图1显示了本发明的光学数据存贮系统的示意图,该系统总的以标号10来表示。系统10包括最好制成盘状的光学数据存贮介质12。介质12如先有技术中已知的那样可取下地装在定位轴14上。轴14连到轴马达16,马达16又连到系统底座20。马达16转动轴14和介质12 。
光头22被置于介质12下方。光头22与臂24相连,臂24又与致动装置,如音圈电机26连到底座20。电机26在介质12下方沿径向移动臂24和光头22。光学介质
图2A是介质12的剖视图。介质12带有基片50。基片50也叫面板或盖板,并且是激光束进入介质12。外径(OD)缘52和内径(ID)缘5 4连在面板50和基片56之间。外径缘58和内径缘60连在基片56和基片62之间。外径缘64和内径缘66连在基片62和基片68之间。外径缘70和内径缘72连在基片68和基片74之间。面板50和基片56、62、68和74是用诸如玻璃、聚碳酸酯或其他聚合物透光材料制成的。在一个较佳实施例中,面板50厚为1.2mm,基片56、62、68和74为0.4mm厚。基片的厚度可选为0.2至0.8mm。内径和外径缘最好用塑料材料制作并厚约500微米缘厚可选为50—500微米。
缘可用胶、接合剂或其他结合工艺连到面板和基片上。缘也可与基片整体制作在一起。就位之后,缘在基片和面板间形成多个环形空间78。轴孔80在内径缘中通过介质12,以容纳轴14。在内径缘中设有多个通道82,用于连接孔80和空间78,以使空间78和盘存贮器周围的环境(通常为空气)的压强相等。通道82连有多个低阻抗过滤器84,以防止空间78被空气中的微粒物质所污染。过滤器84可是石英或玻璃纤维。通道82和过滤器84也可位于外径缘上。
表面90、92、94、96、98、100、102和104为数据表面并与空间78相邻。这些数据表面可包含直接形成在基片表面上的ROM数据;或者,数据表面可涂敷上一种可写光学存贮膜(如WORM)或一种可擦光学存贮膜(如相变或磁—光)。除光学存贮膜之外,数据表面不含先有技术中(如美国专利4,450,533号)所知的,单独金属反射层结构(反射率为30~100%),换言之,在ROM表面的情况下,数据表面可包括、仅包括或基本上只包括表面本身,而在WORM、相变或磁—光表面的情况下,数据表面可包括、仅包括或基本上仅包括表面及光学存贮膜。不需要额外的非数据存贮反射层。其结果是数据表面非常透光而且可没许多数据表面。虽然中间的数据表面没有反射层,仍可在最后的数据表面104后面设一反射层,以从最后数据表面104获取更大的反射。
在较优实施例中,数据表面为ROM表面。在制作盘时把数据以凹穴的形式永久地记录并直接形成在基片中。与先有技术不同,本发明的ROM表面不含金属反射层。基片没有覆层。其结果是每一数据表面的透射率约为96%。这4%的反射率足以用以用来检测数据。高透射率的好处是允许对大量的数据表面进行存取并降低了来自其他表面的有害信号的作用。由于这些表面上无覆盖,它们更便于制作且更耐腐蚀。
尽管不是必须的,增加反射率从而降低激光功率是有益的。把反射率提高到4%以上的一种方法是加一电介质薄膜覆层,该电介质的折射率大于基片的折射率。最大反射率20%发生在电介质厚度约为λ/4n时,并单调地降到厚度为λ/2n时的4%,其中λ为光波长,n为该电介质的折射率。这种电介质的例子有ZrO2、ZnS、SiNx或混合氧化物。该电介质用先有技术中已知的溅射法淀积。
数据层的反射率也可降低4%以下。这增加了透射率并允许迭置更多的盘。反射率的降低可通过采用折射率小于基片的电介质膜实现。一种这样的电介质是MnF,其折射率为1.35。当电介质厚度约为λ/4n时达到最小反射率1%,并单调地变化至厚度约λ/2n时的最大反射率4%,其中λ是光波长,n为折射率。也可采用其他各种薄膜抗反射材料。这些抗反射膜可用先有技术中已知的溅射法进行涂覆。
数据表面也可包含WORM数据。可把诸如碲——硒合金或相变WORM膜的WORM膜涂覆到数据表面上。这些膜可用先有技术中已知的溅射法或蒸发法真空淀积。各个膜的反射、吸收和透射量与其厚度和光学常数有关。任一较佳实施例中,碲——硒合金的淀积厚度为20——800埃(A)。
数据表面也可包含可逆相变膜。任何类型的相变膜均可被采用,但较优的化合物包括那些沿着或接近连接GeTe和Sb2Te3的连接线的化合物,包括Te52·5Ge15·3Sb33、Ge2Sb2Te5、GeSb2Te4和GeSb4Te7。这些膜用先有技术中已知的溅射法真空淀积到基片上,并达到20~800的厚度。可在相变膜上形成3,0000厚的电介质保护覆层,以防止消蚀。
数据表面也可包括磁——光膜。诸如稀土过渡金属的磁——光膜可用先有技术中已知的溅射法真空淀积到基片上,并达到20~800的厚度。
另一种变型是使那些数据表面包含ROM、WORM、或可擦介质的组合。诸如ROM那样的透射性较高的表面最好距光源较近,而象WORM、相变和磁——光表面那样的透射性较低的表面最好离得远些。上述用于ROM表面的介电与抗反射膜也可用于WORM与可擦除介质。
图2B是光学记录介质的另一实施例的剖视图,并以总标号120表示。介质120的与介质12的相似的元件用带撇的数字表示。介质120没有介质12的缘和空间78。基片由多个固态透明部件122隔开。部件122用具有与基片不同折射率的材料制成。这是在数据表面实现一定反射所必须的,在一较佳实施例中,部件122是用光接合剂制成的,该接合剂同时也使基片连在一起。部件122的厚度最好为100~300微米。介质120可在系统10中代替介质12。
图3A显示了介质12的较佳数据表面图案的放大详细剖视图,并用总标号130表示。表面90包括螺旋(或同心圆)形的导槽132的图案。表面90位于导槽132之间的部分称为陆地部分134。表面92包括螺旋形翻转导槽(隆脊)136的图案。表面92位于翻转槽136之间的部分为陆地138,槽132和翻转槽136也称为跟踪标记。在较佳实施例中,跟踪标记的宽度140为0.6微米,陆地部分的宽度140为1.0微米。这产生了(1.0+0.6)=1.6微米的螺距。
跟踪标记被用来在介质12转动时把光束保持在道上。这在下面进行详述。对图案130,来自光头22的光束144将视其所聚焦的表面而跟踪陆地部分134或138行进。记录数据在陆地部分上。为使跟踪误差信号(TES)对表面90和92均有相同的幅度,来自陆地和跟踪标记的反射光的光程差对于两个表面必须是相同的。光束144通过基片50聚焦在表面90上,而光束144通过空间78聚焦在表面92上。在较佳实施例中,空间78包含空气。要使陆地和跟踪标记间的光程差相等,d1n1必须等于d2n2(或d2/d1等于n1/n2),其中d1是标记132的深度(垂直距离),n1是基片50的折射率,d2是标记136的高度(垂直距离),n2是空间78的折射率,在较佛实施例中,空间78包含折射率为1.0的空气,而基片50(以及其他基片)的折射率为1.5。因而比值d2/d1等于1.5。在较佳实施例中,d1为700,d2为1050。介质12的其他表面也具有同样的跟踪标记图案。其他基片入射表面94、98和102与表面92类似,而其他空间入射表面96100和104与表面92类似。
虽然跟踪标记最好是制成螺旋形的,它们也可制成同心圆案的。此外,各表面的螺旋图案可以是相同的,即它们都是顺时针或逆时针螺旋,或者,各数据层的图案可在顺时针和逆时针螺旋之间依次交替变化。在某些需要连续追踪数据的应用中希望有螺旋图案的这种交替变化,如录象数据和电影的存贮。在这种情况下,光束在第一数据表面上向内追踪顺时针螺旋图案,直至螺旋图案终止于内径附近,随后光束聚焦到下方紧邻的第二数据表面并向外跟踪逆时针螺旋图案直至达到外径。
图3B显示了介质12的另一种表面图案的放大详细剖视图并用总标号150表示。图案150与图案130类似,只是表面92的跟踪标记是槽152而不是翻转槽。其螺距和比值d2/d1与图案130的相同。光束144在表面90的陆地134上跟踪,但当光束144聚焦在表面92上时,它将沿槽152跟踪。有些情况下希望沿槽132跟踪。然而,如下面将叙述的,也可对光束144施行电子控制以使之跟踪表面92上的陆地138表面94、98和102的跟踪标记与表面90的类似,而表面96、100和104则与表面92类似。
图3C显示了介质12的另一种表面图案的放大详细剖视图,介质12以总标号160指示。图案160与图案130相似,只是表面90带翻转槽162而不是槽132,而且表面92带有槽164而不是翻转槽136。螺距及比值d2/d1与图案130的相同。光束144在聚焦到表面90时将沿翻向槽162行进,而在聚焦在表面92上时它将沿槽164行进(除非将其电子转换成沿陆地行进)。表面94、98和102的图案与表面90的相似,而表面96,100和104与表面92相似。
图3D显示了另一种表面图案的放大详细剖视图,该图案由总标号170表示。在图案170中,表面90具有与图案160的表面90相似的结构。表面92与有与图案130的表面92相似的结构。螺距及d2/d1比值与图案130的相同。光束144在聚焦到表面90上时将沿翻转槽162行进(除非将其电子转换为沿陆地行进),并在聚焦在表面92上时沿陆地138行进。表面94、98和102有与表面90相似的图案,而表面96、100和104有与表面92相似的图案。
对所有图案130、150、160和170,跟踪标记是在制作基片时通过先有技术中已知的光聚合物工艺或注模法形成在基片上的。应注意的是,如上所述,光学膜是在形成跟踪标记后淀积到基片上的。
对于跟踪标记的讨论也适用于光盘的其他特征。例如,某些ROM盘用模压在基片上的凹穴来记录数据和/或提供跟踪信息。其他光介质用凹穴来模压扇区标题信息。有些介质还用这些标题凹穴提供跟踪信息。在把这种介质用于本发明的多数据表面形式时,凹穴被制成各数据表面上的凹穴或翻转凹穴,其方式与上面讨论的跟踪标记相似。陆地和凹穴或翻转凹穴间的光程也类似于跟踪标记。凹穴、翻转凹穴、槽及翻转槽都位于距陆地不同的高度(即它们与陆地间的垂直距离),并在本讨论中均被称作标记。专门用于提供跟踪信息的标记被称作非数据跟踪标记。光头
图4显示了光头22和介质12的示意图,光头22有一激光二极管200。激光器200可以是镓——铝——砷化物二极管激光器,它产生波长约780毫微米的主光束202。光束202被透镜203准直并由圆化器204圆化。圆化器204可是一圆化棱镜。光束202经过分束器205。光束202的一部分为分束器205反射至会聚透镜206和光检测器207。检测器207用于监测光束202的功率。光束202的其余部分达到反射镜208并为其反射。随后光束202通过会聚透镜210及一多数据表面象差补偿器212并被会聚到介质12的数据表面之一上(图中所示为表面96)。透镜210装在支架214上。支架214的相对介质12的位置可由聚焦电机216调节。
光束202的一部分被数据表面反射面形成反射光束220。光束220经补偿器212和透镜210并被反射镜208反射。在分束器205,光束220被反射至多数据表面滤光器222。光束220通过滤光器222和分束器224。在分束器224光束220的第一部分230被引向散光透镜232及四分光检测器234。在分束器224,光束220的第二部分236被引向半波片238和极化分束器240。分束器240把光束236分成第一正交极化光分量242和第二正交极化光分量244。透镜246把光束242会聚到光检测器248,而透镜250把光束244会聚到光检测器252。
图5显示了四分检测器234的俯视图。检测器234被分为四个相同的部分234A、B、C和D。
图6显示了通道电路260的电路图。电路260包括数据电路262、聚焦误差电路264和跟踪误差电路266。数据电路262包括连到检测器248的放大器270和连到检测器252的放大器272。放大器270和272连到双极双掷电子开关274。开关274连到加法放大器276和微分放大器278。
电路264有分别连到部分234A、B、C和D的多个放大器280、282、284和286。加法放大器288连到放大器280和284上,而加法放大器290连到放大器282和286上。微分放大器292连到加法放大器288和290。
电路266有一对加法放大器294和296和微分放大器298。加法放大器294连到放大器280和282,而加法放大器296连到放大器284和286。微分放大器298经双极双掷电子开关297连到加法放大器294和296。开关297反转放大器298的输入信号。
图7是本发明的控制器系统的示意图,并用总标号300指示。聚焦误差信号(FES)峰值检测器310与聚焦误差信号电路264相连。跟踪误差信号(TES)峰值检测器312与跟踪误差信号电路266相连。控制器314连到检测器310、检测,器312、检测器207及电路262、264和266。控制器314是一带微处理器的盘驱动控制器。控制器314还连到并控制激光器200、光头电机26、轴电机16、聚焦电机216、开关297和274以及补偿器212。对补偿器212的确切结构和运行的详细描述将在下面给出。
现在可以明白系统10运行了。控制器314使电机16转动盘12并使电机26把光头22移到盘12下方的适当位置。见图4。激光器200以从盘12上读取数据。光束202由透镜210会聚到数据表面96上。返回的反射光束220被分成光束230、242和244。光束230为检测器234所检测并被用来提供聚焦及跟踪伺服信息,而光束242和244分别由检测器248和252所检测并被用来提供数据信号。
见图5。当光束202刚好会聚到数据表面96上时,光束230在检测器234上有圆形的横截面。这将使电路264输入出一零聚焦误差信号。若光束202沿一方向或另一方向偏离聚焦,光束230在检测器234上将呈椭圆图案352或354。这将使电路264输出一正或负聚焦误差信号。控制器314将用该聚焦误差信号来控制电机216去移动透镜210,直到达到零聚焦误差信号。
若光束202恰好聚焦在数据表面96的一导道上光束230将以圆形横截面相等地落在部分A与B和部分D与C上。若光束偏离导道它将落在跟踪标记和陆地间的边界上。结果,光束将被衍射,而横截面350将向上或向下移动。部分A和B将收到较多的光,而部分C和D将收到较少的光,或是相反的情况。
图8A显示了电路264产生的TES相对光头22的位移的曲线图。控制器14使VCM26把光头22移过介质12的表面。TES峰值检测器312计数TES信号的峰(最大和最小点)。各导道之间有二个峰值。通过计数峰的个数,控制器314可把光束定位在适当的导道上。陆地处的TES信号是正斜率的TES信号。控制器314用该正斜率信号把光束锁定在道上。比如,正斜率TES信号使光头22向左移向零点陆地位置,而负斜率TES信号使光头22向右移向零点陆地位置。图8A是当开关297处于图6所示初始位置时从介质12的较佳图案130导出的信号。图案150的表面90和图案170的表面92也产生同样的信号。光束被自动地锁定在陆地上,因为那里有正斜率。
图8B显示当开关297处于其初始位置时TES与光头相对图案150的表面92、图案160的表面90和92及图案170的表面90的位移的曲线图。请注意此处正斜率信号出现在跟踪标记处,因而光束被自动锁定在跟踪标记而不是陆地位置上。在某些场合希望沿跟踪标记行进。
图8C显示了当启动反向器开关297便TES信号反向时TES与光头相对图案150的表面92、图案160的表面90和92及图案170的表面90的位移的曲线图。现在TES在陆地处有正斜率,而光束将沿陆地部分而非跟踪标记行进。因此,控制器314可通过设置开关297来跟踪槽或陆地。
在较佳实施例中,介质12包括ROM数据表面。ROM数据通过检测反射率来读取。在数据电路262中,当读取ROM盘时开关274与放大器276相连。来自检测器248和252的信号被加起来。当记录有数据点时检测到的光较弱,这一检测到的光的差别就是数据信号。开关274在读取WORM和相变数据盘时的设置是相同的。如果盘12有磁——光数据表面,则需要用极化检测来读取数据。开关274将连到放大器278。检测器248和252检测到的正交极化光的差别将提供数据信号。
图9显示了来自电路264的聚焦误差信号对透镜210的位移的曲线图。注意对介质12的每一数据表面都得到一名义上的正弦聚焦误差信号。在数据层之间,聚焦误差信号为零。在系统启动过程中,控制器314先使电机216把透镜210定位在零位移处。随后控制器314通过让电机216把透镜210沿正位移方向移动来寻找所希望的数据表面。在每一数据层,峰值检测器310检测聚焦误差信号的两个峰值。控制器314将计数峰值(每个数据表面两个)并确定光束202聚焦的确切数据表面。当到达所希望的数据表面时,控制器314让电机216定位透镜210从而使聚焦误差信号在那个特定数据表面的两个峰值之间。该误差信号随后被用来控制电机216以寻找两峰值之间的零点聚焦误差信号,即锁定在正斜率信号上从而达到准确聚焦。控制器314还调节激光器200的功率、开关297、以及象差补偿器212使适合于该特定数据表面。
在启动时,控制器314还确定所读的盘的类型。开关274先设在反射率检测位置,而开关297则设在读取有较佳图案130的盘的陆地部分的位置。控制器314寻找并读取第一数据表面第一道的标题信息。标题信息包含层数、各层光学介质的类型(反射率或极化检测)、以及所用的跟踪极化的图案。根据这些信息,控制器314可适当设置开关274和297以正确读取各数据表面。例如,盘可有4个ROM数据表面层和两个ROM数据表面层。控制器314将设置开关274以对表面1——4作反射率检测并对表面5——6作极化检测。
若控制器314无法读取第一数据表面第一道(也许第一层有不同的跟踪标记图案),控制器314将把开关297置于其他状态并再次试图读取第一数据表面的第一道。如果这还不够(也许第一数据表面是磁——光的并需要极化检测),控制器将把开关274置于极化检测并再试一次,先把开关297设在一位置并随后设在另一位置。总之,控制器314将以开关274和297的四种不同组合来试图读取第一数据表面的第一道的标题信息,直至成功读取该道为止。一旦控制器314得到该标题信息,它就可为其他各数据表面正确地设置开关274和297。
或者,盘驱动器可只专用于一种介质。此时,控制器314被预先编程以存贮有关数据表面、层数、以及跟踪标记类型的信息。象差补偿器
通常,透镜都被设计成在折射率为1.0的空气中会聚光线。当用这种透镜会聚透过折射率不同的材料的光时,光线发生球面象差,它扭曲并放大了光束点,降低读取和记录的性能。
在一般光数据存贮系统中,只有一个需要会聚的表面。该表面通常位于1.2mm厚的面板之下。透镜一般为55数值孔径(NA)透镜,是专为修正1.2mm面板在光线上所引起的球面象差而设计的。其结果是对该特定深度可得到很好的点聚焦,但对其他深度聚焦变得模糊。这对任何多数据层系统都是严重问题。
本发明的象差补偿器212可解决该问题。图10显示了一种象差补偿器的示意图,补偿器用总标号400表示并可用作补偿器212。补偿器400包括含有三阶的阶块402。第一阶404厚0.4mm,第二阶406厚0.8mm,第三阶厚1.2mm。块402是由与面板和介质12的基片相同的材料或其他类似光学材料制成。注意这些阶的光学厚度增加量为基片厚度的增量。块402连到音圈电机410(或类似致动装置),电机410又连到控制器314。电机410横向地把块402移入或移出光束302的光径。
透镜210被设计得聚焦于介质12的最低数据表面上。换言之,透镜210是用来补偿面板和介入的基片的组合厚度所造成的球面象差的。对本发明,为了聚焦在表面102或104上,光束202必须通过面板50和基片56、62和68(组合厚度为2.4mm的基片材料)。注意这里没考虑空气空间78,因为它们不构产生附加的球面象差。透镜210因而被设计成聚焦通过2.4mm聚碳酸酯的光线的,并可同样有效地聚焦于表面102和104上。
当光束202聚焦于表面102或104之一时,块402完全撤出,且光束202不经过它。当光束202聚焦于表面98或100时,块402的定位使光束202通过阶404。当光束202聚焦于表面94或96时,块402的定位使光束202通过阶406。当光束202通过表面90或92时,块402的定位使光束202通过阶408。其结果是无论聚焦于哪对表面,光束202都经过总光学厚度相同的材料且不产生球面象差问题。控制器314控制电机410按需要移动块402。
图11显示了一象差补偿器,它由总标号430指示并用可用作补偿器212。补偿器430有一对互补三角形块432和434。块432和434是用与介质12的基片和面板相同的材料或有类似光学特性的材料制成的。块432处于一固定位置,以使光束202通过它。块434连到一音圈电机436并可沿块432的表面滑动。控制器314连接到并控制电机436。通过相对块432移动块434可调节光束202通过的材料总厚度。其结果是光束202无论聚焦在哪个数据表面都通过同样厚度的材料。
图12和13显示了由总标号450指示的象差补偿器,它可用作补偿器212。补偿器450有园形阶形部件452。部件452有四个部分454、456、458和460。部分456458和460具有分别与补偿器400的阶404、406和408相似的厚度。部分454没有材料并表示园形中的一空白空间,如图13所示。园状部件452连到由控制器314控制的步进电机462上。轴462转活部件452从而使光束202不论聚焦在哪一数据表面时都通过同样厚度的材料。
图14显示了由总标号570指示的象差补偿器,它可用作补偿器212。补偿器570包括静止的凸透镜572和可移动的凹透镜574。透镜574连到一音圈电机576。音圈电机576在控制器314控制下相对透镜572移动透镜574。光束202经透镜572、574及透镜210到达介质12。相对透镜572移动透镜574改变了光束202的球面象差并使之聚焦在不同的表面上。在最佳实例中透镜210、574和572构成一具有可移动中心部件574的库克(Cooke)三合透镜。库克三合透镜在B.Kingslake的文章“透镜设计原理”((“Lens Design Fundamentals”,AcademicPress,New York,1978,pp.286—295)中有详细的描述。虽然透镜274被显示为可移动的,也可以固定透镜274而把透镜572用作移动部件。在图4中,象差补偿器212是在透镜210和介质12之间。但是,若用了补偿器570它将位于透镜210和反射镜208之间,如图14所示。
图15显示了以总标号580指示的象差补偿器。补偿器580包括零标称聚焦能力的非球面透镜部件582。部件582有一球形象差表面584和一平面表面586。透镜582连到一音圈电机588。音圈电机588在控制器314的控制下相对透镜512移动透镜582。光束202经透镜210和透镜582到达介质12。相对透镜210移动透镜582改变光束202的球面象差并使之能聚焦到不同的数据表面上。
图16显示了透镜582相对轴Z和P的示意图。在一较佳实施例中,表面584应对应于公式Z=0.00770P4—0.00154P6。
图17显示了本发明的另一种光头的示意图,并用总标号600指示。光头600与光头22相似的部件用带撇的数字指示。注意光头600与系统10除象差补偿器212被取消而新的象差补偿器602被加在分束器206'和镜208'之间外是相同的。对补偿器602及其运行的说明将在下面给出。光头600的运行在其他方面与光头22相同。光头600可在系统10中代替光头22。
图18显示了以总标号610指示的象差补偿器,它可用作补偿器602。补偿器610有带反射全息覆盖614的基片612。基片612连到由控制器314控制的步进电机616上。全息覆层614记录有若干全息图,其每一个都给光束202'造成特定的象差。这些全息图是布拉格(Bragg)式的,它们只对特定波长和入射角的光有反应。当基片212转动儿度时,光束202'将遇到一不同的全息图。记录的全息图数对应于所要校正的不同球面象差数。对所示的介质12,需要四种不同的记录,每个对应于一对数据表面。
图19显示了由总标号620指示并可用作补偿器602的象差补偿器。补偿器620包括基片622、透射全息覆层624和步进电机626,补偿器620除全息覆层624是透射而非反射外与补偿器610相似。全息覆层624上记录有若干全息图,每个都对应所需的球面象差补偿量。当基片622转动时,光束202'依次遇到这些全息图。
图20显示了以总标号650指示的、用于制作全息覆层614和624的记录系统的示意图。系统650有以与激光器200类似的频率产生光束654的激光器652。光束654由透镜656准直后到达分束器658。分束器658把光束分成光束660和662。光束660被反射镜664和666反射并被透镜668聚焦到平面672的点670。光束660经与块402类似的阶形块674。光束660随后由透镜676再次准直并照到基片682的全息覆层680上。基片682可旋转地装在步进电机684上。光束662与光束660成90°角地照到覆层680上。
透镜668在平面672上成一无象差点。这束光随后经块674,块674的厚度代表在存取一特定记录层时所碰到的基片厚度之和。透镜676在设计上与光存贮器头中所用的透镜210相同。它把光准直成包含与特定厚度相对应的特定球面象差的束。这个波前通过与参考光束62干涉而被全息记录下来。如果全息图大致按所示的平面690定向,就记录了透射全息图。若它大致按虚线所示的平面692定向,就记录了反射全息图。通过转动全息图至一新的角度并插入块674的相应厚度的板,可以全息地存贮修正存取不同对记录层时所遇到象差所需的波前。记录了多个角分辨全息图,每个对应于并修正一对不同时记录层。全息覆层可用重铬酸胶或光聚合材料制成。各全息图可以小到1度的角度增量进行记录面不产生显著干扰。这可保证记录大量的全息图并相应地采用大量的数据表面。
图21显示了另一种以总标号700指示并可用作补偿器602的象差补偿器。补偿器700包括极化分束器702、四分之一波长704、连到步进电机708的圆盘传送器706以及能分别提供不同球面象差校正的多个球面象差镜710。光束202'按其极化定向以使其通过分束器702及片704而到达镜710之一。镜710给光束202 '造成适当的球面象差,随后光束202'经板704返回并为分束器702反射至镜208'。电机708在控制器314控制下转动圆盘传送器706以选择适当的镜就位。镜710为反射施米特修正片。参见M.Born等人的“光学原理”(M.Born,et al.,“Principleof Optics”,Pergonan Press Oxford,1975,pp.245—249)第245—249页。
图22显示了以总标号720表示并可用作补偿器602的另一种象差补偿器。补偿器720包括极化分束器722、四分之一波长724和电控变形镜726。变形镜726由内部压电元件控制并在J.P.Gaffarel等人于“应用光学”第26卷第3772—3777页(Applied Optics”,Vol.26,pp3772—3777,(1987)中有更详细的论述。补偿器720的运行与补偿器700相类似,只是镜726是靠电调节来提供适当的球面象差。换言之,镜726得到调节以形成与补偿器700的不同施米特校正片710相对应的反射表面。控制器314按需要控制镜726的调节。
上面结合介质12描述了象差补偿器212和602的运行。由于各层间的空气层,一种象差补偿设置适用于一对数据表面。然而,在使用介质120时,每一个数据表面都要求象差补偿设置。这是由于没有空气空间。多数据表面滤光器
当光束202聚焦于介质12的一特定数据表面时,反射光束230自该表面返回到光头22。但是还有些光束202反射自其他数据表面。必须除去这些不需要的反射光才能得到数据和伺服信号。本发明的多数据表面滤光器222可实现这一功能。
图23显示了可用作滤光器222的滤光器750的示意图。滤光器750包括挡板754和透镜756。所需要的光束230得到准直,因为它得到透镜210的适当会聚。光束230由透镜752聚焦至点760。不需要的光762由于未经透镜210的适当会聚而未被准直。光762将不会被聚焦到点760。板764有位于点760的孔764,以使光230通过。大部分不需要的光762为板754挡住。光230经透镜756再准直。在一较佳实施例中,孔764是圆形的且直径约为λ/(2*(NA)),其中λ为光波长,NA是透镜752的数值孔径。确切的直径是通过综合平衡准直允许误差和层间信号抑制要求而确定的。孔764也可是最窄缝隙为λ/(2*(NA))的狭缝。此时板764可为由狭缝分开的两个部件。板754可由金属片或带不覆盖孔764的阻光覆层的透明基片制成。
图24显示了可用作滤光器222的滤光器800。滤光器800包括透镜802 ,挡板804、挡板806和透镜808。板806有位于透镜802焦点812处的孔810。板804有一互补孔814,它使准直的光230得以通过孔810但却挡住不需要的非准直光820。孔814可是一对平行狭缝或是一环形孔。在一较佳实施例中,孔814的狭缝间距大于孔810的直径。孔810的直径约为λ/(2*(NA))。对环形孔,环形狭缝的内径应大于孔810的直径。在两种情况下,孔814的外缘均位于光束230之外。挡板804和806可由金属片或带不覆盖孔810和814的阻光覆层的透明基片制成。
图25显示了可用作滤光器222的另一种滤光器830。滤光器830包括分束器832及全息板834。全息板834的覆层调整为有效地反射准直光束230但同时使未准直光束840通过。所要的光束230为全息板834反射并回到分束器832,并被反射至分束器224。
图26是显示全息板834的制作的示意图。具有与激光器200相同波长的准直激光束850在振幅分束器856被分成两束852和854。光束852和854分别被引向镜860和862并从垂直于板834的相反的方向落到全息板834上。借助光束852和854的干涉记录下反射全息图。全息覆层可由重铬酸胶或光聚合材料制成。
在图4中,本发明的滤光器222位于光束220的光路中。然而,可在伺服光束230或数据光束236的光路中设置一或多个滤光器。
虽然在此对本发明的较佳实施例作了详细说明,但本领域的专业人员显然可在不超出所附权利要求书所限定的本发明的范围的前提下对本发明作各种修改和变形。