CN112066866B - 一种超快自愈的多糖基水凝胶应变传感器及其制备方法 - Google Patents

一种超快自愈的多糖基水凝胶应变传感器及其制备方法 Download PDF

Info

Publication number
CN112066866B
CN112066866B CN202010723919.9A CN202010723919A CN112066866B CN 112066866 B CN112066866 B CN 112066866B CN 202010723919 A CN202010723919 A CN 202010723919A CN 112066866 B CN112066866 B CN 112066866B
Authority
CN
China
Prior art keywords
polysaccharide
healing
self
hydrogel
strain sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010723919.9A
Other languages
English (en)
Other versions
CN112066866A (zh
Inventor
徐敏
王艳玲
黄海龙
韩卢
杨仲丽
蒋治成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202010723919.9A priority Critical patent/CN112066866B/zh
Publication of CN112066866A publication Critical patent/CN112066866A/zh
Application granted granted Critical
Publication of CN112066866B publication Critical patent/CN112066866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种超快自愈的多糖基水凝胶应变传感器及其制备方法,采用天然多糖和聚乙烯醇通过一锅法制备得到具有超快自愈的可拉伸可完全降解水凝胶,并将其应用于柔性应变传感器领域。该水凝胶在动态硼酯键和氢键协同作用下,在空气和水下均显示出超快自愈能力,解决了柔性设备损伤后愈合慢,愈合需要光、热、电等外界刺激、在水下无法愈合以及难降解污染环境等难题。另外该水凝胶对拉伸应变和压缩应变具有快速响应性,可以对喉咙发声、吞咽、皱眉等产生的微小形变以及手指、手肘、膝盖等肢体运动产生的较大形变实现实时监测。本发明的水凝胶应变传感器制备过程简单,环境友好、价格低廉并且可完全降解,在柔性电子领域具有广阔的应用前景。

Description

一种超快自愈的多糖基水凝胶应变传感器及其制备方法
技术领域
本发明涉及一种超快自愈的多糖水凝胶应变传感器及其制备方法,具体可以在柔性可穿戴设备、柔性电子皮肤、动作实时监测器、柔性机器人、致动器上的应用。
背景技术
近十年来,随着人机交互、植入式生理信号跟踪系统、医疗健康监测和储能等新型柔性设备的快速发展,所用材料的机械性能类似或超过柔软生物组织的已然成为了科研工作者的研究热点。模仿人类的感触觉能力以及具有良好的机械性能和导电性能是最终的目标。将导电材料(石墨烯、碳纳米管、金属颗粒、纳米线等)填充到弹性基质中制备的柔软可伸缩应变传感器可以对多种外部刺激产生形变并且定量输出电信号,但是导电材料往往分布不均匀,材料在形变过程中检测范围有限,伸缩过程中易断裂等,这极大地降低了其实用价值。因此,离子导电水凝胶由于其良好的伸缩性、导电性、传导机制简单等优点而受到广泛关注。
同时,自愈性概念来源于生物组织的自愈合能力和再生功能,当材料受到外界损伤时能够自修复,并恢复柔性器件物理结构和正常功能,增加其使用寿命,提高其性价比。但目前大多数材料自愈速度缓慢,需要外界刺激(光、热、电、力等)并且只能在空气中实现自我修复,在水中亲水性分子链与水分子结合,在水凝胶断裂面形成一定的界面,防止高分子链的扩散和碰撞,阻止其断裂处在水中的自愈合,这极大影响柔性设备在实际生活中的应用。然而在空气和水下都能够快速自愈的柔性水凝胶传感器鲜少报道。
另外,已报道的具有良好拉伸性能的柔性电子材料基本都无法降解,所产生的电子垃圾将对已经恶化的人类赖以生存的环境造成更大的负担。综上,传统水凝胶基柔性设备可拉伸性差、易损坏、自愈时间长、在水下无法自愈、原材料价格高同时又无法降解,这对其在实际生活中的应用提出诸多挑战。
发明内容
本发明的目的是针对传统水凝胶基柔性设备普遍存在可拉伸性差、损坏后无法自愈、需要外部刺激且速度慢、在水下无法自愈、价格高和无法完全降解等缺点,提出了一种采用天然多糖和聚乙烯醇通过一锅法制备在空气和水下都可快速自愈、可拉伸的多糖基水凝胶应变传感器。值得一提的是,传统的水凝胶中亲水性分子链在水下更容易与水分子结合,在水凝胶断裂面形成一定的界面,防止高分子链的扩散和碰撞,阻止水凝胶在水中的自愈合。然而本发明中的断裂的硼酯键在水的作用下更有利于硼离子的扩散和硼酯键的重组,进而促进水凝胶在水下的自愈。该柔性可拉伸自愈应变传感器,具有可拉伸、检测范围宽、价格低廉、在空气和水中都可快速自愈、可完全降解等优点,这将有效拓宽水凝胶柔性设备在实际生活中的应用。
本发明的目的是通过以下技术方案实现的:
一种超快自愈的多糖基水凝胶应变传感器的制备方法,该方法包括以下具体步骤:
步骤1:将多糖、聚乙烯醇及硼砂放到烧杯中;去离子水加入到所述烧杯中,油浴条件下机械搅拌,得到多糖-聚乙烯醇-硼砂溶胶;其中,油浴温度为80℃~110℃;机械搅拌速度为200~600 r/min,搅拌时间为2~6h;
所述的多糖和聚乙烯醇的质量比为0.2~7:10~0.1,所述的多糖和硼砂的质量比为0.01~10:0.01~0.5;所述的多糖和去离子水的质量比为0.1~15:15~100;
步骤2:将机械搅拌停止并去除搅拌棒,继续保持油浴加热 1~5h,直到溶胶中的气泡完全消失;
步骤3:将所述溶胶倒入模具中,室温冷却,即得超快自愈的可拉伸多糖基导电水凝胶;
步骤4:将步骤4制得的水凝胶用可拉伸胶带封装,并安装导电电极,组成所述超快自愈的多糖基水凝胶应变传感器;其中,
所述的多糖为淀粉及其衍生物、可溶性壳聚糖类衍生物、可溶性纤维素类衍生物、琼脂糖和海藻酸钠中的一种或几种混合;
所述的聚乙烯醇的醇解度为85%~99%,粘度为3.0~65.0 mPa·s。
所述的淀粉及其衍生物为酸解可溶性淀粉、羧甲基淀粉、羟乙基淀粉或羟丙基淀粉;淀粉来源于马铃薯、玉米、大米、甘薯、豌豆或葛根;所述可溶性壳聚糖类衍生物为壳寡糖、羧甲基壳聚糖、羟乙基壳聚糖、羟丙基壳聚糖或壳聚糖季铵盐;所述可溶性纤维素类衍生物为羧甲基纤维素、羟乙基纤维素、羟丙基纤维素或羟丙基甲基纤维素。
一种上述方法制得的超快自愈的多糖基水凝胶应变传感器,该传感器在空气中10s~5 min自愈,水下120 s~10 min自愈。
所述超快自愈的多糖基水凝胶应变传感器在柔性可穿戴设备、柔性电子皮肤、动作实时监测器、柔性机器人及致动器上的应用。
本发明柔性可拉伸超快自愈多糖基水凝胶具有快速响应、可拉伸、在空气和水下快速自愈,可应用于可穿戴设备、柔性电子皮肤由于拉伸、压缩引起的应变检测等领域。
本发明的有益效果:
本发明针对传统柔性设备普遍存在可拉伸性差、损坏后无法自愈合、愈合需要外部刺激且速度慢、无法水下修复、价格高和无法完全降解等问题,利用多糖/聚乙烯醇多羟基间存在大量氢键以及和四硼酸根离子形成快速可逆动态硼酯键,提出了一种采用一锅法制备在空气和水下都可快速自愈、可拉伸的多糖基水凝胶,将水凝胶制备成柔性可拉伸自愈应变传感器,具有可拉伸、检测范围宽、价格低廉、快速自愈、完全降解等优点。这将有效拓宽水凝胶柔性设备在实际生活中的应用。
附图说明
图1为本发明实施例1制得的水凝胶冷冻干燥后所测的红外图谱;
图2为本发明实施例1制得的水凝胶可承受拉伸、压缩、弯曲形变的能力图例;
图3为本发明实施例1制得的水凝胶在在空气和水中的自愈图例;
图4为本发明实施例1制得的水凝胶在不同拉伸应变下的电阻的变化图例。
具体实施方式
下面结合具体实施例及附图对本发明做详细叙述。
实施例1
步骤1:将7 g可溶性马铃薯淀粉、1 g聚乙烯醇及0.7 g硼砂放到烧杯中;
步骤2:将45 mL去离子水加入到上述烧杯中,油浴温度(98 ℃)以300 r/min的转速机械搅拌4 h,使得淀粉和聚乙烯醇充分溶胀并溶解,硼砂完全溶解,得到淀粉-聚乙烯醇-硼砂溶胶;
步骤3:将机械搅拌停止并去除搅拌棒,以98 ℃继续油浴加热2 h,直到溶液中的气泡完全去除;
步骤4:将上述溶胶倒入模具中,室温冷却,即得可拉伸超快自愈的多糖导电水凝胶;
步骤5:将水凝胶用可拉伸胶带封装,并安装导电电极,组成柔性应变传感器。
图1为本实施例所制得的超快自愈的多糖水凝胶冷冻干燥后所测的红外图谱。由图1可以看出,淀粉-聚乙烯醇-硼砂水凝胶形成了动态硼酯键,有利于凝胶的快速自愈。
图2为所制备的水凝胶能够承受拉伸、压缩和弯曲形变,而淀粉水凝胶却在压缩或弯曲形变下破损了,说明了聚乙烯醇的加入,大大增强了多糖水凝胶的力学性能。
图3为水凝胶在空气(10 s)和水中(120 s)的快速自愈图例。(a)为水凝胶切断前和切断后的状态,(b)为水凝胶在空气中自愈10 s,并能承受一定的拉伸,(c)为水凝胶在水中自愈120 s,并能承受一定的拉伸。
图4为水凝胶传感器对不同程度的拉伸应变产生不同的电信号响应。当在30%拉伸应变下,电阻的相对变化率较小;在50%拉伸应变下,电阻相对变化率较大。
实施例2
步骤1:将10 g可溶性马铃薯淀粉和羧甲基马铃薯淀粉的混合物(2:1)、0.1 g聚乙烯醇、1 g硼砂放到烧杯中;
步骤2:将60 mL去离子水加入到上述烧杯中,油浴温度(110 ℃)以600 r/min的转速机械搅拌2 h,使得可溶性马铃薯淀粉-羧甲基淀粉和聚乙烯醇充分溶胀并溶解,硼砂完全溶解,得到可溶性马铃薯淀粉-羧甲基淀粉-聚乙烯醇-硼砂溶胶;
步骤3:将机械搅拌停止并去除搅拌棒,以110 ℃继续油浴加热2 h,直到溶胶中的气泡完全去除;
步骤4:将上述溶胶倒入模具中,室温冷却,即得可拉伸超快自愈的多糖导电水凝胶;
步骤5:将水凝胶用可拉伸胶带封装,并安装导电电极,组成柔性应变传感器;
参照实施例1考察本实施例所制得的水凝胶柔性应变传感器,均能获得实施例1的相似性能。
实施例3
步骤1:将4 g琼脂糖、3 g聚乙烯醇、0.6 g硼砂放到烧杯中;
步骤2:将70 mL去离子水加入到上述烧杯中,油浴温度(100 ℃)以400 r/min的转速机械搅拌3 h,使得琼脂糖和聚乙烯醇充分溶胀并溶解,硼砂完全溶解,得到琼脂糖-聚乙烯醇-硼砂溶胶;
步骤3:将机械搅拌停止并去除搅拌棒,以100 ℃继续油浴加热2 h,直到溶胶中的气泡完全去除;
步骤4:将上述溶胶倒入模具中,室温冷却,即得可拉伸超快自愈的多糖导电水凝胶;
步骤5:将水凝胶用可拉伸胶带封装,并安装导电电极,组成柔性应变传感器;
参照实施例1考察本实施例所制得的水凝胶基柔性应变传感器,均能获得实施例1的相似的性能。

Claims (5)

1.一种超快自愈的多糖基水凝胶应变传感器的制备方法,其特征在于,该方法包括以下具体步骤:
步骤1:将多糖、聚乙烯醇及硼砂放到烧杯中;去离子水加入到所述烧杯中,油浴条件下机械搅拌,得到多糖-聚乙烯醇-硼砂溶胶;其中,油浴温度为80℃~110℃;机械搅拌速度为200~600 r/min,搅拌时间为2~6h;
所述的多糖和聚乙烯醇的质量比为0.2~7:10~0.1,所述的多糖和硼砂的质量比为0.01~10:0.01~0.5;所述的多糖和去离子水的质量比为0.1~15:15~100;
步骤2:将机械搅拌停止并去除搅拌棒,继续保持油浴加热 1~5h,直到溶胶中的气泡完全消失;
步骤3:将所述溶胶倒入模具中,室温冷却,即得超快自愈的可拉伸多糖基导电水凝胶;
步骤4:将步骤3制得的水凝胶用可拉伸胶带封装,并安装导电电极,组成所述超快自愈的多糖基水凝胶应变传感器;其中,
所述的多糖为淀粉及其衍生物、可溶性壳聚糖类衍生物、可溶性纤维素类衍生物、琼脂糖和海藻酸钠中的一种或几种混合;
所述的聚乙烯醇的醇解度为85%~99%,粘度为3.0~65.0 mPa·s。
2.根据权利要求1所述的制备方法,其特征在于,所述的淀粉及其衍生物为酸解可溶性淀粉、羧甲基淀粉、羟乙基淀粉或羟丙基淀粉;淀粉来源于马铃薯、玉米、大米、甘薯、豌豆或葛根;所述可溶性壳聚糖类衍生物为壳寡糖、羧甲基壳聚糖、羟乙基壳聚糖、羟丙基壳聚糖或壳聚糖季铵盐;所述可溶性纤维素类衍生物为羧甲基纤维素、羟乙基纤维素、羟丙基纤维素或羟丙基甲基纤维素。
3.一种权利要求1所述方法制得的超快自愈的多糖基水凝胶应变传感器。
4.根据权利要求3所述的超快自愈的多糖基水凝胶应变传感器,其特征在于,该传感器空气中10 s~5 min自愈,水下120 s~10 min自愈。
5.一种权利要求3或4所述的超快自愈的多糖基水凝胶应变传感器,在柔性可穿戴设备、柔性电子皮肤、动作实时监测器、柔性机器人及致动器上的应用。
CN202010723919.9A 2020-07-24 2020-07-24 一种超快自愈的多糖基水凝胶应变传感器及其制备方法 Active CN112066866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010723919.9A CN112066866B (zh) 2020-07-24 2020-07-24 一种超快自愈的多糖基水凝胶应变传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010723919.9A CN112066866B (zh) 2020-07-24 2020-07-24 一种超快自愈的多糖基水凝胶应变传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN112066866A CN112066866A (zh) 2020-12-11
CN112066866B true CN112066866B (zh) 2021-11-19

Family

ID=73656175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010723919.9A Active CN112066866B (zh) 2020-07-24 2020-07-24 一种超快自愈的多糖基水凝胶应变传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN112066866B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091776B (zh) * 2021-03-30 2022-09-27 华中科技大学 一种压电传感器及其制备方法和回收降解方法
CN114044918A (zh) * 2021-11-04 2022-02-15 成都理工大学 一种多孔结构的假酸浆胶/聚乙烯醇复合水凝胶的制备方法
CN115368638A (zh) * 2022-08-10 2022-11-22 河南师范大学 一种多功能改性淀粉基水凝胶材料的制备方法及其应用
CN115403881B (zh) * 2022-09-06 2024-03-08 五邑大学 一种导电水凝胶及制备方法与应用
CN117018302B (zh) * 2023-08-11 2024-08-09 四川大学 一种超分子水凝胶贴片及其制备方法和用途
CN118546436A (zh) * 2024-05-20 2024-08-27 江苏海洋大学 一种自修复抗菌水凝胶、制备方法及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037502A1 (en) * 2005-09-29 2007-04-05 Fujifilm Corporation Thermoplastic resin film and method for producing the same
CN102504296A (zh) * 2011-09-26 2012-06-20 常州绿之源高分子材料有限公司 水溶性壳聚糖/聚乙烯醇复合薄膜的制备方法
CN103804828A (zh) * 2014-02-14 2014-05-21 江南大学 一种吸附重金属离子的复合水凝胶及制备方法
CN106178106A (zh) * 2016-07-19 2016-12-07 湖北工业大学 3d打印海藻酸钠/聚乙烯醇全物理交联双网络水凝胶支架的方法
CN106751269A (zh) * 2016-12-08 2017-05-31 陕西易阳科技有限公司 一种牛至精油聚乙烯醇抗菌薄膜的制备方法
CN108822310A (zh) * 2018-06-11 2018-11-16 河南城建学院 Pbs微纳米纤维/羧甲基壳聚糖/聚乙烯醇复合水凝胶的制备方法
CN109354719A (zh) * 2018-09-26 2019-02-19 江南大学 一种淀粉双交联网络水凝胶及其制备方法
CN109575269A (zh) * 2019-02-02 2019-04-05 清华大学 一种具有双重动态网络的自愈性水凝胶及其制备方法
CN109867823A (zh) * 2019-01-10 2019-06-11 安徽工程大学 一种壳聚糖-聚乙烯醇复合膜及其制备方法与应用
WO2019116135A1 (en) * 2017-12-12 2019-06-20 King Abdullah University Of Science And Technology Multimodal strain sensor and method
CN110172161A (zh) * 2019-04-15 2019-08-27 江苏大学 一种三重网状结构水凝胶的制备方法及其应用
CN111234112A (zh) * 2020-03-30 2020-06-05 广州钰芯传感科技有限公司 一种水凝胶柔性应变传感器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111234109A (zh) * 2020-03-02 2020-06-05 华东师范大学 一种热响应形状记忆天然高分子水凝胶电解质及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037502A1 (en) * 2005-09-29 2007-04-05 Fujifilm Corporation Thermoplastic resin film and method for producing the same
CN102504296A (zh) * 2011-09-26 2012-06-20 常州绿之源高分子材料有限公司 水溶性壳聚糖/聚乙烯醇复合薄膜的制备方法
CN103804828A (zh) * 2014-02-14 2014-05-21 江南大学 一种吸附重金属离子的复合水凝胶及制备方法
CN106178106A (zh) * 2016-07-19 2016-12-07 湖北工业大学 3d打印海藻酸钠/聚乙烯醇全物理交联双网络水凝胶支架的方法
CN106751269A (zh) * 2016-12-08 2017-05-31 陕西易阳科技有限公司 一种牛至精油聚乙烯醇抗菌薄膜的制备方法
WO2019116135A1 (en) * 2017-12-12 2019-06-20 King Abdullah University Of Science And Technology Multimodal strain sensor and method
CN108822310A (zh) * 2018-06-11 2018-11-16 河南城建学院 Pbs微纳米纤维/羧甲基壳聚糖/聚乙烯醇复合水凝胶的制备方法
CN109354719A (zh) * 2018-09-26 2019-02-19 江南大学 一种淀粉双交联网络水凝胶及其制备方法
CN109867823A (zh) * 2019-01-10 2019-06-11 安徽工程大学 一种壳聚糖-聚乙烯醇复合膜及其制备方法与应用
CN109575269A (zh) * 2019-02-02 2019-04-05 清华大学 一种具有双重动态网络的自愈性水凝胶及其制备方法
CN110172161A (zh) * 2019-04-15 2019-08-27 江苏大学 一种三重网状结构水凝胶的制备方法及其应用
CN111234112A (zh) * 2020-03-30 2020-06-05 广州钰芯传感科技有限公司 一种水凝胶柔性应变传感器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Multiple Stimuli Responsive and Identifiable Zwitterionic Ionic Conductive Hydrogel for Bionic Electronic Skin;Hailong Huang;《Advance Electronic Materials》;20200630(第6期);第2000239(1-10)页 *
Rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant property;Guangfeng Wu;《Soft Matter》;20200131;第1-6页 *
高强韧壳聚糖基自修复水凝胶的制备与性能研究;程宝校;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》;20190115(第12期);B016-430 *

Also Published As

Publication number Publication date
CN112066866A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
CN112066866B (zh) 一种超快自愈的多糖基水凝胶应变传感器及其制备方法
Liu et al. A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca2+-SA and glycerol-PVA double physically cross-linked networks
Qu et al. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor
Jin et al. Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity
Li et al. Self-healing liquid metal hydrogel for human–computer interaction and infrared camouflage
Wang et al. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing
Sun et al. Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors
Wang et al. Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors
Ma et al. Skin-contactable and antifreezing strain sensors based on bilayer hydrogels
Chen et al. Alginate fiber toughened gels similar to skin intelligence as ionic sensors
Liu et al. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration
Liu et al. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax
Gao et al. Amylopectin based hydrogel strain sensor with good biocompatibility, high toughness and stable anti-swelling in multiple liquid media
CN112410927B (zh) 一种可拉伸碳纳米管/有机复合热电纤维及其制备方法及应用
Xiong et al. Bioinspired fabrication of self-recovery, adhesive, and flexible conductive hydrogel sensor driven by dynamic borate ester bonds and tannic acid-mediated noncovalent network
Guo et al. Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability
He et al. A high-strength, environmentally stable, self-healable, and recyclable starch/PVA organohydrogel for strain sensor
Ouyang et al. Ultrasensitive and robust self-healing composite films with reinforcement of multi-branched cellulose nanocrystals
Wang et al. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors
Wang et al. Developing a carbon composite hydrogel with a highly conductive network to improve strain sensing performance
Lv et al. Tough, Self-Healing, and Antimicrobial Hydrogel Sensors Based on Hydrogen-Bonded, Cross-linked Chitosan and MWCNTs
Chen et al. Highly stretchable, adhesive and antibacterial double-network hydrogels toward flexible strain sensor
Wang et al. Using chitosan nanofibers to simultaneously improve the toughness and sensing performance of chitosan-based ionic conductive hydrogels
Zou et al. Highly mechanical properties, anti-freezing, and ionic conductive organohydrogel for wearable sensors
Wang et al. Reversibly stretchable organohydrogel-based soft electronics with robust and redox-active interfaces enabled by polyphenol-incorporated double networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant