CN112052425B - Automatic and accurate manual multi-sediment open channel flow metering method - Google Patents

Automatic and accurate manual multi-sediment open channel flow metering method Download PDF

Info

Publication number
CN112052425B
CN112052425B CN202010897854.XA CN202010897854A CN112052425B CN 112052425 B CN112052425 B CN 112052425B CN 202010897854 A CN202010897854 A CN 202010897854A CN 112052425 B CN112052425 B CN 112052425B
Authority
CN
China
Prior art keywords
channel
flow
siltation
layer
silting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010897854.XA
Other languages
Chinese (zh)
Other versions
CN112052425A (en
Inventor
王小远
王玉晓
郭秋歌
赵颖
张像
朱煜
王越洋
杨深
李志鹏
尹君逸
朱晓阳
郭冉
吕艳捷
刘蒙琦
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information Center Of Henan Yellow River Bureau
Original Assignee
Information Center Of Henan Yellow River Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information Center Of Henan Yellow River Bureau filed Critical Information Center Of Henan Yellow River Bureau
Priority to CN202010897854.XA priority Critical patent/CN112052425B/en
Publication of CN112052425A publication Critical patent/CN112052425A/en
Application granted granted Critical
Publication of CN112052425B publication Critical patent/CN112052425B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel

Abstract

The invention discloses an automatic and accurate manual multi-sediment open channel flow metering method, which specifically comprises the following steps: s1, silting is judged; s2, obtaining the deposition thickness delta h; and S3, accurately metering the flow in a layered mode after the siltation is removed. The invention is suitable for a channel with much silt, fully considers the influence of siltation on flow calculation, and can measure the siltation thickness of the channel and automatically and accurately measure the flow after siltation is removed.

Description

Automatic and accurate manual multi-sediment open channel flow metering method
Technical Field
The invention relates to the field of hydraulic engineering, in particular to an automatic and accurate measuring method for the flow of a sediment-laden channel.
Background
The conventional liquid flow metering device comprises a radar flow meter and a laser/radar/ultrasonic liquid level meter, is mainly used for on-line automatic monitoring of channel flow, and is characterized in that a flow rate-liquid level measuring device is formed by utilizing an upper computer, a cable and monitoring equipment, and the instantaneous flow and the accumulated flow of an open channel are calculated and monitored by combining the channel section shape and time information and through a related theoretical formula. However, for a channel with much silt or a channel with a channel deposition section which changes too fast, the traditional flow velocity-liquid level measuring device cannot accurately measure the flow of the open channel, and two problems exist: 1. the silt deposit change condition of a multi-silt channel and the silt deposit thickness cannot be monitored. 2. The automatic and accurate measurement of the flow after the sediment deposition of the multi-sediment channel is removed can not be realized.
The channel bottom coefficient is related to the wet circumference and roughness of the channel, and the specific value is fitted by an algorithm and determined together with actual measurement.
The method for calculating the surface flow of the open channel is common knowledge in the technical field, and specifically, the surface flow is calculated by the water depth of the channel surface and the surface flow velocity together, and the surface flow velocity is calculated by a trend extrapolation method from v1,v2,..,vnAnd (4) jointly determining.
The channel layering requirements are that each layer has the same fixed interval, and the layering number is related to the actual channel bottom width b, the layering interval delta H, the open channel slope length l, the actual water depth H, and the included angle alpha between the side slope and the channel bottom.
The calculation relationship is as follows:
Figure GDA0003319404010000011
and then judging the relation between the oxide layer and the bottom b of the channel, wherein the oxide layer is larger than b, the delamination is larger than 4 and smaller than b, the delamination is smaller than 4, the oxide layer is divided into 8 layers at most, and the oxide layer is divided into 2 layers at least.
Disclosure of Invention
The invention aims to provide an automatic and accurate flow metering method for a silt-laden channel, which can meter the silt deposition thickness in the channel and automatically and accurately meter the flow after deposition removal.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows: the automatic and accurate flow metering method for the silt-laden channel specifically comprises the following steps:
s1, judging whether the siltation reaches a preset threshold value delta;
s2, obtaining the deposition thickness delta h;
and S3, accurately metering the flow in a layered mode after the siltation is removed.
Further, the specific method for determining fouling in step S1 is as follows: obtaining theoretical liquid level height h of channel water passing section1Measuring the actual liquid level h of the channel water passing section by using a drop-in liquid level sensor2The input liquid level sensor is kept on the upper surface of the deposit layer and moves at a constant speed perpendicular to the flow direction when h is2And h1Is less than or equal to a preset threshold value delta, the siltation is judged to occur, and when h is less than or equal to the preset threshold value delta2And h1If the ratio of (d) is greater than a preset threshold value delta, it is determined that silting does not occur.
Further, the calculation formula of the deposition thickness obtained in step S2 is Δ h ═ h1-h2 (1)
Wherein h is1=Lsinα (2)
Wherein L is the length of the side slope of the channel, and alpha is the included angle between the side slope and the bottom of the channel.
Further, the specific steps of accurately measuring the flow rate after the siltation removal in step S3 are as follows:
s3-1, dividing the water passing section into n layers, wherein the first layer is arranged at the lowest part;
s3-2, acquiring actual flow velocity v of different layering heights of water cross section1,2,3,..,n-1,n
S3-3, obtaining the height H between the upper bottom of each layer and the bottom of the channel according to the actual layering1,2,3,...,n-1,nAnd calculating the width B of the upper bottom of each layer1,2,3,...,n-1,nThe calculation formula is
Figure GDA0003319404010000021
And calculating the width B of the upper bottom edge of the depositSilting upThe calculation formula is
Figure GDA0003319404010000022
Wherein s is the slope ratio of the side slope of the original channel, and b is the width of the channel bottom of the original channel;
s3-4, obtaining the channel bottom coefficient K according to the actual situation of the channel sectionB
S3-5, calculating the layered flow Q of each layer1,2,3,...,n-1,nThe formula for n is 1
Figure GDA0003319404010000023
The calculation formula of n is more than or equal to 2
Figure GDA0003319404010000024
Flow Q corresponding to the same sedimentation layerSilting upThe corresponding calculation formula is
Figure GDA0003319404010000025
S3-6, the formula for accurately measuring the flow after removing the siltation is Q ═ Q1+Q2+...+Qn-1+Qn-QSilting up+QSurface layer (8)。
Furthermore, when the channel bottom width b is less than or equal to 25m, the number of layers is n less than or equal to 4.
Adopt the produced beneficial effect of above-mentioned technical scheme to lie in: the invention is suitable for a channel with much silt, fully considers the influence of siltation on flow calculation, and can measure the siltation thickness of the channel and automatically and accurately measure the flow after siltation is removed.
Drawings
The present invention will be described in further detail with reference to the accompanying drawings and specific embodiments.
FIG. 1 is a schematic diagram of the method of measuring fouling in a silt-laden channel of the present invention;
FIG. 2 is a functional diagram of the present invention;
FIG. 3 is a schematic view of the channel hierarchy of the present invention;
fig. 4 is a flow chart of the operation of the present invention.
Detailed Description
The invention comprises the following steps:
s1, judging whether the siltation reaches a preset threshold value delta;
s2, obtaining the deposition thickness delta h;
and S3, accurately metering the flow in a layered mode after the siltation is removed.
The specific method for determining silting in step S1 is as follows: obtaining theoretical liquid level height h of channel water passing section1Measuring the actual liquid level h of the channel water passing section by using a drop-in liquid level sensor2The input liquid level sensor is kept on the upper surface of the deposit layer and moves at a constant speed perpendicular to the flow direction when h is2And h1Is less than or equal to a preset threshold value delta, the siltation is judged to occur, and when h is less than or equal to the preset threshold value delta2And h1If the ratio of (d) is greater than a preset threshold value delta, it is determined that silting does not occur.
The calculation formula of the deposition thickness obtained in step S2 is Δ h ═ h1-h2 (1)
Wherein h is1=Lsinα (2)
Wherein L is the length of the side slope of the channel, and alpha is the included angle between the side slope and the bottom of the channel.
The specific steps of accurately measuring the flow rate after the siltation removal in step S3 are as follows:
s3-1, dividing the water passing section into 4 layers, wherein the first layer is arranged at the lowest part;
s3-2, acquiring actual flow velocity v of different layering heights of water cross section1,v2,v3And v4
S3-3, obtaining the height H between the upper bottom of each layer and the bottom of the channel according to the actual layering1,2,3,...,n-1,nAnd calculating the width B of the upper bottom of each layer1,2,3,...,n-1,nThe calculation formula is
Figure GDA0003319404010000031
And calculating the width B of the upper bottom edge of the depositSilting upCalculating the formulaIs composed of
Figure GDA0003319404010000032
Wherein s is the slope ratio of the side slope of the original channel, and b is the width of the channel bottom of the original channel;
s3-4, obtaining the channel bottom coefficient K according to the actual situation of the channel sectionB
S3-5, calculating the layered flow Q of each layer1,2,3,...,n-1,nThe calculation formula is
Layer 1 stratified flow:
Figure GDA0003319404010000033
layer 2 stratified flow:
Figure GDA0003319404010000034
layer 3 stratified flow:
Figure GDA0003319404010000035
layer 4 stratified flow:
Figure GDA0003319404010000041
flow Q corresponding to the same sedimentation layerSilting upThe corresponding calculation formula is
Figure GDA0003319404010000042
S3-6, the formula for accurately measuring the flow after removing the siltation is Q ═ Q1+Q2+Q3+Q4-QSilting up+QSurface layer (8)。
The above description is only presented as an enabling solution for the present invention and should not be taken as a sole limitation on the solution itself.

Claims (2)

1. The automatic and accurate manual multi-sediment open channel flow metering method is characterized by comprising the following steps of: the method specifically comprises the following steps:
s1, judging whether the siltation reaches a preset threshold value delta;
s2, obtaining the deposition thickness delta h;
s3, accurately measuring the flow rate in a layering mode after the siltation is removed;
the specific method for determining silting in step S1 is as follows: obtaining theoretical liquid level height h of channel water passing section1Measuring the actual liquid level h of the channel water passing section by using a drop-in liquid level sensor2The input liquid level sensor is kept on the upper surface of the deposit layer and moves at a constant speed perpendicular to the flow direction when h is2And h1Is less than or equal to a preset threshold value delta, the siltation is judged to occur, and when h is less than or equal to the preset threshold value delta2And h1When the ratio of (d) is greater than a preset threshold value delta, determining that siltation does not occur;
the calculation formula of the deposition thickness obtained in step S2 is Δ h ═ h1-h2 (1)
Wherein h is1=Lsinα (2)
Wherein L is the length of the side slope of the channel, and alpha is the included angle between the side slope and the bottom of the channel;
the specific steps of accurately measuring the flow rate after the siltation removal in step S3 are as follows:
s3-1, dividing the water passing section into n layers, wherein the first layer is arranged at the lowest part;
s3-2, acquiring actual flow velocity v of different layering heights of water cross section1,2,3,..,n-1,n
S3-3, obtaining the height H between the upper bottom of each layer and the bottom of the channel according to the actual layering1,2,3,...,n-1,nAnd calculating the width B of the upper bottom of each layer1,2,3,...,n-1,nThe calculation formula is
Figure FDA0003319393000000011
And calculating the width B of the upper bottom edge of the depositSilting upThe calculation formula is
Figure FDA0003319393000000012
Wherein s is the slope ratio of the side slope of the original channel, and b is the width of the channel bottom of the original channel;
s3-4, obtaining the channel bottom coefficient K according to the actual situation of the channel sectionB
S3-5, calculating the layered flow Q of each layer1,2,3,...,n-1,nThe formula for n is 1
Figure FDA0003319393000000013
The calculation formula of n is more than or equal to 2
Figure FDA0003319393000000014
Flow Q corresponding to the same sedimentation layerSilting upThe corresponding calculation formula is
Figure FDA0003319393000000015
S3-6, the formula for accurately measuring the flow after removing the siltation is Q ═ Q1+Q2+...+Qn-1+Qn-QSilting up+QSurface layer (8)。
2. The automated and accurate flow metering method for a silt-laden channel of claim 1, which is characterized in that: for the channel bottom width b less than or equal to 25m, the number of layers is n less than or equal to 4.
CN202010897854.XA 2020-08-31 2020-08-31 Automatic and accurate manual multi-sediment open channel flow metering method Active CN112052425B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010897854.XA CN112052425B (en) 2020-08-31 2020-08-31 Automatic and accurate manual multi-sediment open channel flow metering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010897854.XA CN112052425B (en) 2020-08-31 2020-08-31 Automatic and accurate manual multi-sediment open channel flow metering method

Publications (2)

Publication Number Publication Date
CN112052425A CN112052425A (en) 2020-12-08
CN112052425B true CN112052425B (en) 2022-01-14

Family

ID=73608312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010897854.XA Active CN112052425B (en) 2020-08-31 2020-08-31 Automatic and accurate manual multi-sediment open channel flow metering method

Country Status (1)

Country Link
CN (1) CN112052425B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639806A (en) * 2021-10-19 2021-11-12 交通运输部天津水运工程科学研究所 Automatic measuring device and measuring method for irrigation branch channel flow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225244A (en) * 2017-12-29 2018-06-29 深圳市宏电技术股份有限公司 The measuring method and system of a kind of deposition thickness
CN208223565U (en) * 2018-05-28 2018-12-11 武汉大学 A kind of big flow open channel measuring automatically flow system
CN110487255A (en) * 2019-06-25 2019-11-22 河南黄河河务局信息中心 A kind of high concentration of sediment canal cross section Scour and Accretion intellectualized detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920498B2 (en) * 2013-11-05 2018-03-20 Crystal Lagoons (Curacao) B.V. Floating lake system and methods of treating water within a floating lake

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225244A (en) * 2017-12-29 2018-06-29 深圳市宏电技术股份有限公司 The measuring method and system of a kind of deposition thickness
CN208223565U (en) * 2018-05-28 2018-12-11 武汉大学 A kind of big flow open channel measuring automatically flow system
CN110487255A (en) * 2019-06-25 2019-11-22 河南黄河河务局信息中心 A kind of high concentration of sediment canal cross section Scour and Accretion intellectualized detection device

Also Published As

Publication number Publication date
CN112052425A (en) 2020-12-08

Similar Documents

Publication Publication Date Title
CN108254032B (en) River ultrasonic time difference method flow calculation method
CN102854100B (en) Fine sand settling velocity detection method based on image grey
CN112052425B (en) Automatic and accurate manual multi-sediment open channel flow metering method
CN107490410A (en) It is a kind of based on represent vertical line point flow velocity measurement Gao Hong contactless flow measurement method
CN107131858B (en) A method of calculating Lake Bank broken sea dam deposition thickness
CN108920429A (en) A kind of abnormal data analysis method of Water level trend monitoring
CN110955860B (en) Method for estimating underwater flow shear characteristic parameters of vertical launching navigation body
CN108225244B (en) Method and system for measuring deposition thickness
CN111104746A (en) River flood beach elevation determination method based on wavelet analysis
CN113836703A (en) Method for calculating resistance coefficient of river channel containing submerged vegetation
CN113672872A (en) Plain river network water volume replacement rate calculation method based on remote sensing image and terminal
CN115795856B (en) Monitoring method for downstream flow of sluice
CN113219202A (en) River hydrological measuring method and device
CN108827871B (en) Method for determining shear stress of sediment surface in tubular sediment erosion test device
CN111400974A (en) Method for estimating tangential stress of wall surface and bed surface of rectangular canal
CN110847112A (en) River flood discharge early warning method based on hydraulics simulation
CN113737710B (en) Estimation method of sediment transport rate of natural river bed load
CN108427654A (en) A kind of medium-sized or above silt arrester has deposited the quick calculation method of storage capacity
CN115115624A (en) Rolling damage detection method for anti-corrosion coating of cable bridge
CN114595596A (en) Simulation method of dense sedimentation rate of reservoir sediment
CN113887033A (en) Prediction method for sediment accumulation in tidal river section
CN111985164A (en) River flow prediction method based on fluid power and piecewise Manning formula
CN111487616A (en) Flow metering method
CN116519264B (en) Dynamic determination method and device for comprehensive roughness coefficient of debris flow channel section
CN111121684B (en) Measuring structure and calculating method for pipeline siltation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant