CN112079892B - 碳量子点掺杂稀土比率型荧光探针的制备方法及其应用 - Google Patents

碳量子点掺杂稀土比率型荧光探针的制备方法及其应用 Download PDF

Info

Publication number
CN112079892B
CN112079892B CN202010829130.1A CN202010829130A CN112079892B CN 112079892 B CN112079892 B CN 112079892B CN 202010829130 A CN202010829130 A CN 202010829130A CN 112079892 B CN112079892 B CN 112079892B
Authority
CN
China
Prior art keywords
solution
carbon quantum
cds
quantum dot
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010829130.1A
Other languages
English (en)
Other versions
CN112079892A (zh
Inventor
张磊
许森
赵雅梦
罗用泉
于博昊
张维冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202010829130.1A priority Critical patent/CN112079892B/zh
Publication of CN112079892A publication Critical patent/CN112079892A/zh
Application granted granted Critical
Publication of CN112079892B publication Critical patent/CN112079892B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/207Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种碳量子点掺杂稀土比率型荧光探针的制备方法,包括以下步骤:将3~10mL鸟苷5'–单磷酸二钠溶液、3~10mL碳量子点CDs溶液、1.5~5mL Tb(NO3)3溶液和7.5~20mL 4‑羟乙基哌嗪乙磺酸缓冲液室温下搅拌30~60分钟,10000~15000rpm离心10~20分钟,将离心得到的沉淀物用超纯水洗涤多次后,然后分散在5~50mL超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针溶液。本发明制备的碳量子点掺杂稀土比率型荧光探针溶液对柠檬酸盐有高选择性和高灵敏度,同时检测时间短,与传统的单荧光信号探针相比,本发明对Cit检测具有更好的抗干扰能力和稳定性。

Description

碳量子点掺杂稀土比率型荧光探针的制备方法及其应用
技术领域
本发明属于纳米检测技术领域,具体地说,涉及一种碳量子点掺杂稀土比率型荧光探针的制备方法及其应用。
背景技术
柠檬酸盐(Cit)是一种在食品工业和医药领域应用广泛的三羧酸小分子化合物。例如,在食品中被普遍用作抗菌剂,在大输液中被用作抗凝剂,Krebs循环中的重要中间体以及尿石症和前列腺癌疾病中极其重要的指标。近年来,医学研究表明,跟踪人体中柠檬酸盐的水平已成为鉴别前列腺癌的一种有效方法。因此,发展一种高效、灵敏的Cit检测方法具有重大意义。
目前,检测Cit的常规方法主要包括:气相色谱和高效液相色谱法、电化学、毛细管电泳法、酶技术和荧光光谱法。传统的检测方法,如气相色谱/液相色谱法,通常需要复杂的样品制备,耗时和使用仪器相对昂贵。而荧光光谱法是一种能实现快速、高灵敏检测、检测成本较低的一种分析方法。目前已经报道了一些荧光探针用于Cit的检测,主要有:量子点、传统有机染料、过度金属配合物和稀土配合物。这些单信号的探针一般抗干扰能力差,极易光漂白。同时,重金属量子点和配合物荧光探针的生物毒性较大且制备过程复杂。
有鉴于此,有必要发展一种具有高灵敏度和快速响应的检测柠檬酸盐的探针。
发明内容
本发明的第一个目的是提供一种碳量子点掺杂稀土比率型荧光探针的制备方法。
本发明的第二个目的是提供一种所述方法制备的碳量子点掺杂稀土比率型荧光探针用于检测柠檬酸盐的用途。
为了实现上述目的,本发明采用的技术方案如下:
本发明的第一方面提供了一种碳量子点掺杂稀土比率型荧光探针的制备方法,包括以下步骤:
将3~10mL鸟苷5'–单磷酸二钠(GMP)溶液、3~10mL碳量子点CDs溶液、1.5~5mLTb(NO3)3溶液和7.5~20mL 4-羟乙基哌嗪乙磺酸(HEPES)缓冲液室温下搅拌30~60分钟,10000~15000rpm离心10~20分钟,将离心得到的沉淀物用超纯水洗涤多次后,然后分散在5~50mL(优选为5~25mL)超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液。
所述碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液中GMP的浓度为10~30mmol/L。
所述碳量子点CDs是以尿素为碳源的蓝色荧光发射碳量子点。
所述碳量子点CDs是浓度为1~10mmol/L(优选为2mmol/L)的水溶液。
所述以尿素为碳源的蓝色荧光发射碳量子点的合成方法:将质量比为1:(1.1~1.5)(优选为1:1.22)的无水柠檬酸三钠和尿素溶解于10~50mL(优选为20mL)超纯水中,将溶液转移至不锈钢高压反应釜中,180~190℃(优选为185℃)反应1~12h(优选为6h),冷却至室温,得到淡黄色溶液,将所得淡黄色溶液转移至500MWC透析袋中,透析1~48h(优选为24h),通过冷冻干燥得到CDs固体粉末。
所述Tb(NO3)3是浓度为10~100mmol/L(优选为50mmol/L)的水溶液。
所述HEPES缓冲溶液是浓度为10~50mmol/L(优选为10、25mmol/L)的水溶液。
本发明的第二方面提供了一种所述方法制备的碳量子点掺杂稀土比率型荧光探针用于检测柠檬酸盐的用途。
所述碳量子点掺杂稀土比率型荧光探针、柠檬酸盐(浓度为10mmol/L)溶液的体积比是4:1~1:100。
由于采用上述技术方案,本发明具有以下优点和有益效果:
本发明的方法是将以尿素为碳源的碳量子点掺杂到鸟苷-5'-单磷酸二钠(GMP)和铽离子(Tb3+)形成的网状纳米(GMP/Tb)稀土配合物中,制备得到碳量子点掺杂稀土比率型荧光探针CDs-GMP/Tb稀土配合物复合材料。该比率型稀土荧光探针对柠檬酸盐(Cit)具有高选择性、高灵敏度和快速响应的特点。本发明制备的比率型稀土荧光探针可实现对尿液等实际样品中Cit的快速检测,具有良好的抗干扰能力和稳定性。
本发明制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液对柠檬酸盐有高选择性和高灵敏度,同时检测时间短,与传统的单荧光信号探针相比,比率型荧光探针CDs-GMP/Tb对Cit检测具有更好的抗干扰能力和稳定性。
附图说明
图1是实施例1制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)的扫描电镜示意图,图中,a是GMP/Tb;b是CDs-GMP/Tb。
图2是实施例1制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)的透射电镜示意图,图中,a是CDs;b是CDs-GMP/Tb。
图3是实施例1制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)的红外光谱图,图中,a是CDs,b是GMP/Tb;c是CDs-GMP/Tb。
图4是碳量子点(CDs)、稀土荧光探针(GMP/Tb)、碳量子点掺杂稀土比率型荧光探针CDs-GMP/Tb和加入Cit后CDs-GMP/Tb的紫外光谱示意图。
图5是CDs、CDs-GMP/Tb和加入Cit后CDs-GMP/Tb的荧光光谱示意图。
图6是不同Cit浓度下碳量子点掺杂稀土比率型荧光探针CDs-GMP/Tb的荧光光谱示意图。
图7是碳量子点掺杂稀土比率型荧光探CDs-GMP/Tb荧光强度比值与不同Cit浓度的关系曲线示意图。
图8是尿液中常见阴离子和小分子对柠檬酸盐检测的影响示意图。
图9是不同作用时间下CDs-GMP/Tb对Cit(200μM)的响应图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
鸟苷5'–单磷酸二钠(GMP)购自北京百灵威科技有限公司;硝酸铽(Tb(NO3)3,99.99%)、柠檬酸三钠(无水)(Cit)、尿素、4-羟乙基哌嗪乙磺酸(HEPES)和乙醇购自阿拉丁化学试剂有限公司;KCl、CaCl2、MgCl2、Na2SO4、NaCl、CH3COONa、葡萄糖和抗坏血酸购自国药控股化学试剂有限公司。
本发明实施例中所用以尿素为碳源的蓝色荧光发射碳量子点(CDs)的合成方法:将2.746g柠檬酸三钠(无水)和3.362g尿素溶解于20mL超纯水中,将溶液转移至100mL不锈钢高压反应釜中,185℃反应6h,冷却至室温,得到淡黄色溶液,将所得淡黄色溶液转移至500MWC透析袋中,透析24h,通过冷冻干燥得到CDs固体粉末。
实施例1
将3mL鸟苷5'–单磷酸二钠(GMP,碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液中GMP的浓度为25mmol/L)的水溶液、3mL以尿素为碳源的蓝色荧光发射碳量子点(CDs,2mmol/L)的水溶液、1.5mL Tb(NO3)3(50mmol/L)的水溶液和7.5mL 4-羟乙基哌嗪乙磺酸(HEPES)(25mmol/L)缓冲液(溶剂是水)加入到离心管中,室温下搅拌30分钟,10000rpm离心10分钟。最后,将离心得到的沉淀物用超纯水洗涤多次后,分散在15mL超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液。
使用扫描电镜对上述所得碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)以及GMP/Tb的表面形貌进行了表征,如图1所示,图1是实施例1制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)的扫描电镜示意图,图中,a是GMP/Tb;b是CDs-GMP/Tb。从图中可以看出,GMP/Tb呈现网状结构,并且加入CDs后,探针的形貌没有明显改变。透射电镜如图2所示,图2是实施例1制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)的透射电镜示意图,图中,a是CDs;b是CDs-GMP/Tb。从图中可以看出,碳量子点成纳米颗粒球状;当碳量子点掺杂在GMP-Tb配位聚合物中后,可以看到纳米颗粒负载在网状结构中(图2b),表明碳量子点掺杂在GMP-Tb配位聚合物中。红外光谱图如图3所示,图3是实施例1制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)的红外光谱图,图中,a是CDs,b是GMP/Tb;c是CDs-GMP/Tb。从图中可以看出,1587和1400cm-1分别归属于CDs表面COO-的对称伸缩振动和不对称伸缩振动。3413cm-1归属于CDs表面吸附水分子中O-H的伸缩振动。1112和998cm-1分别归属于GMP中磷酸基团P-OH的不对称和对称伸缩振动特征吸收峰。CDs-GMP/Tb红外光谱图中三个特征峰1588、1111和996cm-1分别对应于CDs中COO-的伸缩振动和GMP中P-OH的不对称和对称伸缩振动。紫外-可见光谱图如图4所示,图4是碳量子点(CDs)、稀土荧光探针(GMP/Tb)、碳量子点掺杂稀土比率型荧光探针CDs-GMP/Tb和加入Cit后CDs-GMP/Tb的紫外光谱示意图,在336nm处的强吸收峰归属于富含羧基和氨基的CDs,在253nm处的强吸收峰归属于GMP;在336nm处GMP/Tb无吸收峰,而CDs-GMP/Tb存在一个较弱的吸收峰,这表明CDs已经成功包合于GMP/Tb的网状结构中。如图5所示,图5是CDs、CDs-GMP/Tb和加入Cit后CDs-GMP/Tb的荧光光谱示意图。从荧光光谱图中可以看出,当激发波长为290nm时,CDs-GMP/Tb的荧光光谱图出现五个特征峰:454nm,486nm,545nm,586nm和620nm,其中454nm为CDs的特征峰,545nm为Tb3+的特征峰,这说明CDs已经成功包合在GMP/Tb网状结构中间。当加入Cit时,454nm处的荧光强度增强,545nm处的荧光强度减弱为原来的七分之一。说明该猝灭型比率型荧光探针用于Cit的检测时,Tb3+的荧光强度减弱,CDs的荧光强度增强。
实施例2
将10mL鸟苷5'–单磷酸二钠(GMP,碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液中GMP的浓度为10mmol/L)(溶剂是水)、10mL以尿素为碳源的蓝色荧光发射碳量子点(CDs,2mmol/L)(溶剂是水)、5mL Tb(NO3)3(50mmol/L)(溶剂是水)和20mL 4-羟乙基哌嗪乙磺酸(HEPES)(10mmol/L)缓冲液(溶剂是水)加入到离心管中,室温下搅拌30分钟,10000rpm离心10分钟。最后,将离心得到的沉淀物用超纯水洗涤多次后,分散在10mL超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液。
实施例3
将6mL鸟苷5'–单磷酸二钠(GMP,碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液中GMP的浓度为30mmol/L)(溶剂是水)、6mL以尿素为碳源的蓝色荧光发射碳量子点(CDs,2mmol/L)(溶剂是水)、3mL Tb(NO3)3(50mmol/L)(溶剂是水)和14mL 4-羟乙基哌嗪乙磺酸(HEPES)(25mmol/L)缓冲液(溶剂是水)加入到离心管中,室温下搅拌30分钟,10000rpm离心10分钟。最后,将离心得到的沉淀物用超纯水洗涤多次后,分散在5mL超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液。
实施例4
将5mL鸟苷5'–单磷酸二钠(GMP,碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液中GMP的浓度为20mmol/L)(溶剂是水)、5mL以尿素为碳源的蓝色荧光发射碳量子点(CDs,2mmol/L)(溶剂是水)、2.5mL Tb(NO3)3(50mmol/L)(溶剂是水)和10mL 4-羟乙基哌嗪乙磺酸(HEPES)(25mmol/L)缓冲液(溶剂是水)加入到离心管中,室温下搅拌30分钟,10000rpm离心10分钟。最后,将离心得到的沉淀物用超纯水洗涤多次后,分散在20mL超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液。
实施例5
将8mL鸟苷5'–单磷酸二钠(GMP,碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液中GMP的浓度为15mmol/L)(溶剂是水)、8mL以尿素为碳源的蓝色荧光发射碳量子点(CDs,2mmol/L)(溶剂是水)、3.5mL Tb(NO3)3(50mmol/L)(溶剂是水)和16mL 4-羟乙基哌嗪乙磺酸(HEPES)(25mmol/L)缓冲液(溶剂是水)加入到离心管中,室温下搅拌30分钟,10000rpm离心10分钟。最后,将离心得到的沉淀物用超纯水洗涤多次后,分散在25mL超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液。
实施例6
将实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶解到pH为7.0的HEPES缓冲溶液(溶剂是水)中,向其中添加不同量Cit形成Cit浓度分别为0、5、10、20、40、60、80、100、140、160、200、300μmol/L的CDs-GMP/Tb溶液,进行荧光检测,结果见图6和图7所示,图6是不同Cit浓度下碳量子点掺杂稀土比率型荧光探针CDs-GMP/Tb的荧光光谱示意图,图7是碳量子点掺杂稀土比率型荧光探CDs-GMP/Tb荧光强度比值与不同Cit浓度的关系曲线示意图。从这两个图中可以看出,由于铽离子从5D4到7F5的电子跃迁,在545nm处出现了较强的发射峰。当CDs-GMP/Tb溶液中加入Cit时,基于Cit与铽离子的配位相互作用,Cit将抢占CDs表面官能团COO-与Tb3+的作用位点,从而阻断能量由CDs向铽离子转移,达到增强CDs荧光强度,减弱GMP/Tb荧光强度的目的。和预期一样,随着Cit从0μmol/L增加到300μmol/L,CDs-GMP/Tb溶液在545nm处的荧光强度逐渐减弱,在454nm处的荧光强度逐渐增强,且Cit在5-200μmol/L浓度范围内线性相关。线性回归方程为I545/I454=5.30831-0.02459CCit,相关系数(R2)为0.99864。
实施例7
将实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶解到浓度为25mmol/L的HEPES缓冲溶液(溶剂是水)(pH 7.0)中,加入Cit溶液(溶剂是水),配制成Cit浓度为200μmol/L的CDs-GMP/Tb溶液,通过对比检测尿液中常见阴离子和小分子(醋酸根离子、钾离子、钙离子、硫酸根离子、镁离子、氯离子、抗坏血酸、葡萄糖和尿酸)上述溶液的I545/I454来考察所制备的CDs-GMP/Tb对Cit的选择性。
CDs-GMP/Tb对Cit的选择性实验方法:将实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶解到浓度为25mmol/L的HEPES缓冲溶液(溶剂是水)(pH7.0)中,加入Cit溶液(溶剂是水),配制成Cit浓度为200μmol/L的CDs-GMP/Tb溶液,进行荧光光谱测试;作为选择性对比,将实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶解到浓度为25mmol/L的HEPES缓冲溶液(溶剂是水)(pH 7.0)中,加入Cit溶液(溶剂是水),同时加入不同类型的阴离子和小分子,配制成Cit浓度与选择性阴离子和小分子浓度均为200μmol/L的CDs-GMP/Tb溶液,进行荧光光谱测试。
结果见图8所示,图8是尿液中常见阴离子和小分子对柠檬酸盐检测的影响示意图。从图中可以看出,尿酸、葡萄糖和阴离子对碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)的荧光强度几乎没有影响,而抗坏血酸存在下,CDs-GMP/Tb的荧光强度略有降低,但是加入等浓度Cit后I545/I454的值与空白情况一致。因此可知CDs-GMP/Tb对Cit有很好的选择性。
实施例8
使用HEPES缓冲液(25mmol/L,pH 7.0)将人尿液样品稀释100倍。然后加入不同浓度的Cit分别配制含0,0.70,2.00,3.00,5.00μmol/L Cit的人尿液样品。随后将400μL溶剂为HEPES缓冲液(25mmol/L,pH 7.0)的实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液添加到上述含不同浓度的Cit人尿液样品中,用HEPES缓冲液定容至2mL,震荡15秒。最后,将溶液转移至石英皿中进行荧光检测。荧光光谱仪测试参数:激发波长290nm,发射波长545nm和454nm。通过实施例6中的标准曲线计算Cit的含量,实验结果表明尿液中添加不同浓度Cit的回收率为94-100.5%,相对标准偏差为0.93-3.29%,说明实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶液适合尿液中柠檬酸盐的检测。
实施例9
将实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶解到pH为7.0的HEPES缓冲溶液(溶剂是水)中,向其中添加不同量Cit形成Cit浓度分别为0、5、10、20、40、60、80、100、140、160、200、300μmol/L的CDs-GMP/Tb溶液,进行荧光检测,随着Cit从0μM增加到300μM,CDs-GMP/Tb溶液在545nm处的荧光强度逐渐减弱,在454nm处的荧光强度逐渐增强,且Cit线性范围为0-200μM。线性回归方程为I545/I454=5.30831-0.02459CCit,相关系数(R2)为0.99864,Cit的检测限为0.47μM,相对标准偏差RSD为3.98%(c=40μM,n=5)。与众多文献报道的检测方法相比,如表1所示,此方法灵敏度好,检测限低。
表1文献中柠檬酸盐检测方法检出限等信息统计
Figure BDA0002637274550000071
Figure BDA0002637274550000081
实施例10
将实施例1中制备的碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)溶解到pH为7.0的HEPES缓冲溶液(溶剂是水)中,间隔0.5分钟测试体系荧光强度,在2.0分钟后加入200μM Cit之后,继续测试体系荧光强度,考察探针的响应时间和稳定性。如图9所示,图9是不同作用时间下CDs-GMP/Tb对Cit(200μM)的响应图,在0-1.5分钟未加入Cit时,CDs-GMP/Tb荧光强度表现很好的稳定性。在2.0分钟加入200μM Cit之后,荧光强度的比值I545/I454瞬间降低,且在7.0分钟后保持不变。由此可知,CDs-GMP/Tb可以对Cit做出快速响应,且响应时间约为5.5分钟。结果表明碳量子点掺杂稀土比率型荧光探针(CDs-GMP/Tb)具有检测时间短,稳定性好的特点。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (3)

1.一种碳量子点掺杂稀土比率型荧光探针的制备方法,包括以下步骤:
将3mL~10mL的鸟苷5'–单磷酸二钠溶液、3mL~10mL的碳量子点CDs溶液、1.5mL~5mL的Tb(NO3)3溶液和7.5mL~20mL的4-羟乙基哌嗪乙磺酸缓冲液室温下搅拌30分钟~60分钟,10000rpm~15000rpm离心10分钟~20分钟,将离心得到的沉淀物用超纯水洗涤多次后,然后分散在5mL~50mL超纯水中,获得所述碳量子点掺杂稀土比率型荧光探针溶液;
所述碳量子点CDs是以尿素为碳源的蓝色荧光发射碳量子点;
所述碳量子点CDs是浓度为1mmol/L~10mmol/L的水溶液;
所述Tb(NO3)3是浓度为10mmol/L~100mmol/L的水溶液;
所述4-羟乙基哌嗪乙磺酸缓冲溶液是浓度为10mmol/L~50mmol/L的水溶液
所述碳量子点掺杂稀土比率型荧光探针溶液中鸟苷5'–单磷酸二钠的浓度为10mmol/L~30mmol/L;
其中,所述以尿素为碳源的蓝色荧光发射碳量子点的合成方法:将质量比为1:(1.1~1.5)的无水柠檬酸三钠和尿素溶解于10mL~50mL超纯水中,将溶液转移至不锈钢高压反应釜中,180℃~190℃反应1h~12h,冷却至室温,得到淡黄色溶液,将所得淡黄色溶液转移至500MWC透析袋中,透析1h~48h,通过冷冻干燥得到CDs固体粉末。
2.一种如权利要求1所述的方法制备的碳量子点掺杂稀土比率型荧光探针在制备用于检测柠檬酸盐的荧光探针中的应用。
3.如权利要求2所述的应用,其特征在于,其中所述碳量子点掺杂稀土比率型荧光探针、浓度为10mmol/L的柠檬酸盐溶液的体积比是4:1~1:100。
CN202010829130.1A 2020-08-18 2020-08-18 碳量子点掺杂稀土比率型荧光探针的制备方法及其应用 Expired - Fee Related CN112079892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010829130.1A CN112079892B (zh) 2020-08-18 2020-08-18 碳量子点掺杂稀土比率型荧光探针的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010829130.1A CN112079892B (zh) 2020-08-18 2020-08-18 碳量子点掺杂稀土比率型荧光探针的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112079892A CN112079892A (zh) 2020-12-15
CN112079892B true CN112079892B (zh) 2022-09-30

Family

ID=73728358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010829130.1A Expired - Fee Related CN112079892B (zh) 2020-08-18 2020-08-18 碳量子点掺杂稀土比率型荧光探针的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112079892B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798565B (zh) * 2020-12-30 2022-07-15 苏州瑞恒嘉航医疗科技有限公司 一种磁功能化比率型稀土荧光探针及制备与应用
CN113933280B (zh) * 2021-11-24 2024-01-16 湖南农业大学 一种检测四环素的荧光和共振瑞利散射光双元信号探针及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017582A (zh) * 2014-06-12 2014-09-03 安徽师范大学 一种荧光探针、人体尿液中柠檬酸盐的检测方法
CN108179009A (zh) * 2018-02-12 2018-06-19 成都理工大学 一种铕离子掺杂碳量子点及其制备方法
CN109632740A (zh) * 2018-12-26 2019-04-16 商丘师范学院 前列腺癌标志物柠檬酸的检测方法、探针及制备方法
CN110003886A (zh) * 2019-03-07 2019-07-12 天津大学 稀土碳点核苷白光发射水凝胶及制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020939A1 (en) * 2014-08-06 2016-02-11 Council Of Scientific & Industrial Research Para-aminobenzoic acid sensitized terbium doped laf3 nanoparticles for detection of explosive nitro compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017582A (zh) * 2014-06-12 2014-09-03 安徽师范大学 一种荧光探针、人体尿液中柠檬酸盐的检测方法
CN108179009A (zh) * 2018-02-12 2018-06-19 成都理工大学 一种铕离子掺杂碳量子点及其制备方法
CN109632740A (zh) * 2018-12-26 2019-04-16 商丘师范学院 前列腺癌标志物柠檬酸的检测方法、探针及制备方法
CN110003886A (zh) * 2019-03-07 2019-07-12 天津大学 稀土碳点核苷白光发射水凝胶及制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Highly fluorescent carbon dots as an efficient nanoprobe for detection of clomifene citrate;Yi Zhang等;《RSC Adv.》;20190219;第9卷;第6084-6093页 *
Preparation of carbon dots-doped terbium phosphonate coordination polymers as ratiometric fluorescent probe for citrate detection;Bohao Yu等;《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》;20211123;第268卷;第1-8页 *
新型稀土配合物及其碳量子点纳米复合生物探针研究;陈浩;《中国学位论文全文数据库》;20180315(第3期);第B014-45页 *

Also Published As

Publication number Publication date
CN112079892A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
Duan et al. A rapid microwave synthesis of nitrogen–sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid
Gu et al. Nitrogen and phosphorus co-doped carbon dots derived from lily bulbs for copper ion sensing and cell imaging
CN112079892B (zh) 碳量子点掺杂稀土比率型荧光探针的制备方法及其应用
CN112608734B (zh) 一种检测碱性磷酸酶的复合荧光探针及其制备方法与应用
CN110702655B (zh) 一种荧光传感器及其制备方法和应用
Yan et al. Carbon dots for ratiometric fluorescence detection of morin
CN113429961A (zh) 一种荧光探针、增强型比率荧光传感器、方法及应用
CN110940648B (zh) 一种绿色荧光碳量子点的合成方法及在检测亚硝酸盐中的应用
CN112067587A (zh) 一种高量子产率硫量子点的制备及其用于抗坏血酸的测定方法
CN112852418B (zh) 一种双发射比率荧光碳点及其制备方法和应用
CN113528134A (zh) 纳米荧光探针、其制备方法及应用
Liu et al. Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid
CN105255487A (zh) 氨基醇功能化碳点及制备方法和其在测定铜离子中的应用
Wu et al. Low-cost preparation of photoluminescent carbon nanodots and application as peroxidase mimetics in colorimetric detection of H2O2 and glucose
Han et al. Efficient one-pot synthesis of carbon dots as a fluorescent probe for the selective and sensitive detection of rifampicin based on the inner filter effect
CN110018146B (zh) 一种基于荧光碳量子点检测钯离子的方法
Huang et al. One-pot room temperature synthesis of orange-emitting carbon dots for highly-sensitive vitamin B12 sensing
CN104877662A (zh) 巯基聚乙烯醇量子点复合材料的制备及在检测水样中痕量Cu2+的应用
CN112499614A (zh) 苹果酸-精氨酸官能化碳量子点及其制备方法和应用
Jia et al. Efficient Synthesis of Yellow‐Green Carbon Quantum Dots as a Sensitive Fluorescent Probe of Folic Acid
CN109705029B (zh) 羟基吡啶酮类化合物修饰的碳量子点及其制备和应用
CN108375563B (zh) 一种磷光探针选择性检测凝血酶的方法
CN109971478B (zh) 铽离子掺杂的纳米颗粒用于荧光双波长检测多巴胺的方法
CN114854403B (zh) 一种橙色荧光碳点及其制备方法和应用
CN109668866A (zh) 一种用于水环境中碘离子检测的荧光探针制备及检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220930

CF01 Termination of patent right due to non-payment of annual fee