CN112095082A - 一种变折射率氧化物薄膜的制备方法 - Google Patents

一种变折射率氧化物薄膜的制备方法 Download PDF

Info

Publication number
CN112095082A
CN112095082A CN202010948576.6A CN202010948576A CN112095082A CN 112095082 A CN112095082 A CN 112095082A CN 202010948576 A CN202010948576 A CN 202010948576A CN 112095082 A CN112095082 A CN 112095082A
Authority
CN
China
Prior art keywords
film
sio
refractive index
oxygen flow
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010948576.6A
Other languages
English (en)
Inventor
姜玉刚
刘华松
何家欢
李士达
白金林
姜承慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinhang Institute of Technical Physics
Original Assignee
Tianjin Jinhang Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinhang Institute of Technical Physics filed Critical Tianjin Jinhang Institute of Technical Physics
Priority to CN202010948576.6A priority Critical patent/CN112095082A/zh
Publication of CN112095082A publication Critical patent/CN112095082A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/3442Applying energy to the substrate during sputtering using an ion beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于光学薄膜技术领域,涉及一种变折射率氧化物薄膜的制备方法,通过采用双离子束溅射沉积技术,以硅靶作为溅射靶材,通过改变离子束溅射制备工艺参数的氧气流量,可实现在500nm‑8000nm宽谱段范围内具有折射率连续可调SiOx薄膜的制备。结果表明,本发明方法将获得具有宽谱段折射率连续可调的氧化物薄膜,对于设计和制备高性能宽谱段多层薄膜具有重要的意义。

Description

一种变折射率氧化物薄膜的制备方法
技术领域
本发明属于光学薄膜技术领域,涉及一种变折射率氧化物薄膜的制备方法,具体涉及一种离子束溅射SiOx薄膜的制备方法。
背景技术
随着光学系统的快速发展,对其光学透镜、光学窗口等元件性能的要求越来越高。目前已经使用的中波红外光学窗口和透镜材料有蓝宝石、氟化镁、硅、锗、尖晶石、氮氧铝、硫化锌、硒化锌等。这些光学窗口和透镜表面的反射在光学系统中会产生两个严重的后果:第一,光能量的损失,使像的亮度降低;第二,光学系统内部各表面多次反射而造成的杂散光最后也会到达像面,造成像的衬度降低,分辨率下降。这两种效应都使得光学系统的成像质量遭到损害。特别是对于那些复杂的光学系统,这两个效应造成的后果更加严重。因此,无论使用任何材料,均需要对这些光学窗口和透镜进行减反射处理。而对于大角度入射成像的光学窗口,在大角度入射的情况下(0°-75°),由于光学材料的偏振效应而导致透过率降低,大角度、宽带减反射薄膜是窗口应用的关键技术。对于透镜组,如何降低其表面剩余反射损耗是提高光学系统性能的关键所在。
目前,超宽带减反射膜的设计没有简单可行的方法,只能依靠数值优化技术对初始设计不断优化,才能生成满足设计要求的膜系结果,所以选择一个合适的初始结构是超宽带减反射膜优化设计的关键。大角度宽带减反射薄膜元件主要都是采用二种或三种高低折射率薄膜材料匹配进行设计,但由于受到薄膜材料种类和折射率的限制,设计的宽带减反射薄膜很难获得超低剩余反射或在超大角度工作条件下获得较低的剩余反射。所以急需寻找合适的薄膜材料,获得超低剩余反射红外减反射薄膜的设计和制备。根据设计需求,多种折射率薄膜材料组合是降低大角度、宽带减反射薄膜剩余反射的最佳方案。目前,变折射率薄膜大都是采用电子束蒸发二种薄膜材料,通过调整蒸发速率获得不同折射率的薄膜材料,但精确控制掺杂比是目前遇到的最大难题。但针对离子束溅射沉积技术制备变折射薄膜还鲜有报道。
综上所述,目前采用离子束溅射沉积技术制备SiOx薄膜还未见报道。
发明内容
(一)发明目的
本发明的目的是:提供一种变折射率氧化物薄膜的制备方法,通过采用双离子束溅射沉积技术,通过改变通入氧气的流量,可实现从可见光-长波红外波段变折射率SiOx薄膜的制备。
(二)技术方案
为了解决上述技术问题,本发明提供一种变折射率氧化物薄膜的制备方法,其包括如下步骤:
S1:选择硅靶作为离子束溅射靶材;
S2:采用离子束溅射沉积技术,在不同基底上制备不同氧气流量条件下的SiOx薄膜;
S3:采用分光光度计和红外傅立叶光谱仪测量SiOx薄膜样品的可见光-红外波段透射光谱;
S4:基于透射光谱的反演方法,计算SiOx薄膜的折射率和消光系数;
S5:获得氧气流量与SiOx薄膜折射率和消光系数的关联性;
S6:通过改变氧气流量,实现变折射率氧化物SiOx薄膜的制备,折射率:n~1.45-3.5@1500nm。
(三)有益效果
上述技术方案所提供的变折射率氧化物薄膜的制备方法,通过采用双离子束溅射沉积技术,通过改变氧气流量的工艺参数,可实现不同折射率SiOx薄膜的制备,本方法对于不同离子源参数制备SiOx薄膜具有普适性。
附图说明
图1离子束溅射技术制备SiOx薄膜工作示意图。
图2石英基底上SiOx薄膜的可见光-近红外透过率曲线。
图3硅基底上SiOx薄膜的近红外-长波红外透过率曲线。
图4SiOx薄膜的可见光-长波红外折射率曲线。
图5SiOx薄膜的可见光-长波红外消光系数曲线。
图6SiOx薄膜的折射率(1500nm)与氧气流量的关系。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本实施例变折射率氧化物薄膜的制备方法包括如下步骤:
S1:选择硅靶作为离子束溅射沉积靶材,选择熔融石英、硅基底作为SiOx薄膜的沉积基底。
S2:采用双离子束溅射沉积技术,选择镀膜真空室本体真空度为m×10-6Torr,1≤m≤50,真空室氧气流量为Xsccm,0≤X≤60,主离子源工作参数:工作电压为U,600V≤U≤1500V,工作电流为I,200mA≤I≤1200mA;在熔融石英、硅等基底上制备SiOx薄膜。
S3:采用分光光度计测量熔融石英基底上SiOx薄膜的可见光-近红外透过率曲线,采用红外傅立叶光谱仪测量硅基底上SiOx薄膜的红外透过率曲线。
S4:采用基于透射光谱的光谱反演计算方法精确计算SiOx薄膜的折射率和消光系数。
S5:获得氧气流量与SiOx薄膜折射率和消光系数的关联性。
S6:通过改变氧气流量,实现变折射率氧化物SiOx薄膜的制备,折射率:n~1.45-3.5@1500nm。
实例:
下面以离子束溅射技术制备变折射率SiOx薄膜为实例,具体步骤如下:
S1:首先选择硅靶作为离子束溅射沉积靶材,选择熔融石英和硅基底作为SiOx薄膜的沉积基底。
S2:采用双离子束溅射沉积技术,制备SiOx薄膜工作示意图如图1所示。选择镀膜真空室本体真空度为8×10-6Torr,真空室氧气流量X为20sccm、25sccm、30sccm、35、40sccm,主离子源工作参数:工作电压U1为1200V,工作电流I1为750mA,在熔融石英基底上制备了SiOx薄膜,膜层沉积时间为3000s。
S3:采用Lambda900分光光度计测量不同氧气流量条件下石英基底上SiOx薄膜的可见光-近红外透过率曲线,测量范围为250nm-2500nm,测量结果如图2所示。采用PE红外傅立叶光谱仪测量硅基底上SiOx薄膜的红外透过率曲线,测量范围为2500nm-15000nm,测量结果如图3所示。
S4:采用基于透射光谱的光谱反演计算方法精确计算了SiOx薄膜的折射率、消光系数、沉积速率等光学常数,折射率曲线如图3所示,消光系数曲线如图4所示,随着氧气流量的增加,SiOx薄膜的折射率和消光系数均逐渐减小。
S5:SiOx薄膜在1500nm波长处的折射率与氧气流量的关系如图5所示,当氧气流量在20sccm-40sccm区间,可以实现折射率在1.6-2.55范围内调控。
S6:通过改变氧气流量,可实现了变折射率(n~1.45-3.5@1500nm)氧化物SiOx薄膜的制备。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种变折射率氧化物薄膜的制备方法,其特征在于,包括如下步骤:
S1:选择硅靶作为离子束溅射靶材,选择沉积基底;
S2:采用离子束溅射沉积技术,在不同基底上制备不同氧气流量条件下的SiOx薄膜;
S3:采用分光光度计和红外傅立叶光谱仪测量不同基底上SiOx薄膜样品的可见光-近红外波段透射光谱;
S4:基于透射光谱的反演方法,计算SiOx薄膜的折射率和消光系数;
S5:获得氧气流量与SiOx薄膜折射率和消光系数的关联性;
S6:通过改变氧气流量,实现变折射率氧化物SiOx薄膜的制备。
2.如权利要求1所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S1中,选择熔融石英、硅基底作为SiOx薄膜的沉积基底。
3.如权利要求2所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S2中,采用双离子束溅射沉积技术,选择镀膜真空室本体真空度为m×10-6Torr,1≤m≤50,真空室氧气流量为Xsccm,0≤X≤60,主离子源工作参数:工作电压为U,600V≤U≤1500V,工作电流为I,200mA≤I≤1200mA,在熔融石英、硅等基底上制备SiOx薄膜。
4.如权利要求3所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S3中,采用分光光度计测量熔融石英基底上SiOx薄膜的可见光-近红外透过率曲线,采用红外傅立叶光谱仪测量硅基底上SiOx薄膜的红外透过率曲线。
5.如权利要求4所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S2中,采用双离子束溅射沉积技术,制备SiOx薄膜,其中,选择镀膜真空室本体真空度为8×10- 6Torr,真空室氧气流量X为20sccm、25sccm、30sccm、35sccm、40sccm,主离子源工作参数:工作电压U1为1200V,工作电流I1为750mA,在熔融石英基底上制备了SiOx薄膜,膜层沉积时间为3000s。
6.如权利要求5所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S3中,采用Lambda900分光光度计测量不同氧气流量条件下石英基底上SiOx薄膜的可见光-近红外透过率曲线,测量范围为250nm-2500nm。
7.如权利要求6所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S3中,采用PE红外傅立叶光谱仪测量硅基底上SiOx薄膜的红外透过率曲线,测量范围为2500nm-15000nm。
8.如权利要求7所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S4中,获得的折射率曲线和消光系数曲线中,随着氧气流量的增加,SiOx薄膜的折射率和消光系数均逐渐减小。
9.如权利要求8所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S5中,获得SiOx薄膜在1500nm波长处的折射率与氧气流量的关系,当氧气流量在20sccm-40sccm区间,实现折射率在1.6-2.55范围内调控。
10.如权利要求9所述的变折射率氧化物薄膜的制备方法,其特征在于,所述步骤S6中,通过改变氧气流量,实现变折射率n~1.45-3.5@1500nm氧化物SiOx薄膜的制备。
CN202010948576.6A 2020-09-10 2020-09-10 一种变折射率氧化物薄膜的制备方法 Pending CN112095082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010948576.6A CN112095082A (zh) 2020-09-10 2020-09-10 一种变折射率氧化物薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010948576.6A CN112095082A (zh) 2020-09-10 2020-09-10 一种变折射率氧化物薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN112095082A true CN112095082A (zh) 2020-12-18

Family

ID=73751864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010948576.6A Pending CN112095082A (zh) 2020-09-10 2020-09-10 一种变折射率氧化物薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112095082A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048402A (ja) * 1996-08-02 1998-02-20 Sony Corp 光学的素子又は装置、これらの製造方法、及びその製造装置
JP2002062406A (ja) * 2000-08-23 2002-02-28 Dainippon Printing Co Ltd 反射防止フィルム
CN1516826A (zh) * 2001-04-19 2004-07-28 纳幕尔杜邦公司 用于制造衰减相移光掩模坯的离子束沉积方法
JP2014157326A (ja) * 2013-02-18 2014-08-28 Canon Inc 反射防止膜及び光学素子
CN104576793A (zh) * 2013-10-27 2015-04-29 西安中科麦特电子技术设备有限公司 一种双面镀膜光伏玻璃
CN110895357A (zh) * 2018-09-13 2020-03-20 深圳大学 一种新型高透射率二氧化钒薄膜元件制备方案

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048402A (ja) * 1996-08-02 1998-02-20 Sony Corp 光学的素子又は装置、これらの製造方法、及びその製造装置
JP2002062406A (ja) * 2000-08-23 2002-02-28 Dainippon Printing Co Ltd 反射防止フィルム
CN1516826A (zh) * 2001-04-19 2004-07-28 纳幕尔杜邦公司 用于制造衰减相移光掩模坯的离子束沉积方法
JP2014157326A (ja) * 2013-02-18 2014-08-28 Canon Inc 反射防止膜及び光学素子
CN104576793A (zh) * 2013-10-27 2015-04-29 西安中科麦特电子技术设备有限公司 一种双面镀膜光伏玻璃
CN110895357A (zh) * 2018-09-13 2020-03-20 深圳大学 一种新型高透射率二氧化钒薄膜元件制备方案

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘华松,等: "离子束溅射制备SiO2薄膜的折射率与应力调整", 《光学精密工程》, 30 September 2013 (2013-09-30), pages 2238 - 2243 *

Similar Documents

Publication Publication Date Title
JP7498220B2 (ja) 改良された透過率を有する近赤外線光学干渉フィルタ
EP3839585B1 (en) Near infrared optical interference filters with improved transmission
CN108627889B (zh) 一种锗基底宽光谱红外增透光学窗口
US20220120951A1 (en) Optical filter plate
CN107893216B (zh) 一种修正石英监控法制备宽带增透膜沉积误差的方法
CN115903114A (zh) 一种基于光子晶体膜层结构的偏振不敏感角度滤波器及其制备方法
Sahoo et al. Process-parameter optimization of Sb 2 O 3 films in the ultraviolet and visible region for interferometric applications
Sundaram et al. Characterization and optimization of cerium dioxide films deposited by rf magnetron sputtering
CN112095082A (zh) 一种变折射率氧化物薄膜的制备方法
KR20210123142A (ko) 만능 임피던스 정합을 이용한 실리콘 기판 또는 게르마늄 기판 상의 무반사막 및 그 형성 방법
US20220244430A1 (en) Optical filter, sensor system comprising same, and method for manufacturing halogenated amorphous silicon thin film for optical filter
Jakobs et al. Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering
US7985489B2 (en) Temperature-resistant layered system
Huasong et al. Physical model of optical constants of SiO 2 thin films
JPH0790583A (ja) 薄膜形成方法
Stojcevski et al. Broadband optical monitoring for a 2-meter optics magnetron sputtering deposition machine
Liu et al. Analysis and fabrication of antireflection coating with ultralow residual reflectance for single wavelength
CN105629355A (zh) 一种介质金属膜堆的低偏振灵敏度分色膜的制作方法
Ma et al. Non-polarizing broadband dichroic mirror
CN113881926B (zh) 一种提升光学薄膜沉积精度的方法
RU2133049C1 (ru) Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа
CN113278950B (zh) 渐变折射率减反薄膜及其制备方法和应用
Marszałek et al. The GdF3/MgF2 bilayer as an antireflective narrow-band ultraviolet filter
US20220413186A1 (en) Method for manufacturing optical lens provided with anti-reflection film
RU2799894C1 (ru) Оптический интерференционный блокирующий фильтр

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218

RJ01 Rejection of invention patent application after publication