的制备方法
CN108922947A (zh) 一种基于多孔外延模板的紫外发光二极管及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant