CN112051383B - Simulation experiment device for migration and transformation of pollutants in underground water level fluctuation zone - Google Patents
Simulation experiment device for migration and transformation of pollutants in underground water level fluctuation zone Download PDFInfo
- Publication number
- CN112051383B CN112051383B CN202010877991.7A CN202010877991A CN112051383B CN 112051383 B CN112051383 B CN 112051383B CN 202010877991 A CN202010877991 A CN 202010877991A CN 112051383 B CN112051383 B CN 112051383B
- Authority
- CN
- China
- Prior art keywords
- container
- water
- soil
- pipeline
- sample collection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
- G01N33/246—Earth materials for water content
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
本发明提供了一种地下水水位波动带污染物迁移转化模拟实验装置,涉及地下水水位监测技术领域,以解决现有技术中存在的耐磨结构需要频繁更换的技术问题,该装置包括容器、第一管路、第二管路,其中:容器内填充土样;容器的外表面连接有水压监测部、含水率监测部、ORP监测部、土壤水分监测部以及土样采集部;容器的内部设置第一多孔板,第一多孔板与容器的底部设有储水腔,容器的底部开设有排出口;第一管路、第二管路分别连接容器的顶部和底部,并且第一管路与第二管路上分别设置有第一蠕动泵和第二蠕动泵,本发明用于同步研究包气带和饱水带的物理化学环境变化。
The invention provides a simulation experiment device for the migration and transformation of pollutants in the groundwater level fluctuation zone, which relates to the technical field of groundwater level monitoring and solves the technical problem that the wear-resistant structure in the prior art needs to be replaced frequently. The device comprises a container, a first The pipeline and the second pipeline, wherein: the container is filled with soil samples; the outer surface of the container is connected with a water pressure monitoring part, a moisture content monitoring part, an ORP monitoring part, a soil moisture monitoring part and a soil sample collection part; the interior of the container is provided with The first perforated plate, the first perforated plate and the bottom of the container are provided with a water storage cavity, and the bottom of the container is provided with a discharge port; the first pipeline and the second pipeline are respectively connected to the top and bottom of the container, and the first pipe A first peristaltic pump and a second peristaltic pump are respectively arranged on the road and the second pipeline, and the present invention is used to simultaneously study the physical and chemical environment changes of the vadose zone and the water-saturated zone.
Description
技术领域technical field
本发明涉及地下水水位监测技术领域,尤其是涉及一种地下水水位波动带污染物迁移转化模拟实验装置。The invention relates to the technical field of groundwater level monitoring, in particular to a simulation experiment device for the migration and transformation of pollutants in the groundwater level fluctuation zone.
背景技术Background technique
土壤和地下水耦合实验模拟研究是土壤地下水相关研究中的重要研究基础。Soil and groundwater coupling experiment simulation research is an important research basis in soil and groundwater related research.
其中,地下水水位波动带是土壤和饱和地下水含水层的界面,也是物质交换的主要位置。Among them, the groundwater level fluctuation zone is the interface between the soil and the saturated groundwater aquifer, and is also the main location for material exchange.
本申请人发现现有技术至少存在以下技术问题:The applicant found that the prior art has at least the following technical problems:
目前已有的地下水水位波动带污染物迁移转化的实验模拟装置,多关注饱和地下水含水层在水位波动过程中的地球化学环境变化,忽略了包气带的非饱和环境变化,此外已有的污染物迁移实验装置均未能实现顶部降水导致的地下水水位波动情景模拟。At present, the existing experimental simulation devices for the migration and transformation of pollutants in the groundwater level fluctuation zone pay more attention to the changes in the geochemical environment of the saturated groundwater aquifer during the water level fluctuation process, ignoring the unsaturated environmental changes in the vadose zone. None of the physical migration experimental devices can achieve the scenario simulation of groundwater level fluctuations caused by top precipitation.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种地下水水位波动带污染物迁移转化模拟实验装置,以解决现有技术中存在的目前已有的地下水水位波动带污染物迁移转化的实验模拟装置,多关注饱和地下水含水层在水位波动过程中的地球化学环境变化,忽略了包气带的非饱和环境变化,此外已有的污染物迁移实验装置均未能实现顶部降水导致的地下水水位波动情景模拟的技术问题。本发明提供的诸多技术方案中的优选技术方案所能产生的诸多技术效果详见下文阐述。The purpose of the present invention is to provide an experimental device for simulating the migration and transformation of pollutants in the groundwater level fluctuation zone, so as to solve the existing experimental simulation device for the migration and transformation of pollutants in the groundwater water level fluctuation zone existing in the prior art. The changes in the geochemical environment of the layer in the process of water level fluctuations ignore the unsaturated environmental changes in the vadose zone. In addition, the existing experimental devices for pollutant migration have failed to achieve the technical problem of simulating groundwater level fluctuations caused by top precipitation. The technical effects that can be produced by the preferred technical solutions among the technical solutions provided by the present invention are detailed in the following descriptions.
为实现上述目的,本发明提供了以下技术方案:For achieving the above object, the invention provides the following technical solutions:
本发明提供的一种地下水水位波动带污染物迁移转化模拟实验装置,包括容器、第一管路、第二管路,其中:The invention provides a simulation experiment device for the migration and transformation of pollutants in the groundwater level fluctuation zone, comprising a container, a first pipeline and a second pipeline, wherein:
所述容器内填充土样;The container is filled with soil samples;
所述容器的外表面连接有水压监测部、含水率监测部、ORP监测部、土壤水分监测部以及土样采集部;The outer surface of the container is connected with a water pressure monitoring unit, a moisture content monitoring unit, an ORP monitoring unit, a soil moisture monitoring unit and a soil sample collection unit;
所述容器的内部设置第一多孔板,所述第一多孔板与所述容器的底部设有储水腔,所述容器的底部开设有排出口;A first perforated plate is arranged inside the container, a water storage cavity is arranged on the bottom of the first perforated plate and the container, and a discharge port is opened at the bottom of the container;
所述第一管路、所述第二管路分别连接所述容器的顶部和底部,并且所述第一管路与所述第二管路上分别设置有第一蠕动泵和第二蠕动泵。The first pipeline and the second pipeline are respectively connected to the top and bottom of the container, and the first pipeline and the second pipeline are respectively provided with a first peristaltic pump and a second peristaltic pump.
优选地,还包括降雨淋溶装置,所述降雨淋溶装置设置于所述容器的顶部,其中:Preferably, a rainfall leaching device is also included, and the rainfall leaching device is arranged on the top of the container, wherein:
所述降雨淋溶装置包括壳体、设置于所述壳体顶部的盖板以及第二多孔板,其中:The rainfall leaching device includes a casing, a cover plate arranged on the top of the casing, and a second porous plate, wherein:
所述壳体的内部设有腔体,所述第二多孔板设置于所述腔体的底部,位于所述降雨淋溶装置与所述容器之间;A cavity is arranged inside the casing, and the second perforated plate is arranged at the bottom of the cavity, between the rainfall leaching device and the container;
所述盖板上设有溶液入口。The cover plate is provided with a solution inlet.
优选地,含水率监测部、ORP监测部、土壤水分监测部以及土样采集部沿所述容器外表面的周向均匀布置。Preferably, the moisture content monitoring part, the ORP monitoring part, the soil moisture monitoring part and the soil sample collection part are evenly arranged along the circumference of the outer surface of the container.
优选地,所述含水率监测部设置为包括多个含水率传感器,多个含水率传感器沿所述容器的高度方向均匀分布;Preferably, the water content monitoring part is configured to include a plurality of water content sensors, and the plurality of water content sensors are evenly distributed along the height direction of the container;
所述ORP监测部设置为包括多个ORP传感器,多个ORP传感器沿所述容器的高度方向均匀分布;The ORP monitoring part is configured to include a plurality of ORP sensors, and the plurality of ORP sensors are evenly distributed along the height direction of the container;
所述土壤水分监测部设置为包括多个土壤水分采集器,多个所述土壤水分采集器沿所述容器的高度方向均匀分布;The soil moisture monitoring unit is configured to include a plurality of soil moisture collectors, and the multiple soil moisture collectors are evenly distributed along the height direction of the container;
所述土样采集部包括多个土样采集孔,多个所述土样采集孔沿所述容器的高度方向均匀分布。The soil sample collection part includes a plurality of soil sample collection holes, and the plurality of soil sample collection holes are evenly distributed along the height direction of the container.
优选地,所述水压监测部设置为包括水压传感器,所述水压传感器设置于多个所述土样采集孔的底部,并且所述水压传感器与所述多个土样采集孔等距离分布于所述土样采集部上。Preferably, the water pressure monitoring part is configured to include a water pressure sensor, the water pressure sensor is arranged at the bottom of the plurality of soil sample collection holes, and the water pressure sensor is connected to the plurality of soil sample collection holes, etc. The distances are distributed on the soil sample collection part.
优选地,还包括数据采集器与分析平台,其中:Preferably, it also includes a data collector and an analysis platform, wherein:
所述数据采集器与所述含水率传感器、所述水压传感器、所述ORP传感器、所述土壤水分采集器均连接;The data collector is connected to the water content sensor, the water pressure sensor, the ORP sensor, and the soil moisture collector;
所述分析平台包括信号接收装置,所述数据采集器包括信号发射装置,所述数据采集器与所述分析平台通过无线连接。The analysis platform includes a signal receiving device, the data collector includes a signal transmitting device, and the data collector is wirelessly connected to the analysis platform.
优选地,所述容器采用圆柱状结构,所述容器的底部沿所述容器的周向均匀设置多个支脚。Preferably, the container adopts a cylindrical structure, and the bottom of the container is evenly provided with a plurality of supporting feet along the circumferential direction of the container.
优选地,所述土样的顶部与底部均设置石英砂层。Preferably, the top and bottom of the soil sample are provided with quartz sand layers.
优选地,所述盖板采用透明盖板,所述盖板与所述壳体之间设置密封结构。Preferably, the cover plate is a transparent cover plate, and a sealing structure is arranged between the cover plate and the casing.
优选地,所述第一多孔板与所述第二多孔板的孔径均设置为0.1-0.5cm。Preferably, the pore diameters of the first porous plate and the second porous plate are both set to be 0.1-0.5 cm.
本发明提供的地下水水位波动带污染物迁移转化模拟实验装置,本装置模拟全过程采用通过水压监测部、含水率监测部、ORP监测部实时监测渗流场、化学场变化,并通过土壤水分监测部提取包气带的水样,通过土样采集部提取土壤,监测污染物下渗过程污染物浓度分布、污染物迁移转化情况、渗流场变化情况以及化学环境变化情况,同步研究包气带和饱水带的物理化学环境变化,配合使用均匀降雨入渗淋溶装置,使用装置模拟真实的降雨情景,可完成不同降雨情景下的包气带水分迁移监测和饱水带水位监测。The present invention provides an experimental device for simulating the migration and transformation of pollutants in the groundwater level fluctuation zone. This device simulates the whole process by monitoring the changes of seepage field and chemical field in real time through the water pressure monitoring unit, the water content monitoring unit, and the ORP monitoring unit, and by monitoring the soil moisture. The water samples in the vadose zone are extracted from the department, and the soil is extracted through the soil sample collection department to monitor the pollutant concentration distribution, the migration and transformation of pollutants, the changes in the seepage field and the chemical environment during the infiltration process of pollutants. The physical and chemical environment changes in the saturated zone, combined with the uniform rainfall infiltration and leaching device, can be used to simulate the real rainfall scenario, and the water migration monitoring in the vadose zone and the water level monitoring in the saturated zone can be completed under different rainfall scenarios.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1是本发明地下水水位波动带污染物迁移转化模拟实验装置一实施例的结构示意图;1 is a schematic structural diagram of an embodiment of an experimental device for simulating the migration and transformation of pollutants in the groundwater level fluctuation zone according to the present invention;
图2是本发明降雨淋溶装置的主视结构示意图;Fig. 2 is the front view structure schematic diagram of the rainfall leaching device of the present invention;
图3是本发明容器的俯视结构示意图;Fig. 3 is the top view structure schematic diagram of the container of the present invention;
图4是本发明含水率检测部的结构示意图;Fig. 4 is the structural representation of the moisture content detection part of the present invention;
图5是本发明ORP监测部的结构示意图;Fig. 5 is the structural representation of ORP monitoring part of the present invention;
图6是本发明土壤水分监测部的结构示意图;Fig. 6 is the structural representation of the soil moisture monitoring part of the present invention;
图7是本发明土样采集部的结构示意图;Fig. 7 is the structural representation of the soil sample collection part of the present invention;
图8是本发明第一多孔板的结构示意图;Fig. 8 is the structural representation of the first porous plate of the present invention;
图9是本发明第二多孔板的结构示意图。FIG. 9 is a schematic structural diagram of the second porous plate of the present invention.
图中:1、容器;11、第一多孔板;12、储水腔;13、排出口;14、石英砂层;2、第一管路;21、第一蠕动泵;3、第二管路;31、第二蠕动泵;4、降雨淋溶装置;41、壳体;42、盖板;43、第二多孔板;44、腔体;45、溶液入口;5、支撑结构;6、数据采集器;7、分析平台;10、土壤水分监测部;20、ORP监测部;30、土样采集部;40、含水率监测部;101、土壤水分采集器;201、ORP传感器;301、土样采集孔;401、含水率传感器;501、水压传感器。In the figure: 1, container; 11, first perforated plate; 12, water storage cavity; 13, discharge port; 14, quartz sand layer; 2, first pipeline; 21, first peristaltic pump; 3, second pipeline; 31, second peristaltic pump; 4, rainfall leaching device; 41, shell; 42, cover plate; 43, second perforated plate; 44, cavity; 45, solution inlet; 5, support structure; 6. Data collector; 7. Analysis platform; 10. Soil moisture monitoring department; 20. ORP monitoring department; 30. Soil sample collection department; 40. Moisture content monitoring department; 101. Soil moisture collector; 201, ORP sensor; 301, a soil sample collection hole; 401, a water content sensor; 501, a water pressure sensor.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions of the present invention will be described in detail below. Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other implementations obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
本发明提供了一种地下水水位波动带污染物迁移转化模拟实验装置,图1是本实施例的结构示意图,如图1所示,包括容器1、第一管路2、第二管路3,其中:The present invention provides a simulation experiment device for the migration and transformation of pollutants in the groundwater level fluctuation zone. FIG. 1 is a schematic structural diagram of this embodiment, as shown in FIG. in:
容器1内填充土样;容器1的外表面连接有水压监测部、土壤水分监测部10、ORP监测部20、土样采集部30以及含水率监测部40;The
容器1的内部设置第一多孔板11,用于渗水,第一多孔板11与容器1的底部设有储水腔12,用于储水,容器1的底部开设有排出口13,用于收集出流液;第一管路2、第二管路3分别连接容器1的顶部和底部,并且第一管路2与第二管路3上分别设置有第一蠕动泵21和第二蠕动泵31。The inside of the
本装置模拟全过程采用通过水压监测部、含水率监测部40、ORP监测部20实时监测渗流场、化学场变化,并通过土壤水分监测部10提取包气带的水样,通过土样采集部30提取土壤,监测污染物下渗过程污染物浓度分布、污染物迁移转化情况、渗流场变化情况以及化学环境变化情况,同步研究包气带和饱水带的物理化学环境变化,配合使用均匀降雨入渗淋溶装置,使用装置模拟真实的降雨情景,可完成不同降雨情景下的包气带水分迁移监测和饱水带水位监测。This device simulates the whole process by monitoring the seepage field and chemical field changes in real time through the water pressure monitoring unit, the water
作为可选地实施方式,还包括降雨淋溶装置4,图2是本实施例降雨淋溶装置的主视结构示意图,如图2所示,降雨淋溶装置4设置于容器1的顶部,通过在此地下水水位波动带污染物迁移转化模拟实验装置上方设置降雨淋溶的配套装置用于模拟真实降雨过程。As an optional embodiment, a
具体地,降雨淋溶装置4包括壳体41、设置于壳体41顶部的盖板42以及第二多孔板43,其中:壳体41的内部设有腔体44,第二多孔板43设置于腔体44的底部,用于均匀降雨,位于降雨淋溶装置4与容器1之间,盖板42上设有溶液入口45。此地下水水位波动带污染物迁移转化模拟实验装置可通过降雨淋溶装置4,对不同降雨强度情景开展模拟。也可以对污染物初次下渗过程、污染土壤在降雨淋溶情况下变化过程等多种情况开展模拟,应用广泛。Specifically, the
作为可选地实施方式,图3是本实施例容器的俯视结构示意图,如图3所示,含水率监测部40、ORP监测部20、土壤水分监测部10以及土样采集部30沿容器1外表面的周向均匀布置。As an optional embodiment, FIG. 3 is a schematic top view of the container of this embodiment. As shown in FIG. 3 , the moisture
本实施例中,容器1采用主体内径为15cm,高度为60cm的圆柱体结构,圆柱体四面分别设孔布置不同传感器和采样孔,具体包括:水压传感器、含水率传感器、ORP传感器、土壤水分采集器、土样采集孔,模拟全过程采用通过压力、含水率、ORP传感器实时监测渗流场、化学场变化,并通过土壤水分采集仪器提取包气带的水样,通过土柱侧边的土样采集孔提取土壤,监测污染物下渗过程污染物浓度分布、污染物迁移转化情况、渗流场变化情况以及化学环境变化情况。In this embodiment, the
具体地,图4是含水率检测部的结构示意图,如图4所示,含水率监测部40设置为包括多个含水率传感器401,多个含水率传感器401沿容器1的高度方向均匀分布,本实施例中,设置每两个含水率传感器401之间的距离为10cm,由上至下共设置四个含水率传感器401,以监测不同位置的含水率信息。Specifically, FIG. 4 is a schematic structural diagram of the water content detection unit. As shown in FIG. 4 , the water
图5是ORP监测部的结构示意图,如图5所示,ORP监测部20设置为包括多个ORP传感器201,多个ORP传感器201沿容器1的高度方向均匀分布,本实施例中,设置每两个ORP传感器201之间的距离为10cm,由上至下共设置五个ORP传感器201,以监测不同位置的ORP信息;FIG. 5 is a schematic structural diagram of the ORP monitoring part. As shown in FIG. 5 , the
图6是土壤水分监测部的结构示意图,如图6所示,土壤水分监测部10设置为包括多个土壤水分采集器101,多个土壤水分采集器101沿容器1的高度方向均匀分布,本实施例中,设置每两个土壤水分采集器101之间的距离为10cm,由上至下共设置五个土壤水分采集器101,以采集不同位置的土壤水分信息;FIG. 6 is a schematic structural diagram of the soil moisture monitoring unit. As shown in FIG. 6 , the soil
图7是土样采集部的结构示意图,如图7所示,土样采集部30包括多个土样采集孔301,多个土样采集孔301沿容器1的高度方向均匀分布,本实施例中,设置每两个土样采集孔301之间的距离为10cm,由上至下共设置五个土样采集孔301,以采集不同位置的土样。FIG. 7 is a schematic diagram of the structure of the soil sample collection part. As shown in FIG. 7 , the soil
作为可选地实施方式,水压监测部设置为包括水压传感器501,水压传感器501设置于多个含水率传感器401的底部,并且水压传感器501与多个含水率传感器401等距离分布于含水率监测部40上,用于监测水压。As an optional embodiment, the water pressure monitoring part is configured to include a
作为可选地实施方式,还包括数据采集器6与分析平台7,传感器实时监测数据通过数据采集器6连接信号发射装置,通过无线网络上传至云平台,并远程读取数据开展分析。As an optional embodiment, it also includes a
其中:数据采集器6与含水率传感器401、水压传感器501、ORP传感器201、土壤水分采集器101均连接;分析平台7包括信号接收装置,数据采集器包括信号发射装置,数据采集器6与分析平台7通过无线连接。Wherein: the
使用时,本实施例中的水压传感器501、含水率传感器401、ORP传感器201均通过数据线连接至数据采集器,连接信号发射器并将数据通过无线网络上传至云平台。土壤水分采集器101通过气泵采集样品。实验数据结果可进一步通过数值模拟方式开展模型构建和拟合分析。In use, the
作为可选地实施方式,容器1采用圆柱状结构,容器1的底部沿容器1的周向均匀设置多个支撑结构5,用于支撑此装置,与地面保持一定的距离,并且能够便于排出口13排泄或者连接外部其他装置。As an optional embodiment, the
作为可选地实施方式,土样的顶部与底部均设置石英砂层14,本实施例中,石英砂层14采用0.5cm直径的粗颗粒石英砂,石英砂层14的厚度设置为1cm,本实施例中,实际填充土样的高度为50cm。As an optional implementation, the top and bottom of the soil sample are provided with a
作为可选地实施方式,盖板42采用透明盖板,便于观测,盖板42与壳体41之间设置密封结构,例如密封圈,以确保降雨淋溶装置4具有良好的密封性能。As an optional embodiment, the
作为可选地实施方式,第一多孔板11与第二多孔板43的孔径均设置为0.1-0.5cm,第一多孔板11与第二多孔板43的厚度均为1cm。优选地,图8是本实施例第一多孔板的结构示意图,如图8所示,设置第一多孔板11的孔径设置为0.5cm,图9是本实施例第二多孔板的结构示意图,如图9所示,第二多孔板43的孔径设置为0.5cm或者0.2cm。As an optional embodiment, the apertures of the first
本实施例一次完整的地下水水位波动带污染物下渗实验过程如下:The process of a complete infiltration experiment of pollutants in the groundwater level fluctuation zone in this embodiment is as follows:
1.安装好水压传感器501、含水率传感器401、ORP传感器201和土壤水分采集器101,制备土样,分层压实。1. Install the
2.去离子水从下到上饱和砂柱,充水的过程为:打开第一蠕动泵21的止水阀,用第一蠕动泵21从砂柱底部将模拟地下水注入,保持第一蠕动泵21的转速为5mL/min,以确保渗透性满足要求,当在实验砂柱中水充满时停止供水。饱和后2个小时稳定。2. Deionized water saturates the sand column from bottom to top, and the water filling process is: open the water stop valve of the first
3.打开第一蠕动泵21,缓慢抽水至水位在10cm。稳定2小时后,采集土壤水分检测常规指标。获取自然条件下物理化学参数分布。3. Turn on the first
4.以此次开始为0时刻,之后同时打开第一蠕动泵21和第二蠕动泵31,上部入渗量大于下部排泄量,水位缓慢上升。待水位稳定后,采集土壤水分并检测。获取自然条件水位升高对物理化学环境影响。4. Taking this start as time 0, then turn on the first
5.减少降雨,水位逐渐下降至10cm,稳定2小时。5. Reduce rainfall, the water level gradually drops to 10cm, and stabilizes for 2 hours.
6.将配制的污染物溶液泵入,上部入渗量大于下部排泄量,水位缓慢上升。待水位稳定后,采集土壤水分并检测。获取污染物随降雨入渗,水位升高对物理化学环境影响。6. Pump the prepared pollutant solution, the upper infiltration amount is greater than the lower excretion amount, and the water level rises slowly. After the water level stabilized, the soil moisture was collected and tested. Obtained pollutants infiltration with rainfall, the impact of water level rise on the physical and chemical environment.
7.减少降雨,水位逐渐下降至10cm,稳定2小时。此时柱体已经完全被污染。采集土壤水分和土样。7. Reduce rainfall, the water level gradually drops to 10cm, and stabilizes for 2 hours. At this point the column is completely contaminated. Collect soil moisture and soil samples.
解决了包气带和饱水带同步监测渗流场和化学场的问题,通过传感器布设和采样装置,达到了同步研究地下水水位波动带多场参数的效果。其次,解决了污染物随降雨下渗导致地下水水位波动情景的模拟问题。本发明设计了配套降雨淋溶装置,考虑了降雨对地下水水位波动影响。It solves the problem of synchronously monitoring seepage field and chemical field in vadose zone and saturated zone. Through sensor arrangement and sampling device, the effect of synchronously studying multi-field parameters of groundwater level fluctuation zone is achieved. Secondly, the simulation problem of the groundwater level fluctuation scenario caused by the infiltration of pollutants with rainfall is solved. The invention designs a matching rainfall leaching device, taking into account the influence of rainfall on the fluctuation of groundwater level.
整个装置通过上部降水和底部出流流量控制水位的升降,在获取稳定的渗流场之后,针对污染物从地表入渗经过包气带进入饱水带的情景,使用定浓度的重金属(或其它污染物)溶液从模型上部继续淋溶,模拟污染物下渗影响土壤和地下水的情景。The whole device controls the rise and fall of the water level through the upper precipitation and the bottom outflow flow. After obtaining a stable seepage field, for the scenario where the pollutants infiltrate from the surface through the vadose zone and enter the saturated zone, a fixed concentration of heavy metals (or other pollutants) is used. Contamination) solution continues to leaching from the upper part of the model, simulating the scenario of pollutant infiltration affecting soil and groundwater.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010877991.7A CN112051383B (en) | 2020-08-27 | 2020-08-27 | Simulation experiment device for migration and transformation of pollutants in underground water level fluctuation zone |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010877991.7A CN112051383B (en) | 2020-08-27 | 2020-08-27 | Simulation experiment device for migration and transformation of pollutants in underground water level fluctuation zone |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112051383A CN112051383A (en) | 2020-12-08 |
| CN112051383B true CN112051383B (en) | 2022-09-06 |
Family
ID=73600289
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010877991.7A Active CN112051383B (en) | 2020-08-27 | 2020-08-27 | Simulation experiment device for migration and transformation of pollutants in underground water level fluctuation zone |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112051383B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112858110A (en) * | 2021-04-15 | 2021-05-28 | 西南科技大学 | Experimental device and method for migration and transformation experiment of pollutants in soil |
| CN113207475A (en) * | 2021-04-19 | 2021-08-06 | 北京林业大学 | Experimental device for research plant roots growth situation |
| CN116448382A (en) * | 2023-05-05 | 2023-07-18 | 长安大学 | Test device and method for hydrodynamic dispersion characteristics of radial convergence flow field |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6648551B1 (en) * | 1997-02-21 | 2003-11-18 | Earth Systems Pty Ltd. | Method for stabilizing and reducing permeability of geologic or waste materials |
| CN101477106A (en) * | 2009-01-13 | 2009-07-08 | 中国科学院武汉岩土力学研究所 | Physical analog test apparatus for canal pollutant transmission under temperature-hydraulic coupling action |
| CN103215054A (en) * | 2013-03-15 | 2013-07-24 | 上海交通大学 | Batch type nitrogen gas filling single-phase pressure release low cost biological charcoal preparation apparatus and method thereof |
| CN103969419A (en) * | 2013-02-04 | 2014-08-06 | 中国科学院南京地理与湖泊研究所 | Indoor simulation system applied to pollutant migration process researches under artificial rainfall |
| CN105334311A (en) * | 2015-12-15 | 2016-02-17 | 武汉大学 | Multi-layer soil water fertilizer migration and transformation parameters testing device and method |
| CN110054378A (en) * | 2019-05-14 | 2019-07-26 | 中国环境科学研究院 | A kind of river and lake substrate prosthetic device and method |
| CN110681685A (en) * | 2019-10-29 | 2020-01-14 | 浙江大学 | Polluted site soil-underground water integrated simulation restoration device and method |
| CN209961753U (en) * | 2019-05-07 | 2020-01-17 | 上海城市水资源开发利用国家工程中心有限公司 | A device for simulating the effects of environmental factors on the release of pollutants in the sediments of water source reservoirs |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6806078B2 (en) * | 2002-08-27 | 2004-10-19 | William A. Newman | Substrate and method for anaerobic remediation |
| AU2004314102B2 (en) * | 2003-12-19 | 2009-12-24 | Craig M. Bethke | In situ treatment process to remove metal contamination from groundwater |
| CN109399770A (en) * | 2011-08-03 | 2019-03-01 | 埃沃克拉有限公司 | The method of the disposal of industrial wastes |
| CN103994951B (en) * | 2014-04-25 | 2016-05-25 | 南开大学 | Simulation device for the migration and transformation of environmental pollutants in different groundwater aquifers |
| CN104569321B (en) * | 2015-02-15 | 2016-02-17 | 中国地质科学院水文地质环境地质研究所 | A kind of earth's surface based on groundwater dynamic simulation experiment platform and pollution of underground aquifers source analogue experiment method |
| CN104569323B (en) * | 2015-02-15 | 2016-02-03 | 中国地质科学院水文地质环境地质研究所 | A kind of natural precipitation analogue experiment method based on groundwater dynamic simulation experiment platform |
| CN104596895B (en) * | 2015-02-26 | 2016-10-12 | 中国地质科学院水文地质环境地质研究所 | Underground water pollution Transport And Transformation and final home to return to integrated mobile analog platform and analogue experiment method |
| CN105044310A (en) * | 2015-08-11 | 2015-11-11 | 浙江大学 | Sectional type ring direction temperature control unsaturated soil column testing apparatus |
| CN105537260B (en) * | 2015-12-11 | 2018-05-01 | 上海交通大学 | Remediation method for synchronously stabilizing heavy metals Zn and Cr in soil |
| CN205263074U (en) * | 2015-12-24 | 2016-05-25 | 安徽锋亚环境技术有限公司 | Be used for prosthetic mud of landscape water body normal position - water termination materialization regulation and control system |
| CN106248895B (en) * | 2016-06-25 | 2018-06-12 | 西北大学 | A kind of groundwater resources on-line monitoring system |
| CN106979921A (en) * | 2017-05-11 | 2017-07-25 | 河海大学 | A kind of multi-functional column simulation integrating device for continuous monitoring |
| US10797863B2 (en) * | 2017-12-28 | 2020-10-06 | Intel Corporation | Multi-domain cascade convolutional neural network |
| CN109270244A (en) * | 2018-08-24 | 2019-01-25 | 河海大学 | Solute transfer analogue observation device in soil under a kind of rainfall |
| CN109254033A (en) * | 2018-10-19 | 2019-01-22 | 中国科学院寒区旱区环境与工程研究所 | The detection method that Decline or rise of groundwater level influences seepage through soil mass and water salt Transport |
| CN110514805A (en) * | 2019-07-08 | 2019-11-29 | 迪天环境技术南京股份有限公司 | The Transport And Transformation simulator and analogy method of heavy metal in a kind of persulfate soil system |
| CN110736822A (en) * | 2019-11-26 | 2020-01-31 | 长安大学 | A method for simulating groundwater evaporation and its soil column experimental device |
| CN110907339B (en) * | 2019-12-27 | 2021-08-17 | 中南大学 | System and method for measuring performance parameters of engineering barriers in polluted sites |
-
2020
- 2020-08-27 CN CN202010877991.7A patent/CN112051383B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6648551B1 (en) * | 1997-02-21 | 2003-11-18 | Earth Systems Pty Ltd. | Method for stabilizing and reducing permeability of geologic or waste materials |
| CN101477106A (en) * | 2009-01-13 | 2009-07-08 | 中国科学院武汉岩土力学研究所 | Physical analog test apparatus for canal pollutant transmission under temperature-hydraulic coupling action |
| CN103969419A (en) * | 2013-02-04 | 2014-08-06 | 中国科学院南京地理与湖泊研究所 | Indoor simulation system applied to pollutant migration process researches under artificial rainfall |
| CN103215054A (en) * | 2013-03-15 | 2013-07-24 | 上海交通大学 | Batch type nitrogen gas filling single-phase pressure release low cost biological charcoal preparation apparatus and method thereof |
| CN105334311A (en) * | 2015-12-15 | 2016-02-17 | 武汉大学 | Multi-layer soil water fertilizer migration and transformation parameters testing device and method |
| CN209961753U (en) * | 2019-05-07 | 2020-01-17 | 上海城市水资源开发利用国家工程中心有限公司 | A device for simulating the effects of environmental factors on the release of pollutants in the sediments of water source reservoirs |
| CN110054378A (en) * | 2019-05-14 | 2019-07-26 | 中国环境科学研究院 | A kind of river and lake substrate prosthetic device and method |
| CN110681685A (en) * | 2019-10-29 | 2020-01-14 | 浙江大学 | Polluted site soil-underground water integrated simulation restoration device and method |
Non-Patent Citations (3)
| Title |
|---|
| Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: reduction to Cr(III) and biosorption;Chen, H.et al;《Appl. Surf. Sci.》;20170731;第728–735页 * |
| 上海市居民区与工业区大气颗粒物重金属生物可给性与健康风险评估;蒋颖等;《环境化学》;20160715;第35卷(第7期);第1337-1345页 * |
| 土壤和地下水耦合数值模拟研究进展;殷乐宜等;《环境保护科学》;20200617;第46卷(第3期);第127-131页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112051383A (en) | 2020-12-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112051383B (en) | Simulation experiment device for migration and transformation of pollutants in underground water level fluctuation zone | |
| CN106324226B (en) | Monitor seepage action of ground water, sedimentation perfusion one laboratory testing rig and method | |
| CN106018004B (en) | A kind of passive type soil gas acquisition method | |
| CN209264719U (en) | A leaching device that can take water, air, and soil samples in layers and controllable water distribution | |
| CN204116337U (en) | A kind of native fish device of contaminant transportation simulation | |
| CN101556269B (en) | Trough for simulating groundwater pollution | |
| CN105242028B (en) | One kind is taken out filling by skyscraper load and subsoil water and causes soil body delaminating deposition model test apparatus and test method | |
| CN201130143Y (en) | Porous medium material permeability coefficient determinator | |
| CN203904966U (en) | Rapid water sampling device pressed with cone penetration device | |
| CN206876443U (en) | Soil shower solution sampling device | |
| CN102636630A (en) | Large unsaturated seepage physical simulator for soil in aerated zone | |
| CN103675238A (en) | Multifunctional rainfall landslide indoor testing device | |
| CN108956211A (en) | Ground water fixed depth sampling probe, sampling system and the method for sampling using the probe | |
| CN101738358A (en) | Earth-pillar percolation simulating device | |
| CN105865965A (en) | In-field weighting type lysimeter for paddy field | |
| CN106124719A (en) | Shallow Groundwater Pollution thing monitoring system | |
| CN110161210A (en) | A kind of draw water Returning test device and its test method for simulating leakage-releasing water | |
| CN206132761U (en) | Monitoring groundwater seepage flow, subside fill integrative indoor test device | |
| CN110702583B (en) | Soil infiltration and diffusion leaching test integrated column | |
| CN216847051U (en) | Urban underground sewage detection sampling device for environmental monitoring | |
| CN105334083B (en) | A kind of coal mine work area trace gas malleation harvester and its acquisition method | |
| CN203224383U (en) | Portable soil moisture original-position collector | |
| CN202305453U (en) | Bidirectional electro-osmosis consolidometer | |
| CN104345134A (en) | Method for measuring interflow in forest soil | |
| CN205861481U (en) | A kind of Weighing Lysimeter be applicable to the ground of rice terrace |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |
