RU2133049C1 - Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа - Google Patents

Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа Download PDF

Info

Publication number
RU2133049C1
RU2133049C1 RU97120258A RU97120258A RU2133049C1 RU 2133049 C1 RU2133049 C1 RU 2133049C1 RU 97120258 A RU97120258 A RU 97120258A RU 97120258 A RU97120258 A RU 97120258A RU 2133049 C1 RU2133049 C1 RU 2133049C1
Authority
RU
Russia
Prior art keywords
vacuum
refractive index
optical element
deposition
electron beam
Prior art date
Application number
RU97120258A
Other languages
English (en)
Inventor
А.М. Гонопольский
Original Assignee
Открытое акционерное общество "Компат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Компат" filed Critical Открытое акционерное общество "Компат"
Priority to RU97120258A priority Critical patent/RU2133049C1/ru
Application granted granted Critical
Publication of RU2133049C1 publication Critical patent/RU2133049C1/ru

Links

Images

Abstract

Способ нанесения покрытия включает электронно-лучевое испарение материала покрытия в вакууме и осаждение паров на оптический элемент. После каждого прохода оптического элемента через зону напыления введенным в установку спектрофотометром измеряют зависимость коэффициента преломления от длины волны. Выход спектрофотометра соединен с ЭВМ. ЭВМ сравнивает измеренную зависимость коэффициента преломления от длины волны с заданной и выдает корректирующие сигналы для уменьшения несовпадений зависимостей. Для этого выходы ЭВМ подключены к устройствам для регулирования тока электронно-лучевых испарителей, и/или величины вакуума, и/или скорости вращения привода. Способ и установка обеспечивают повышение производительности процесса напыления при повышении качества напыляемых покрытий. 2 с.п.ф-лы, 3 ил.

Description

Изобретение относится к технологии изготовления оптических элементов и представляет собой способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента, линз, призм, очковых стекол и т.п., а также установку для осуществления этого способа.
Известен способ получения просветляющих покрытий путем их послойного осаждения на поверхность элемента (см. например сб. Физика тонких пленок, том 5, М.Мир. 1972 г., стр.119-121). Как следует из этого способа, покрытие должно состоять как минимум из 3-х слоев.
Первый слой - с средним коэффициентом поглощения;
Второй слой - с высоким коэффициентом поглощения;
Третий слой - с низким коэффициентом поглощения.
При этом указано, что эти покрытия и слои предварительно расчитываются, а обязательным материалом внешнего слоя с низким коэффициентом поглощения является MgF2. Этот материал требует подогрева подложки, что недопустимо для оптических элементов из пластика, т.к., если не греть подложку, указанный материал дает сетку мелких трещин.
Наиболее близким из известных по технической сущности и достигаемому результату является способ нанесения просветляющего покрытия (широкополостного многослойного) на поверхность оптического элемента путем поочередного вакуумного электронно-лучевого испарения оксидов и послойного их осаждения в вакууме при заданном числе проходов элемента через зону напыления (П.П. Яковлев и Б.Б.Мешков. Проектирование интерференционных покрытий. Москва, Машиностроение. 1987 г., стр.135-151).
В указанном источнике описана также установка для нанесения просветляющего многослойного покрытия, содержащая вакуумную камеру с устройством для регулирования величины вакуума, размещенные в камере электронно-лучевые испарители с устройством для регулирования величины тока.
Согласно известному способу многослойное просветляющее покрытие должно быть заранее рассчитано.
В расчет закаладываются показатели преломления слоев и с их учетом подбираются толщины слоев.
При реализации этих способов вакуумного напыления как показатели слоев, так и толщины слоев в многослойных покрытиях выбираются до начала процесса напыления, целенаправленным образом не изменяются, подвергаясь лишь случайным отклонениям при случайных же изменениях управляющих параметров процесса. Такой технологический процесс требует очень точного контроля за соблюдением заранее выбранных толщин слоев с заранее заданными коэффициентами преломления.
Однако на практике в процессе напыления точно выдержать оптические толщины слоев в многослойных покрытиях не удается из-за случайных отклонений параметров процесса. Кроме того, показатели преломления веществ могут случайным образом меняться из-за наличия примесей или морфологических изменений в процессе испарения напыляемых материалов, а также из-за неточности измерения температуры подложки в процессе ее циклического перемещения в камере.
Так, например, для оптического слоя SiO2 коэффициент преломления может меняться от n -1,38 до n -1,47, для HfO2 от n - 1,70 до n -1,90. Эти обстоятельства вынуждают применять для просветления очковой оптики многослойные покрытия из 4-5-ти слоев. При этом каждый из слоев напыляется за несколько проходов линзы в зоне напыления.
Кроме того, просветляющие покрытия на пластиковых линзах обладают низкой прочностью из-за низкой твердости подложки, ограниченности предварительного напева и ионной чистки. Поэтому в состав таких покрытий как правило входит твердый подслой толщиной 1 мкм. Современная технология электронно-лучевого напыления оптических слоев требует до 3-х часов только для нанесения подслоя.
Изобретательской задачей, на решение которой направлено настоящее изобретение, является повышение производительности процесса напыления при повышении качества напыляемых покрытий.
Указанная задача решается тем, что в способе нанесения просветляющего многослойного покрытия на поверхность оптического элемента, включающем электронно-лучевое испарение оксидов в вакууме и осаждение паров на поверхности оптического элемента в процессе многократного прохождения последнего через зону напыления, после каждого прохода оптического элемента через зону напыления производят сканирующее по определенной ширине спектра измерение коэффициента преломления, полученную зависимость коэффициента преломления от длины волны сравнивают с заданной и затем корректируют силу тока в нагревателях катода электронно-лучевых испарителей и/или скорость перемещения оптического элемента в зоне напыления, и/или величину вакуума для уменьшения несовпадений измеренной и заданной зависимостей коэффициента преломления от длины волны после следующего прохода.
Кроме того, в установке для осуществления указанного способа, содержащей вакуумную камеру с устройством для регулирования величины вакуума, размещенные в камере электронно-лучевые испарители с устройством для регулирования величины тока, устройство для крепления оптических элементов с регулируемым приводом для их вращения и блок контроля толщины покрытия, блок контроля толщины покрытия снабжен быстродействующим аккустооптическим спектрометром для измерения коэффициента преломления и подключенной к выходу последнего ЭВМ, выполненной с возможностью сопоставления измеренной зависимости коэффициента преломления от длины волны с заданной и выдачи корректирующих сигналов для уменьшения несовпадений измеренной и заданной зависимостей, причем выходы ЭВМ подключены к устройствам для регулирования тока электронно-лучевых испарителей, и/или величины вакуума, и/или скорости вращения привода для передачи соответствующих корректирующих сигналов.
На фиг. 1 представлена блок-схема установки для нанесения просветляющего многослойного покрытия по данному способу.
На фиг. 2 приведены результаты измерений коэффициента отражения R, а на фиг. 3 - коэффициента поглощения Т для покрытий, нанесенных на пластиковые очковые линзы CR-39.
Установка в серийном исполнении для осуществления известного способа состоит из откачного поста, предназначенного для размещения: вакуумной системы откачки, рабочей вакуумной камеры, основных и вспомогательных узлов, обеспечивающих размещение напыляемых деталей и проведение технологического цикла нанесения покрытий, вращение арматуры, ионную очистку деталей, нагрев деталей, испарение пленкообразующих материалов, контроль толщины покрытия заслонок, определяющих начало и окончание нанесения покрытий, размещение пневмо- и гидросистем, некоторых элементов электрооборудования и т.д.
Камера изготовлена из нержавеющей стали и оборудована экранами и гермоотводами, в ней установлены два электронно-лучевых испарителя, электрод ионной системы очистки, опорные ролики для арматуры, электромагнитная муфта привода вращения, фотометрические окна, нагрев и испарение материала осуществляется электронно-лучевыми пушками.
Кроме откачного поста, в состав установки входят пульты управления и источники электропитания для систем установки /всех/. Система контроля за процессом напыления просветляющих оптических покрытий не имеет систем анализа погрешностей оптических параметров (материалов, регулировок и т.д.) и работает после напыления каждого слоя в ручном режиме. Эта система не имеет выхода на органы управления установкой вакуумного напыления и не может быть использована для динамического управления процессом напыления. Таким образом, конструкция установки не позволяет контролировать коэффициент преломления в процессе напыления и вносить коррективы в процессе напыления в реальном масштабе времени.
На фиг.1 представлена схема установки для реализации способа. Установка базируется на описанной выше серийной установке и содержит вакуумную камеру 1, систему электронно-лучевых испарителей 2, блок 3 контроля толщины покрытий, технологическую оснастку 4 для крепления оптических элементов, систему управления 5 приводом вращения оптических элементов и системы регулирования 6 тока электронно-лучевых испарителей и величины вакуума в камере 1.
Установка оснащена сканирующей системой измерения коэффициента поглощения в виде быстродействующего аккустооптического спектрофотометра 7 и персональной ЭВМ (ПЭВМ) 8, причем ЭВМ 8 соединена со спектрофотометром 7 и системами 5 и 6 управления и регулирования кабельным пакетом 9.
Данный способ реализуется следующим образом:
Пластиковые линзы монтируются в технологической оснастке 4 и помещаются в камеру 1. которая герметизируется и откачивается сначала форвакуумным насосом до давления 10-1 Па, а затем автоматически до 10-3 Па диффузным насосом. В ПЭВМ вводится программа расчета конструкции просветляющего покрытия с визуальным изображением на экране дисплея монитора ПЭВМ расчетных спектральных характеристик слоев покрытия, показывающих динамику напыления первого слоя с шагом 1/n по толщине 1-го слоя (где n - число проходов). После выключения механизма вращения технологической оснастки и разогрева электронно-лучевого испарителя 2 с материалом 1-го слоя в тигле открывается заслонка тигля и материал покрытия осаждается на поверхности пластиковой линзы. Контроль за процессом осуществляется аккустооптическим спектрофотометром 7 на каждом проходе линзы через зону напыления при вращении оснастки. При совпадении расчетной спектральной кривой на экране дисплея ПЭВМ 8 с текущей (измеряется в пределах заданной точности) заслонка тигля автоматически закрывается. При несовпадении расчетных и измеряемых значений спектральной характеристики на каждом проходе производится программный анализ процесса и выбирается оптимальный по быстродействию и энергозатратам сценарий ликвидации несовпадения.
Управляющие воздействия ПЭВМ 8 передаются на механизмы управления вращением оснастки, механизм управления заслонкой тигля, механизм управления электронно-лучевыми испарением. По результатам измерения спектральных характеристик 1-го слоя при их совпадении с расчетными электронно-лучевой испаритель 1-го слоя выключается, его заслонка закрывается, а остальные параметры установки приводятся к своим расчетным значениям для напыления 2-го слоя. Далее все действия повторяются на каждом слое.
По окончании процесса напыления одной поверхности дается управляющая команда на переворот линз (без вскрытия камеры) и процесс повторяется сначала. После напыления обоих поверхностей установка отключается вручную при нажатии кнопки "АВТ.ОТК". При этом срабатывает автомат отключения агрегатов установки в заданной последовательности, точно также как и на серийной установке.
Таким образом, данный способ состоит из следующих операций:
1. Расчетное определение толщин слоев по табличным значениям коэффициентов преломления в соответствии с техническими требованиями к коэффициенту отражения всего покрытия в заданном диапазоне волн.
2. Включение системы 2 электронно-лучевых испарителей материала 1-го слоя.
3. Нанесение части толщины слоя за 1 проход.
4. Измерение оптических характеристик напыленного материала во всем требуемом диапазоне спектрофотометром 7.
5. Программная обработка измеренных значений в ПЭВМ 8 и выдача управляющего сигнала на управление (системы 5 и 6) установки вакуумного напыления.
6. Корректировка режима напыления, осуществляемая автоматически исполняемым механизмами установки вакуумного напыления в режиме с обратной связью.
7. Повторение позиций 3, 4, 5, 6 на каждом проходе до достижения контролируемых программно расчетных значений по всему слою.
8. Выдача управляющего сигнала на отключение системы 2 испарителей материала первого слоя и включение системы испарителей материала второго слоя.
9. Программная корректировка результатов расчетов по п.1 по результатам измерения и обработанных характеристик первого слоя.
10. Повторение п. 7.
11. Пересчет начальных расчетных данных и определение истинных показателей оптических характеристик покрытия и определение параметров корректирующего слоя для достижения совпадения заданных и полученных характеристик с требуемой точностью.
12. Повторение п.7.
13. Повторение п. 11.
Данный способ был опробован на серийной установке ВУ-2М, дооснащенной быстродействующим аккустооптическим спектрофотометром, в качестве спектрофотометра использовался выпускаемый промышленностью спектрофотометр (см. "Спектрофотометр аккустооптический AOS 3 S - 1. Паспорт и техническое описание. МП "Норма", Москва 1992, с. 3-6).
В результате корректировки процесса на каждом проходе линзы через зону напыления было нанесено четырех-пятислойное покрытие SiO2+Al2O3+HfO2 обеспечивающее суммарный коэффициент отражения поверхности не более 0,25% в диапазоне длин волн λ =420-680A. Испытания проводились по внутренним стандартам фирмы. Результаты измерений коэффициента отражения R и коэффициента поглощения Т приведены на фиг. 2 и фиг. 3 соответственно.
Механическая прочность покрытия определялась на устройстве типа машины трения в варианте "диск-колодка". В роли диска выступала напыленная поверхность линзы, а в роли колодки - абразивонаполненная правильная пирамидка /резиновая, со стороной 5 мм/. Усилие нажатия пирамидки к диску составило 59,0 Н.
Линза была закреплена на горизонтальном диске и вращалась со скоростью 120 об/мин. Пригодность линз определялась по отсутствию отслоения после кипячения в течении 30 минут в 2-процентном растворе соляной кислоты.
Количество линз не прошедших оптические испытания менее 0.25% от партии. Количество линз, не прошедших механические испытания, не превышало 0,27% и не прошедших адгезионные испытания 0,1%. В результате этих действий ни толщина покрытий и его слоев, ни его коэффициенты преломления не являются фиксированными, определенными заранее величинами. Задаются только их начальные значения, корректируемые в процессе напыления в реальном масштабе времени.
Таким образом, данное изобретение снимает ограничения по устойчивости световых характеристик покрытия, обеспечение которой требует как минимум трех компонентных покрытий из двух материалов без твердого подслоя.
При этом традиционно применяемый для напыления MgF2 как материал с низким коэффициентом преломления (n = 1,3%) не является необходимым. Это упрощает процесс, т.к. напыление MgF2 на ненагретую поверхность линзы (а ее нельзя греть свыше 100oC) приводят к появлению сетки микротрещин в покрытии, устранить которую можно лишь применяя специальные технологические методы, как например ионное ассистирование, резко усложняющее процесс и удораживающее его.

Claims (2)

1. Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента, включающий электронно-лучевое испарение материала покрытия в вакууме и осаждение паров на поверхности оптического элемента в процессе многократного прохождения последнего через зону напыления, отличающийся тем, что после каждого прохода оптического элемента через зону напыления производят сканирующее по определенной ширине спектра определение коэффициента преломления, полученную зависимость коэффициента преломления от длины волны сравнивают с заданной и затем корректируют силу тока в нагревателях катода электронно-лучевых испарителей, и/или скорость перемещения оптического элемента в зоне напыления, и/или величину вакуума для уменьшения несовпадений измеренной и заданной зависимостей коэффициента преломления от длины волны после следующего прохода.
2. Установка для нанесения просветляющего многослойного покрытия, содержащая вакуумную камеру с устройством для регулирования величины вакуума, размещенные в камере электронно-лучевые испарители с устройством для регулирования величины тока, устройство для крепления оптических элементов с устройством для регулирования скорости вращения привода и блок контроля толщины покрытия, отличающаяся тем, что блок контроля толщины покрытия снабжен быстродействующим аккустооптическим спектрофотометром для измерения коэффициента преломления и подключенной к выходу последнего ЭВМ, выполненной с возможностью сопоставления измеренной зависимости коэффициента преломления от длины волны с заданной и выдачи корректирующих сигналов для уменьшения несовпадений измеренной и заданной зависимостей, причем выходы ЭВМ подключены к устройствам для регулирования тока электронно-лучевых испарителей, и/или величины вакуума, и/или скорости вращения привода для передачи соответствующих корректирующих сигналов.
RU97120258A 1997-12-16 1997-12-16 Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа RU2133049C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97120258A RU2133049C1 (ru) 1997-12-16 1997-12-16 Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97120258A RU2133049C1 (ru) 1997-12-16 1997-12-16 Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа

Publications (1)

Publication Number Publication Date
RU2133049C1 true RU2133049C1 (ru) 1999-07-10

Family

ID=20199721

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97120258A RU2133049C1 (ru) 1997-12-16 1997-12-16 Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа

Country Status (1)

Country Link
RU (1) RU2133049C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481949C1 (ru) * 2009-04-30 2013-05-20 Шарп Кабусики Кайся Пресс-форма и способ ее изготовления
RU185096U1 (ru) * 2018-08-09 2018-11-21 Акционерное общество "Новосибирский приборостроительный завод" Устройство для измерения спектров отражения слоев многослойного покрытия в процессе их напыления
RU2690232C1 (ru) * 2018-10-26 2019-05-31 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа
RU2771511C1 (ru) * 2021-06-16 2022-05-05 Акционерное общество "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (АО "НИИ НПО "ЛУЧ") Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481949C1 (ru) * 2009-04-30 2013-05-20 Шарп Кабусики Кайся Пресс-форма и способ ее изготовления
RU185096U1 (ru) * 2018-08-09 2018-11-21 Акционерное общество "Новосибирский приборостроительный завод" Устройство для измерения спектров отражения слоев многослойного покрытия в процессе их напыления
RU2690232C1 (ru) * 2018-10-26 2019-05-31 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа
RU2771511C1 (ru) * 2021-06-16 2022-05-05 Акционерное общество "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (АО "НИИ НПО "ЛУЧ") Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа

Similar Documents

Publication Publication Date Title
Fadel et al. A study of some optical properties of hafnium dioxide (HfO2) thin films and their applications
US6217720B1 (en) Multi-layer reactive sputtering method with reduced stabilization time
EP2389459B1 (en) Methods and systems for control of a surface modification process
RU2324763C2 (ru) Просветляющее покрытие для линз, имеющее малые внутренние напряжения и ультранизкую остаточную отражающую способность
US5000575A (en) Method of fabricating gradient index optical films
CN107893216B (zh) 一种修正石英监控法制备宽带增透膜沉积误差的方法
EP3346023A1 (en) Method for layer by layer optimization of a thin film
RU2133049C1 (ru) Способ нанесения просветляющего многослойного покрытия на поверхность оптического элемента и установка для осуществления способа
Khawaja et al. Observation of oxygen enrichment in zirconium oxide films
Sahoo et al. Process-parameter optimization of Sb 2 O 3 films in the ultraviolet and visible region for interferometric applications
US20220049347A1 (en) Method for operating a coating installation for producing layer systems
CN113584448B (zh) 一种光学滤光片镀膜方法
Kong et al. Fabrication of multi-wavelength visible and infrared filter for solar atmosphere tomographic imaging
Edlou et al. Optical and electrical properties of reactively sputtered TiN, ZrN, and HfN thin films
Jakobs et al. Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering
JPH0790583A (ja) 薄膜形成方法
Stojcevski et al. Broadband optical monitoring for a 2-meter optics magnetron sputtering deposition machine
RU2597035C1 (ru) Способ нанесения просветляющего многослойного широкополосного покрытия на поверхность оптического стекла
CN105629355A (zh) 一种介质金属膜堆的低偏振灵敏度分色膜的制作方法
CN111500985A (zh) 一种用于低应力全介质光学薄膜的制备方法
US20070019204A1 (en) Spectrometer based multiband optical monitoring of thin films
Uhov et al. Method of the coating thickness and transmittance control during the film deposition process
Liu et al. Analysis and fabrication of antireflection coating with ultralow residual reflectance for single wavelength
Janicki et al. Design of hybrid coatings composed of homogeneous layers and refractive index gradients
Bulkin et al. Deposition of optical coatings with real time control by the spectroellipsometry