CN112058285B - 一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用 - Google Patents

一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用 Download PDF

Info

Publication number
CN112058285B
CN112058285B CN202010979039.8A CN202010979039A CN112058285B CN 112058285 B CN112058285 B CN 112058285B CN 202010979039 A CN202010979039 A CN 202010979039A CN 112058285 B CN112058285 B CN 112058285B
Authority
CN
China
Prior art keywords
carbonized
carbonized resin
anion exchange
resin composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010979039.8A
Other languages
English (en)
Other versions
CN112058285A (zh
Inventor
徐志兵
韦启信
刘念
李法松
韩毅
汪德进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anqing Normal University
Original Assignee
Anqing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anqing Normal University filed Critical Anqing Normal University
Priority to CN202010979039.8A priority Critical patent/CN112058285B/zh
Publication of CN112058285A publication Critical patent/CN112058285A/zh
Application granted granted Critical
Publication of CN112058285B publication Critical patent/CN112058285B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开一种Ag/Ag3PO4/碳化树脂复合物的制备方法,包括以下步骤:将阴离子交换树脂加入到0.1‑1M磷酸盐溶液中,振荡吸附交换2‑8h,过滤干燥后,将阴离子交换树脂加入到0.05‑0.5M的AgNO3溶液中反应10‑60min,过滤后烘干,然后在惰性气体保护下,或抽真空条件下在200‑250℃碳化4‑10h,即制得Ag/Ag3PO4/碳化树脂复合物。本发明还提供上述制备方法制得的Ag/Ag3PO4/碳化树脂复合物及其应用。本发明的有益效果在于:本发明制备方法简单、成本低,适用于工业化生产,制得的产物对水中的有机污染物具有一定的降解效果。

Description

一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用
技术领域
本发明涉及材料技术领域,具体涉及一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用。
背景技术
Ag和Ag3PO4由于具有催化、抗菌等性能,因此,在工业上,常用于抗菌剂和光催化剂。近年来,为提高Ag3PO4的应用范围,Ag3PO4复合物制备技术是材料学、化学等学科研究的热点之一。
公开号为CN109277106A的专利公开了一种Ag/Ag3PO4/硅藻土复合可见光光催化剂及其制备方法,Ag/Ag3PO4/硅藻土复合可见光光催化剂的制备过程是:先将制备的光催化剂Ag3PO4负载到硅藻土上,制得Ag3PO4/硅藻土光催化剂,再采用原位光还原法,在Ag3PO4/硅藻土光催化剂表面生成 Ag单质。但该种Ag/Ag3PO4/硅藻土复合物材料制备过程较为繁琐。
发明内容
本发明所要解决的技术问题之一在于现有技术中的Ag/Ag3PO4复合物制备方法较复杂,提供一种制备方法简便的Ag/Ag3PO4/碳化树脂复合物的制备方法。
本发明通过以下技术手段实现解决上述技术问题的:
一种Ag/Ag3PO4/碳化树脂复合物的制备方法,包括以下步骤:将阴离子交换树脂加入到0.1-1M磷酸盐溶液中,振荡吸附交换2-8h,过滤干燥后,将阴离子交换树脂加入到0.05-0.5M的AgNO3溶液中反应10-60min,过滤后烘干,然后在惰性气体保护下,或在抽真空条件下在200-250℃煅烧 4-10h,即制得Ag/Ag3PO4/碳化树脂复合物。
有益效果:本发明制备方法简单、成本低,适用于工业化生产,无需采用原位光还原法,直接将阴离子交换树脂先加入到磷酸盐溶液中吸附交换,再加入到Ag+离子溶液中反应,经过滤、干燥、煅烧后,即可获得本发明中的Ag/Ag3PO4/碳化树脂复合物。
在惰性气体保护或真空条件下的煅烧温度为200-250℃,可以使阴离子交换树脂碳化,同时制得的产物中含有Ag3PO4、Ag、碳化的阴离子交换树脂组分。
优选地,所述磷酸盐溶液包括磷酸氢二钠水溶液。
优选地,所述Ag/Ag3PO4/碳化树脂复合物为球形,直径在200-500μm 之间。
优选地,所述惰性气体为氮气,所述氮气流量为10-40mL/min。
优选地,所述抽真空条件为将管式炉抽真空至0.01-0.05Pa。
优选地,所述阴离子交换树脂包括强碱性阴离子交换树脂或弱碱性阴离子交换树脂。
本发明所要解决的技术问题之二在于现有技术中的Ag或Ag3PO4复合物对有机污染物吸附、降解效果较差等问题,提供一种Ag/Ag3PO4/碳化树脂复合物。
本发明通过以下技术手段实现解决上述技术问题的:
一种采用上述制备方法制得的Ag/Ag3PO4/碳化树脂复合物。
有益效果:本发明中的Ag/Ag3PO4/碳化树脂复合物在紫外光、可见光下对水中的有机污染物都具有一定的降解效果。
优选地,所述Ag/Ag3PO4/碳化树脂复合物为球形,直径在200-500μm 之间。
本发明所要解决的技术问题之三在于现有技术中的Ag或Ag3PO4复合物对水中有机污染物的吸附、降解效果较差的问题,提供一种Ag/Ag3PO4/ 碳化树脂复合物在降解有机污染物中的应用。
本发明通过以下技术手段实现解决上述技术问题的:
一种Ag/Ag3PO4/碳化树脂复合物在降解有机污染物中的应用。
有益效果:Ag/Ag3PO4/碳化树脂复合物对水中的有机污染物具有一定的降解效果。
优选地,将0.05g Ag/Ag3PO4/碳化树脂复合物置于50mL、5mg/L亚甲基蓝水溶液中,在100w紫外灯或100w日光灯照射下进行脱色。
有益效果:本发明中的Ag/Ag3PO4/碳化树脂复合物在紫外灯光照80min 亚甲基蓝水溶液脱色率最高达到98.2%。
优选地,将0.2g Ag/Ag3PO4/碳化树脂复合物置于100mL CODcr为 210mg/L的生活污水中,在100w紫外灯或100w日光灯下照射180min。
有益效果:本发明中的Ag/Ag3PO4/碳化树脂复合物在紫外灯光照射下对生活污水具有一定的降解效果,且在紫外灯光照180min生活污水CODcr 降解率最高达到43.5%,在可见光下光照180min,生活污水CODcr降解率最高达到18.4%。
本发明的优点在于:
本发明制备方法简单、成本低,适用于工业化生产,无需采用原位光还原法,直接将阴离子交换树脂先加入到磷酸盐溶液中吸附交换,再加入到Ag+离子溶液中反应,经过滤、干燥、煅烧后,即可获得本发明中的 Ag/Ag3PO4/碳化树脂复合物。
本发明中的Ag/Ag3PO4/碳化树脂复合物在紫外光、可见光下对水中的有机污染物都具有一定的降解效果,在紫外灯光照80min亚甲基蓝水溶液脱色率最高达到98.2%,在可见光下光照80min亚甲基蓝水溶液脱色率最高达到29.6%。
在紫外灯光照180min生活污水CODcr降解率最高达到43.5%,在可见光下光照180min,生活污水CODcr降解率最高达到18.4%。
本发明制得的Ag/Ag3PO4/碳化树脂复合物在紫外光下和可见光下对水中有机污染物的降解效果明显优于现有技术中的Ag3PO4/离子交换树脂复合物。
附图说明
图1为本发明实施例1中Ag/Ag3PO4/碳化树脂复合物的X射线衍射图谱;
图2为本发明实施例1中Ag/Ag3PO4/碳化树脂复合物的扫描电镜图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中所用的试验材料和试剂等,如无特殊说明,均可从商业途径获得。
下述实施例中所使用的弱碱型阴离子交换树脂、强碱阴离子交换树脂均购买自上海劲凯树脂有限公司。
实施例中未注明具体技术或条件者,均可以按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
实施例1
Ag/Ag3PO4/碳化树脂复合物的制备方法
在烧杯中将2g强碱阴离子交换树脂加入到150mL、0.1M磷酸氢二钠溶液中,并于振荡器上振荡交换8h,然后过滤、干燥后,将上述阴离子交换树脂加入到100mL、0.05M AgNO3溶液中反应60min,过滤后烘干,再将所得树脂在管式炉中于10ml/min流量的氮气保护下,200℃煅烧10h,即可制得1.9g Ag/Ag3PO4/碳化树脂复合物。
实施例2
Ag/Ag3PO4/碳化树脂复合物的制备方法
在烧杯中将2g强碱阴离子交换树脂加入到50mL、1.0M磷酸氢二钠溶液中,并于振荡器上振荡2h,然后过滤、干燥后,将上述阴离子交换树脂加入到60mL、0.5M AgNO3溶液中反应10min,过滤后烘干,再将所得树脂在管式炉中于40ml/min流量的氮气保护下,250℃煅烧4h,即可制得1.6g Ag/Ag3PO4/碳化树脂复合物。
实施例3
Ag/Ag3PO4/碳化树脂复合物的制备方法
在烧杯中将2g弱碱性阴离子交换树脂加入到80mL、0.8M磷酸氢二钠溶液中,并于振荡器上振荡4h,然后过滤、干燥后,将上述阴离子交换树脂加入到70mL、0.1M AgNO3溶液中反应40min,过滤后烘干,再将所得树脂在管式炉中抽真空到0.05Pa条件下,220℃煅烧8h,即可制得1.8g Ag/Ag3PO4/碳化树脂复合物。
实施例4
Ag/Ag3PO4/碳化树脂复合物的制备方法
在烧杯中将2g弱碱性阴离子交换树脂加入到120mL、0.4M磷酸氢二钠溶液中,并于振荡器上振荡5h,然后过滤、干燥后,将上述阴离子交换树脂加入到90mL、0.2M AgNO3溶液中反应30min,过滤后烘干,再将所得树脂在管式炉中抽真空到0.01Pa条件下,230℃煅烧6h,即可制得1.7g Ag/Ag3PO4/碳化树脂复合物。
实施例5
对实施例1-实施例4中的Ag/Ag3PO4/碳化树脂复合物性能进行测定
(1)通过德国Bruke D8 Advance X射线衍射仪分析了Ag3PO4晶型,德国蔡司SigmaHD型扫描电镜观察了微球表面形貌。
测定结果如表1所示,图1为本发明实施例1中Ag/Ag3PO4/碳化树脂复合物的X射线衍射图谱,图2为本发明实施例1中Ag/Ag3PO4/碳化树脂复合物的扫描电镜图,从图1和图2可以看出,本实施例1中Ag/Ag3PO4/ 碳化树脂复合物由Ag颗粒、Ag3PO4颗粒和碳化的阴离子交换树脂组成,直径200-500μm之间,Ag颗粒、Ag3PO4颗粒在外层,Ag3PO4颗粒较多, Ag颗粒较少,碳化的阴离子交换树脂在内层。
实施例2中制备的Ag/Ag3PO4/碳化树脂复合物由Ag、Ag3PO4颗粒和碳化的阴离子交换树脂组成,直径200-500μm之间,Ag颗粒较多,Ag3PO4颗粒较少,碳化的阴离子交换树脂在内层。
实施例3中制备的Ag/Ag3PO4/碳化树脂复合物通过德国Bruke D8 Advance X射线衍射仪分析了Ag3PO4晶型,德国蔡司Sigma HD型扫描电镜观察了微球表面形貌,结果表明:所所制备的Ag/Ag3PO4/碳化树脂复合物由Ag颗粒、Ag3PO4颗粒和碳化的阴离子交换树脂组成,直径200-500μm 之间,Ag颗粒、Ag3PO4颗粒在外层,碳化的阴离子交换树脂在内层。
实施例4中所制备的Ag/Ag3PO4/碳化树脂复合物由Ag颗粒、Ag3PO4颗粒和碳化的阴离子交换树脂组成,直径200-500μm之间,Ag颗粒、Ag3PO4颗粒在外层,碳化的阴离子交换树脂在内层。
表1为实施例1-实施例4中产物性能指标
Figure BDA0002686855090000071
(2)对实施例1-实施例4中的Ag/Ag3PO4/碳化树脂复合物对有机污染物亚甲基蓝的降解效果进行测定。
在50mL、5mg/L的亚甲基蓝水溶液中加入0.05g的各实施例制备的 Ag/Ag3PO4/碳化树脂复合物,分别在100W紫外灯或100W日光灯照射下,亚甲基蓝水溶液80分钟的脱色率。测定结果如表2所示。
在100mL CODcr为210mg/L的生活污水中加入0.2g的各实施例制备的Ag/Ag3PO4/碳化树脂复合物,分别在100W紫外灯或100W日光灯照射 180分钟,生活污水中有机污染物得到降解,CODcr一般代表水中耗氧的有机物多少。测定结果如表3所示。
表2为Ag/Ag3PO4/碳化树脂复合物对亚甲基蓝的催化效果表
Figure BDA0002686855090000081
表3为Ag/Ag3PO4/碳化树脂复合物对生活污水的催化效果表
Figure BDA0002686855090000082
从表2可以看出,Ag/Ag3PO4/碳化树脂复合物在紫外光下、可见光下对水中有机污染物都具有一定的降解效果,且在紫外灯光照80min亚甲基蓝水溶液脱色率最高达到98.2%,在可见光下光照80min亚甲基蓝水溶液脱色率最高达到29.6%。
从表3可以看出,Ag/Ag3PO4/碳化树脂复合物在紫外光下、可见光下对生活污水有机污染物都具有一定的降解效果,且在紫外灯光照180min生活污水CODcr降解率最高达到43.5%;在可见光下光照180min,生活污水CODcr降解率最高达到18.4%。
对比例
在50mL、5mg/L的亚甲基蓝水溶液中加入0.05g的按专利(发明专利号:201210188768.7)方法制备的Ag3PO4/离子交换树脂复合物,分别在100W 紫外灯、100W日光灯照射下,亚甲基蓝水溶液80分钟的脱色率分别为 75.6%和6.8%。
在100mL CODcr为210mg/L的生活污水中加入0.2g的按专利(发明专利号:201210188768.7)方法制备的Ag3PO4/离子交换树脂复合物,在紫外灯光照180min生活污水CODcr降解率为23.6%,在可见光下光照180min,生活污水CODcr降解率为9.6%。
可以明显看出,本发明制得的Ag/Ag3PO4/碳化树脂复合物在紫外光下和可见光下对水中有机污染物的降解效果明显优于现有技术中的Ag3PO4/ 离子交换树脂复合物。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种Ag/Ag3PO4/碳化树脂复合物的制备方法,其特征在于:包括以下步骤:将阴离子交换树脂加入到0.1-1M磷酸盐溶液中,振荡吸附交换2-8h,过滤干燥后,将阴离子交换树脂加入到0.05-0.5M的AgNO3溶液中反应10-60min,过滤后烘干,然后在惰性气体保护下,或者在抽真空条件下,200-250℃煅烧4-10h,即制得Ag/Ag3PO4/碳化树脂复合物;所述Ag/Ag3PO4/碳化树脂复合物为球形,直径在200-500μm之间,含有Ag3PO4、Ag、碳化的阴离子交换树脂。
2.根据权利要求1所述的Ag/Ag3PO4/碳化树脂复合物的制备方法,其特征在于:所述磷酸盐溶液包括磷酸氢二钠水溶液。
3.根据权利要求1所述的Ag/Ag3PO4/碳化树脂复合物的制备方法,其特征在于:所述阴离子交换树脂包括强碱性阴离子交换树脂或弱碱性阴离子交换树脂。
4.根据权利要求1所述的Ag/Ag3PO4/碳化树脂复合物的制备方法,其特征在于:所述抽真空条件为将管式炉抽真空至0.01-0.05Pa。
5.根据权利要求1所述的Ag/Ag3PO4/碳化树脂复合物的制备方法,其特征在于:所述惰性气体为氮气,所述氮气流量为10-40mL/min。
6.一种采用权利要求1-5中任一项所述的制备方法制得的Ag/Ag3PO4/碳化树脂复合物。
7.根据权利要求6所述的Ag/Ag3PO4/碳化树脂复合物,其特征在于:所述Ag/Ag3PO4/碳化树脂复合物为球形,直径在200-500μm之间,含有Ag3PO4、Ag、碳化的阴离子交换树脂。
8.一种采用权利要求1-5中任一项所述的制备方法制得的Ag/Ag3PO4/碳化树脂复合物在降解有机污染物中的应用。
9.根据权利要求8所述的Ag/Ag3PO4/碳化树脂复合物在降解有机污染物中的应用,其特征在于:将0.05g Ag/Ag3PO4/碳化树脂复合物置于50mL、5mg/L亚甲基蓝水溶液中,在100w紫外灯或100w日光灯照射下进行脱色。
10.根据权利要求8所述的Ag/Ag3PO4/碳化树脂复合物在降解有机污染物中的应用,其特征在于:将0.2g Ag/Ag3PO4/碳化树脂复合物置于100mL CODcr为210mg/L的生活污水中,在100w紫外灯或100w日光灯下照射180min。
CN202010979039.8A 2020-09-17 2020-09-17 一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用 Active CN112058285B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010979039.8A CN112058285B (zh) 2020-09-17 2020-09-17 一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010979039.8A CN112058285B (zh) 2020-09-17 2020-09-17 一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112058285A CN112058285A (zh) 2020-12-11
CN112058285B true CN112058285B (zh) 2022-12-02

Family

ID=73681656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010979039.8A Active CN112058285B (zh) 2020-09-17 2020-09-17 一种Ag/Ag3PO4/碳化树脂复合物的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112058285B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000594A (zh) * 2010-11-26 2011-04-06 大连理工大学 可见光光催化剂银和磷酸银的制备方法及其应用
CN102614902A (zh) * 2012-02-23 2012-08-01 常州水木环保科技有限公司 一种负载型磷酸银/银光催化剂的合成方法
CN102690527A (zh) * 2012-06-04 2012-09-26 徐志兵 Ag3PO4/离子交换树脂复合物制备方法
CN102698781A (zh) * 2012-06-15 2012-10-03 桂林理工大学 一种Ag/Ag3PO4复合光催化剂的制备方法
CN104128204A (zh) * 2014-07-17 2014-11-05 合肥工业大学 一种磷酸银/树脂复合物的制备方法
CN104128203A (zh) * 2014-07-17 2014-11-05 合肥工业大学 一种磷酸银/树脂复合物及其应用
CN108906092A (zh) * 2018-05-28 2018-11-30 河南师范大学 一种选择性去除阳离子染料的Ag3PO4@Ag/碳球三元异质结复合材料的制备方法
CN109277106A (zh) * 2018-09-17 2019-01-29 安徽建筑大学 一种Ag/Ag3PO4/硅藻土复合可见光光催化剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2916855A1 (en) * 2013-06-25 2014-12-31 Council Of Scientific & Industrial Research Reduced graphene oxide-silver phosphate (rgo-agp) and a process for the preparation thereof for the photodegradation of organic dyes
JP2017176900A (ja) * 2016-03-28 2017-10-05 株式会社豊田中央研究所 排ガス浄化用触媒及びその製造方法、並びにそれを用いた排ガス浄化フィルタ及び排ガス浄化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000594A (zh) * 2010-11-26 2011-04-06 大连理工大学 可见光光催化剂银和磷酸银的制备方法及其应用
CN102614902A (zh) * 2012-02-23 2012-08-01 常州水木环保科技有限公司 一种负载型磷酸银/银光催化剂的合成方法
CN102690527A (zh) * 2012-06-04 2012-09-26 徐志兵 Ag3PO4/离子交换树脂复合物制备方法
CN102698781A (zh) * 2012-06-15 2012-10-03 桂林理工大学 一种Ag/Ag3PO4复合光催化剂的制备方法
CN104128204A (zh) * 2014-07-17 2014-11-05 合肥工业大学 一种磷酸银/树脂复合物的制备方法
CN104128203A (zh) * 2014-07-17 2014-11-05 合肥工业大学 一种磷酸银/树脂复合物及其应用
CN108906092A (zh) * 2018-05-28 2018-11-30 河南师范大学 一种选择性去除阳离子染料的Ag3PO4@Ag/碳球三元异质结复合材料的制备方法
CN109277106A (zh) * 2018-09-17 2019-01-29 安徽建筑大学 一种Ag/Ag3PO4/硅藻土复合可见光光催化剂及其制备方法

Also Published As

Publication number Publication date
CN112058285A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
Zhang et al. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar
Xing et al. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation
Zbair et al. Porous carbon by microwave assisted pyrolysis: an effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology
Hussain et al. MOF derived porous ZnO/C nanocomposites for efficient dye photodegradation
Singh et al. Mutton bone derived hydroxyapatite supported TiO2 nanoparticles for sustainable photocatalytic applications
Zhang et al. Flower-like Bi 2 S 3/Bi 2 MoO 6 heterojunction superstructures with enhanced visible-light-driven photocatalytic activity
CN108579779B (zh) 一种三维复合材料、其制备方法及在水污染物可见光催化降解去除中的应用
Sun et al. Hydrothermal synthesis of mesoporous Mg3Si2O5 (OH) 4 microspheres as high-performance adsorbents for dye removal
Zhang et al. Photocatalytic hydroxylation of benzene to phenol over titanium oxide entrapped into hydrophobically modified siliceous foam
Rana et al. An overview on cellulose-supported semiconductor photocatalysts for water purification
Hu et al. Insight into the kinetics and mechanism of visible-light photocatalytic degradation of dyes onto the P doped mesoporous graphitic carbon nitride
CN102256680A (zh) 多孔块纳米纤维复合过滤器
Khasevani et al. Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst
Xu et al. Heterojunction material BiYO3/g-C3N4 modified with cellulose nanofibers for photocatalytic degradation of tetracycline
Wang et al. Hard template-induced internal solidification synthesis of Cu NPs-supported glutaraldehyde-crosslinked polyethyleneimine-modified calcium alginate beads with enhanced catalytic activity
AlAbduljabbar et al. TiO2 nanostructured coated functionally modified and composite electrospun chitosan nanofibers membrane for efficient photocatalytic degradation of organic pollutant in wastewater
Dai et al. 2D–3D graphene-coated diatomite as a support toward growing ZnO for advanced photocatalytic degradation of methylene blue
Li et al. Copper Iodide (CuI) coating as a self-cleaning adsorbent for highly efficient dye removal
Duan et al. Synthesis of ZnO-CuO/MCM-48 photocatalyst for the degradation of organic pollutions
Pei et al. Adsorption of organic dyes by TiO 2@ yeast-carbon composite microspheres and their in situ regeneration evaluation
Jiang et al. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye
Wang et al. Fe-complex modified cellulose acetate composite membrane with excellent photo-Fenton catalytic activity
Saadati et al. Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light
Tian et al. Degradation and adsorption of rhodamine B and phenol on TiO 2/MCM-41
Zain et al. Synergistic effect of TiO2 size on activated carbon composites for ruthenium N-3 dye adsorption and photocatalytic degradation in wastewater treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant