CN112076770B - 层状多金属氢氧化物在甲烷光化学转化中的应用 - Google Patents

层状多金属氢氧化物在甲烷光化学转化中的应用 Download PDF

Info

Publication number
CN112076770B
CN112076770B CN202010884489.9A CN202010884489A CN112076770B CN 112076770 B CN112076770 B CN 112076770B CN 202010884489 A CN202010884489 A CN 202010884489A CN 112076770 B CN112076770 B CN 112076770B
Authority
CN
China
Prior art keywords
methane
layered
hydroxide
conversion
photochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010884489.9A
Other languages
English (en)
Other versions
CN112076770A (zh
Inventor
曹洋
赵玉
王宏刚
孙洋
莫凡洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yuanshang Molecular Engineering Research Center Co ltd
Peking University
Original Assignee
Jiangsu Yuanshang Molecular Engineering Research Center Co ltd
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yuanshang Molecular Engineering Research Center Co ltd, Peking University filed Critical Jiangsu Yuanshang Molecular Engineering Research Center Co ltd
Priority to CN202010884489.9A priority Critical patent/CN112076770B/zh
Publication of CN112076770A publication Critical patent/CN112076770A/zh
Application granted granted Critical
Publication of CN112076770B publication Critical patent/CN112076770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • C07C2527/232Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了层状多金属氢氧化物在甲烷光化学转化中的应用,利用层状多金属氢氧化物材料实现了甲烷的光化学偶联,可以将甲烷转化为乙烯、乙烷、丙烷和丁烷中的一种或几种。与传统的甲烷热转化反应相比,本发明在室温条件下实现了甲烷的光化学转化,避免产生积碳,增加了材料的稳定性,能够循环利用;与现有的甲烷光化学转化反应相比,本发明可以得到乙烷、乙烯、丙烷或丁烷等高级烃中的一种或几种,且转化效率高,产物种类可调控。本发明的甲烷光化学转化方法反应过程绿色,环境友好,具有实际工业化的前景。

Description

层状多金属氢氧化物在甲烷光化学转化中的应用
技术领域
本发明属于甲烷光化学转化技术领域,具体涉及一种层状多金属氢氧化物在甲烷光化学转化方面的应用。
背景技术
甲烷作为天然气的主要组成部分,是一种重要的气体矿藏,世界上已探明的储量高达150.19×1012m3。但是甲烷分子的碳氢键极其稳定,难以打破,很难发生可控的化学反应,不适合用做化工行业的原料。目前,甲烷主要作为燃料使用。在工业生产方面,将甲烷和水蒸气在高温下重整为合成气(CO和H2),并作为合成氨等的原料。尽管热催化转化甲烷氧化偶联制备乙烯已经得到了比较广泛的研究,并取得了一定成果,但是热催化甲烷转化反应普遍需要在700-1000℃的温度下进行,因此,其能耗和生产成本较高,在温和条件下将甲烷转化为高级的烯烃和烷烃仍然是个难题。而光化学反应是由具有一定能量的光子所引发的,可以在室温乃至低温条件下完成。利用光驱动的方法,将甲烷转化为高附加值的乙烷、乙烯和丙烷等高级烃,相应的能耗比较低,选择性较高,有潜在的工业应用前景。
经检索专利和文献,目前主要有两类光化学甲烷转化材料,一类材料为分子筛和金属-分子筛复合材料,比如Zn-ZSM-5(公开号CN 102069006 A,Angew.Chem.Int.Ed.2011,50,8299-8303),Ga-ETS-10(Angew.Chem.Int.Ed.2012,51,4702-4706),β分子筛(J.Am.Chem.Soc.2011,133,17257-17261),这些材料中Zn-ZSM-5需要在500℃下真空气氛中制备,催化材料合成过程不能接触空气;β分子筛光催化反应在波长为180nm的高能量深紫外光激发中进行反应,和实际应用的要求还有一定距离。另一类材料是半导体氧化物,例如Ga2O3(J.Catal.,2008,257,396-402),SiO2-Al2O3-TiO2(J.Phys.Chem.B,2003,107(33),8355-8362),MoO3/SiO2(J.Chem.Soc.Faraday Trans.,1995,91(11),1647-1654)。这几种半导体材料的甲烷转化效率都比较低。
发明内容
本发明的目的在于提供一种新的光化学甲烷转化材料,以克服现有光化学转化材料转化效率低、制备复杂的缺陷。
层状双金属氢氧化物(LDH)是一种十分容易合成的材料,广泛应用于烯烃氧化聚合、醇醛缩合、烯烃异构化、亲核卤代、烷基化、烯烃环氧化、Claisen-Schmidt反应等。本发明首次发现层状双金属氢氧化物可用于甲烷的光化学转化。这种材料的甲烷转化效率明显高于上述两类材料,并且制备方法简单,反应操作过程简便。更为重要的是,在产物中有大比例的乙烯产生,这是化学工业上十分重要的反应单体。本发明利用层状多金属氢氧化物材料实现了甲烷的光化学偶联,可以将甲烷转化为乙烯、乙烷、丙烷和丁烷中的一种或几种,该方法还未见报道。
本发明以层状多金属氢氧化物为光催化剂,经过室温真空处理除去体系中的空气后向体系内充入甲烷气体,在室温条件下通过活化碳氢化学键使甲烷转化为乙烯和丙烷等烃类。
本发明应用于光化学甲烷转化的材料为层状多金属氢氧化物,所述层状多金属氢氧化物的化学组成为[AmBnCq(OH)x](CO3)y,其中A、B、C代表不同的金属阳离子,m、n、q、x、y代表原子数目,m、n、x和y均大于0,q≥0;A、B、C阳离子的电荷值分别为a、b、c,有a×m+b×n+c×q=x+2y;其中金属阳离子组成阳离子层板,层板间通过OH-、CO3 2-起到平衡电荷作用。
优选的,所述阳离子A、B、C选自Zn2+、Mg2+、Al3+、Ga3+、Ti4+、Ni2+中的两种或三种。
更优选的,所述层状多金属氢氧化物在层间和/或表面上担载金属纳米粒子,所述金属纳米粒子包括Pt、Au、Ag、Rh、Ru、Ni、Fe等的一种或多种金属纳米粒子。
所述层状多金属氢氧化物可以根据文献(例如J.Am.Chem.Soc.2009,131,13833-13839;Solid State Sci.2006,8(10)1181-1186及ACS Appl.Mater.Interfaces,2013,5(20)10233-10239)报道的方法合成。典型的层状多金属氢氧化物为层状双金属氢氧化物,例如Zn20Ti7(OH)54(CO3)7、Zn18Ti9(OH)54(CO3)9、Zn6Ga2(OH)16(CO3)等。
在无空气存在和紫外光照射的条件下,使甲烷和所述层状多金属氢氧化物接触,即可使甲烷转化为乙烯、乙烷、丙烯、丙烷的一种或多种。通过调节催化剂的组成和结构,能够对产物种类和含量调控。比如,在固定烷烃反应物量的条件中,Zn-Ti-LDH材料使用高压紫外光光照得到乙烯、乙烷、丙烯、丙烷混合产物;当用~400nm的光进行光催化,产物主要为乙烷;当Zn-Ti-LDH在400℃中煅烧处理后,光催化反应中的产物主要为乙烯。在Zn-Ti-LDH中负载Pt、Pd等贵金属,能显著提高高级烯烃的选择性。
利用层状多金属氢氧化物进行甲烷光化学转化的方法,具体步骤如下:
1、取层状多金属氢氧化物铺展在石英反应器的内表面上,将反应器中的空气气氛置换为甲烷气氛;
2、向步骤1中表面铺有层状多金属氢氧化物的石英反应器内充入纯度为99~99.99%的甲烷;
3、将石英反应器铺有层状多金属氢氧化物的一面用紫外光(波长200~400nm)照射一定时间,将甲烷转化为高级的烃。
上述步骤3中,光照时间一般为10min~3h,可以采用高压汞灯产生的紫外光照射,用配有FID检测器的气相色谱检测产物的组成。
本发明首次发现层状多金属氢氧化物可用于甲烷的室温光化学转化,此方法的反应过程绿色环保,层状多金属氧化物及甲烷可以循环使用,无有害废物产生,甲烷的转化效率达0.11mmol·g-1·h-1。该方法对于降低人们对石油产品的依赖有十分积极的意义。本发明具有以下优点:
1、与传统的热转化甲烷转化反应相比,在室温条件下实现甲烷的光化学转化,避免产生积碳,增加了材料的稳定性,能够循环利用,有实际工业化的前景;
2、与已报道的甲烷光化学转化反应相比,本发明的方法可以得到乙烷、乙烯、丙烷或丁烷等高级烃中的一种或几种,且转化效率高于已有的材料,并且产物种类可调控;
3、反应过程绿色,对环境友好。
附图说明
图1为实施例1中获得的锌-钛层状双金属氢氧化物(Zn-Ti-LDH)固体粉末的SEM图;
图2为实施例1中获得的锌-钛层状双金属氢氧化物(Zn-Ti-LDH)固体粉末的XRD图;
图3为实施例1中获得的锌-钛层状双金属氢氧化物(Zn-Ti-LDH)固体粉末的FT-IR图;
图4为实施例1中获得的锌-钛层状双金属氢氧化物(Zn-Ti-LDH)固体粉末进行甲烷光化学转化的反应数据饼图。
具体实施方式
下面通过实施例并结合附图对本发明作进一步说明,但本发明的保护范围不限于下述的实施例。
实施例1
将6g碳酰胺、3g六水合硝酸锌、0.5g钛酸异丙醇酯混合到水中,在90℃中加热搅拌反应2天,得到的白色固体粉末材料Zn-Ti-LDH,用蒸馏水清洗干净。通过扫描电子显微镜表征,结果显示材料为纳米尺寸(图1),X射线晶体学衍射表征结果显示为晶化的层状材料(图2),红外吸收光谱测试结果显示材料有大量羟基峰,对应于材料中的Ti-OH、Zn-OH,并且有对应于CO3 2-的吸收峰(图3)。根据相关文献,该合成材料Zn-Ti-LDH的化学组成为Zn20Ti7(OH)54(CO3)7
取0.2g Zn-Ti-LDH均匀铺展到石英反应器的表面上。向反应器中充入5mL(约200μmol)甲烷气体,在室温条件下用125W高压汞灯照射反应器3h,产物组成通过配备有FID检测器的气相色谱分析,分析数据如表1和图4所示。产物组成为:乙烯76.4%,乙烷1.37%,丙烯1.63%,丙烷20.6%,丁烷<0.1%。
表1
Figure GDA0003030914750000041
实施例2
在室温条件下用150W高压汞灯照射反应器10min,其余与实施例1相同。转化率为4.5%,产物组成为:乙烯83.22%,乙烷1.75%,丙烯2.63%,丙烷12.4%,丁烷<0.1%,其余为未反应的甲烷。
实施例3
在室温条件下用150W高压汞灯照射反应器3h,其余与实施例1相同。转化率为13.6%,产物组成为:乙烯72.05%,乙烷2.41%,丙烷1.71%,丁烷23.8%,其余为未反应的甲烷。
实施例4
将2.3g水合硝酸锌、1.02g水合硝酸镓溶解于60mL水中,将0.96g氢氧化钠、2.12g碳酸钠溶解于80mL水中,随后将两种溶液混合,在80℃中老化24h,得到Zn-Ga-LDH。参考相关文献,该材料Zn-Ga-LDH的化学组成为Zn7Ga3(OH)20(CO3)1.5。取0.2g Zn-Ga-LDH,其余与实施例1相同。转化率为0.79%,产物组成为:乙烯59.55%,乙烷29.21%,其余为少量丙烷、丙烯和未反应的甲烷。
实施例5
将6g碳酰胺、3g六水合硝酸镍、0.5g钛酸异丙醇酯混合到水中,在90℃中加热搅拌反应2天,得到的白色固体粉末材料Ni-Ti-LDH,用蒸馏水清洗干净。参照文献,该材料Ni-Ti-LDH的化学组成为Ni3Ti(OH)8CO3。由于合成过程中碳酰胺水解反应不完全,材料中可能含有CNO(部分水解阴离子)。取0.2g Ni-Ti-LDH,其余与实施例1相同。转化率为3.46%,产物组成为:乙烯58.77%,乙烷16.56%,丙烯10.39%,丙烷14.29%,其余为未反应的甲烷。
实施例6
在室温条件下用150W高压汞灯照射反应器1h(使用截止滤光片控制光源范围在395~405nm),其余与实施例1相同。转化率为6.47%,产物组成主要为乙烷,痕量乙烯、丙烷、丙烯,其余为未反应的甲烷。
实施例7
将实施例1中合成的Zn-Ti-LDH材料在400℃中煅烧2h后作为光催化剂,其余与实施例1相同。转化率为4.64%,产物组成为:乙烯94.54%,乙烷2.1%,丙烯1.09%,丙烷2.18%,还有少量丁烷,剩余为未反应的甲烷。

Claims (8)

1.层状多金属氢氧化物作为光催化剂在甲烷光化学转化为乙烯、乙烷、丙烯、丙烷的一种或多种中的应用,所述层状多金属氢氧化物的化学组成为[AmBnCq(OH)x](CO3)y,其中A、B、C代表不同的金属阳离子,选自Zn2+、Mg2+、Al3+、Ga3+、Ti4+、Ni2+中的两种或三种,m、n、q、x、y代表原子数目,m、n、x和y均大于0,q≥0;A、B、C阳离子的电荷值分别为a、b、c,有a×m+b×n+c×q = x+2y;其中金属阳离子组成阳离子层板,层板间通过OH-、CO3 2-起到平衡电荷作用。
2.如权利要求1所述的应用,其特征在于,所述层状多金属氢氧化物在层间和/或表面上担载金属纳米粒子。
3.如权利要求2所述的应用,其特征在于,所述金属纳米粒子选自Pt、Au、Ag、Rh、Ru、Ni、Fe中一种或多种金属纳米粒子。
4.一种甲烷光化学转化的方法,在无空气存在和紫外光照射的条件下,使甲烷和层状多金属氢氧化物接触,使甲烷转化为乙烯、乙烷、丙烯、丙烷的一种或多种;所述层状多金属氢氧化物的化学组成为[AmBnCq(OH)x](CO3)y,其中A、B、C代表不同的金属阳离子,选自Zn2+、Mg2+、Al3+、Ga3+、Ti4+、Ni2+中的两种或三种,m、n、q、x、y代表原子数目,m、n、x和y均大于0,q≥0;A、B、C阳离子的电荷值分别为a、b、c,有a×m+b×n+c×q = x+2y;其中金属阳离子组成阳离子层板,层板间通过OH-、CO3 2-起到平衡电荷作用。
5.如权利要求4所述的方法,其特征在于,所述层状多金属氢氧化物在层间和/或表面上担载金属纳米粒子。
6.如权利要求5所述的方法,其特征在于,所述金属纳米粒子选自Pt、Au、Ag、Rh、Ru、Ni、Fe中一种或多种金属纳米粒子。
7.如权利要求4~6任一所述的方法,其特征在于,所述方法包括以下步骤:
1)取层状多金属氢氧化物铺展在石英反应器的内表面上,将石英反应器中的空气气氛置换为甲烷气氛;
2)向步骤1)表面铺有层状多金属氢氧化物的石英反应器内充入纯度为99~99.99%的甲烷;
3)将石英反应器铺有层状多金属氢氧化物的一面用紫外光照射一定时间,将甲烷转化为高级的烃。
8.如权利要求7所述的方法,其特征在于,步骤3)中光照时间为10 min ~ 3 h。
CN202010884489.9A 2020-08-28 2020-08-28 层状多金属氢氧化物在甲烷光化学转化中的应用 Active CN112076770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010884489.9A CN112076770B (zh) 2020-08-28 2020-08-28 层状多金属氢氧化物在甲烷光化学转化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010884489.9A CN112076770B (zh) 2020-08-28 2020-08-28 层状多金属氢氧化物在甲烷光化学转化中的应用

Publications (2)

Publication Number Publication Date
CN112076770A CN112076770A (zh) 2020-12-15
CN112076770B true CN112076770B (zh) 2021-07-20

Family

ID=73728756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010884489.9A Active CN112076770B (zh) 2020-08-28 2020-08-28 层状多金属氢氧化物在甲烷光化学转化中的应用

Country Status (1)

Country Link
CN (1) CN112076770B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083964B (zh) * 2016-11-22 2021-05-04 中国科学院大连化学物理研究所 氢气调变甲烷热裂解制烯烃、炔烃、芳烃和氢气的方法
CN107790133B (zh) * 2017-11-07 2020-09-18 中国科学院理化技术研究所 一种钴铁基光催化剂及其制备与应用
CN111185179A (zh) * 2020-03-04 2020-05-22 福州大学 一种甲烷裂解催化剂及其制备方法

Also Published As

Publication number Publication date
CN112076770A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
Hou et al. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution
Guayaquil-Sosa et al. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt
Liu et al. Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts
Sun et al. Mesoporous g-C3N4/Zn–Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts
Nunez et al. Effect of copper on the performance of ZnO and ZnO1− xNx oxides as CO2 photoreduction catalysts
US9764959B2 (en) Nanostructured metal oxide compositions for applied photocatalysis
Tahay et al. Synthesis of cubic and hexagonal ZnTiO3 as catalyst support in steam reforming of methanol: Study of physical and chemical properties of copper catalysts on the H2 and CO selectivity and coke formation
Hashemizadeh et al. Photocatalytic reduction of CO2 to hydrocarbons using bio-templated porous TiO2 architectures under UV and visible light
Zhu et al. Fabricate and characterization of Ag/BaAl2O4 and its photocatalytic performance towards oxidation of gaseous toluene studied by FTIR spectroscopy
Wang et al. In-situ preparation of Ti3C2/Ti3+-TiO2 composites with mosaic structures for the adsorption and photo-degradation of flowing acetaldehyde under visible light
Zhang et al. Effects of surface hydroxyl groups induced by the co-precipitation temperature on the catalytic performance of direct synthesis of isobutanol from syngas
Pajares et al. Photocatalytic H2 production from ethanol aqueous solution using TiO2 with tungsten carbide nanoparticles as co-catalyst
CN111111765B (zh) 制备低碳烃的催化剂及其用途方法
CN112076770B (zh) 层状多金属氢氧化物在甲烷光化学转化中的应用
CN113351210A (zh) 一种Cu基催化剂及将其用于光催化水产氢-5-HMF氧化偶联反应
CN109382091B (zh) 含中间能带的半导体的制备方法及应用
EP4230290A1 (en) Composite oxide containing tungstate nanoclusters, preparation method therefor and use thereof
CN114130398B (zh) 一种Zn基配位聚合物衍生的CO2加氢制甲醇催化剂的制备方法及应用
CN111111760A (zh) 二氧化碳加氢制取低碳烯烃的催化剂及其用途
CN114471735A (zh) 一种镍配合物/TiO2复合材料及其制备方法和应用
CN111715252B (zh) 一种催化合成有机化合物的方法及其催化剂和应用
KR102360632B1 (ko) 가시광 감응 비스무스페라이트 나노결정 복합체, 그 제조방법 및 이를 이용한 광촉매
CN112547107A (zh) 一种α-Fe2O3/Ni@2D g-C3N4催化剂的制备方法
Alalwan et al. Employing Synthesized MgO-SiO2 Nanoparticles as Catalysts in Ethanol Conversion to 1, 3-Butadiene
Yates et al. Three pathways to cleaner platform chemicals: Conventional, microwave and solar transformation of a by-product from the orange juice manufacturing process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant